首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background and aims

In Malawi, strategies are being sought to boost maize production through improvements in soil fertility. This study assessed the impact of intercropping maize (Zea mays) with pigeon pea (Cajanus cajan) in Lixisols of Malawi on yield, biological N fixation, soil aggregation, and P forms within soil aggregates.

Methods

Maize and pigeon pea were grown intercropped in pots, with varying degrees of root interaction in order to understand the relative importance of biochemical versus physical rhizospheric interactions. Following harvest, soils were separated into aggregate fractions using wet-sieving, and the nutrient content of all fractions was assessed.

Results

The proportion of macroaggregates and microaggregates increased by 52 and 111%, respectively, in the intercropping treatment compared to sole maize, which significantly increased organic P storage in the microaggregates of intercropped compared to sole maize (84 versus 29 mg P kg?1, respectively). Biologically fixed N increased from 89% in the sole pigeon pea to 96% in the intercropped system.

Conclusions

Intercropping maize with pigeon pea can have a significant and positive impact on soil structure as well as nutrient storage in these high P-sorbing soils. This is caused primarily by physical root contact and to a lesser degree by biochemical activities.
  相似文献   

2.

Objective

To construct a promoter probe vector, pBE-bgaB, to screen strong promoters from Bacillus amyloliquefaciens.

Results

266 colonies containing active promoter elements from the genomic DNA of B. amyloliquefaciens were identified. Among these, promoter P41 exhibited the strongest β-Gal activity in Escherichia coli and B. amyloliquefaciens. Sequence analysis showed that promoter P41 contained P ykuN , a ykuN gene encoding flavodoxin. Optimization of the ribosome-binding site from P41 to P382 improved β-Gal activity by ~ 200%.

Conclusion

A new strong promoter for protein expression and genetic engineering of Bacillus species.
  相似文献   

3.

Aims

Dauciform roots (DR) are formed by some Cyperaceae under phosphorus (P) deficiency. To advance our understanding of their physiological function, I ask: Is DR formation regulated by shoot P status or external P supply? How does it respond to nitrogen (N)? Do DR enhance root monoesterase, diesterase or phytase activities and ability to utilize organic P?

Methods

Greenhouse experiments were carried out with two Carex species grown in sand with (1) different combinations of N and P supply, (2) local supply of N or P to root halves, and (3) different organic P forms.

Results

Carex flava produced DR in all treatments. The density of DR and phosphatase activities increased with N supply; they were regulated by shoot P status and external N (but not P) supply. All phosphatase activities increased with DR density. Carex muricata produced no DR and had lower diesterase activity than C. flava but both species grew equally well with diester-P.

Conclusions

DR and phosphatase activities are regulated by both N and P supply. Similar growth responses to nutrients in both species suggest small costs and benefits of DR under experimental conditions but confirmation is needed for plants grown on natural soils.
  相似文献   

4.

Background and aims

In many soils inositol hexakisphosphate in its various forms is as abundant as inorganic phosphate. The organismal and geochemical processes that exchange phosphate between inositol hexakisphosphate and other pools of soil phosphate are poorly defined, as are the organisms and enzymes involved. We rationalized that simple enzymic synthesis of inositol hexakisphosphate labeled with 32P would greatly enable study of transformation of soil inositol phosphates when combined with robust HPLC separations of different inositol phosphates.

Methods

We employed the enzyme inositol pentakisphosphate 2-kinase, IP5 2-K, to transfer phosphate from [γ-32P]ATP to axial hydroxyl(s) of myo-, neo- and 1D-chiro-inositol phosphate substrates.

Results

32P-labeled inositol phosphates were separated by anion exchange HPLC with phosphate eluents. Additional HPLC methods were developed to allow facile separation of myo-, neo-, 1D-chiro- and scyllo-inositol hexakisphosphate on acid gradients.

Conclusions

We developed enzymic approaches that allow the synthesis of labeled myo-inositol 1,[32P]2,3,4,5,6-hexakisphosphate; neo-inositol 1,[32P]2,3,4,[32P]5,6–hexakisphosphate and 1D-chiro-inositol [32P]1,2,3,4,5,[32P]6-hexakisphosphate. Additionally, we describe HPLC separations of all inositol hexakisphosphates yet identified in soils, using a collection of soil inositol phosphates described in the seminal historic studies of Cosgrove, Tate and coworkers. Our study will enable others to perform radiotracer experiments to analyze fluxes of phosphate to/from inositol hexakisphosphates in different soils.
  相似文献   

5.

Objectives

To reduce the amount of citrulline produced by arginine-consuming bacteria in the moromi mash during soy sauce production.

Results

Bacillus amyloliquefaciens JY06, a salt-tolerant strain with high arginine consumption ability and low citrulline accumulation capacity, was isolated from moromi mash. The concentration of citrulline was decreased from 26.8 to 5.1 mM and ethyl carbamate in soy sauce, after sterilization, decreased from 97 to 17 μg kg?1 when B. amyloliquefaciens JY06 was added during fermentation. The aroma of the sauce was improved by increasing the ester content.

Conclusions

B. amyloliquefaciens JY06 is a beneficial bacterium that can be used in soy sauce fermentation to eliminate ethyl carbonate and enhance the flavor of the sauce.
  相似文献   

6.

Aims

Urban soils are the basis of many ecosystem services in cities. Here, we examine formerly residential vacant lot soils in Cleveland, Ohio and Detroit, Michigan, USA for their potential to provide multiple ecosystem services. We examine two key contrasts: 1) differences between cities and 2) differences within vacant lots created during demolition, specifically pre-existing (i.e., prior to demolition) soils outside of the building footprint and fill soils added within the former building’s footprint.

Methods

Deep soil cores were collected from vacant lots in Cleveland and Detroit. Soil properties that are proxies for three ecosystem services were measured: hydraulic conductivity for stormwater retention, topsoil depth and soil nitrogen (N) level for support for plant growth, and soil carbon (C) content for C storage.

Results

Both city and soil group contrasts created distinct ecosystem service provisioning based on proxy measures. Cleveland soils had greater hydraulic conductivity and greater soil C and N levels but thinner topsoil layers than Detroit. Within vacant lots of both cities, pre-existing soils had greater soil C and N levels, but lower hydraulic conductivity values than fill soils.

Conclusions

Soil properties of vacant lots were generally suitable for providing multiple ecosystem services. City-level differences in soil properties created differences in ecosystem service potential between cities and these differences were evident in pre-existing and fill soils. When comparing between cities, though, fill soils were more similar than pre-existing soils indicating some homogenization of ecosystem service potential with greater redistribution of soil.
  相似文献   

7.

Background and aims

Plant growth is frequently limited by the availability of inorganic phosphorus (P) in the soil. In most soils, a considerable amount of the soil P is bound to organic molecules. Of these, phytate is the most abundant identifiable organic P form, but is not readily available to plants. In contrast, microorganisms have been shown to degrade phytate with high efficiency. The current study aims to characterize the members of the phytate-hydrolysing bacterial community in rhizosphere, and the molecular and enzymatic ability of these bacteria to degrade phytate.

Methods and results

The phytate-hydrolysing bacterial community was characterized from the rhizosphere of plants cultivated in the presence or absence of phytate supplementation. Major changes in the bacterial community structure were observed with both culture-dependent and -independent methods, which highlighted the predominance of Proteobacteria and Actinobacteria. Phytase activity was detected for a range of rhizobacterial isolates as well as the presence of, β-propeller phytases (BPP) for both isolates and directly in a soil sample.

Conclusion

A wide taxonomic range of functional phytate utilizers have been discovered, in soil bacterial taxa that were previously not well known for their ability to utilise phytate as P or C sources. This study provides new insights into microbial carbon and phosphorus cycling in soil.
  相似文献   

8.

Background and aims

We sought to describe the species and functional composition of Brazilian campos rupestres plant communities on severely nutrient-impoverished white sands, to test hypotheses relating plant communities and physiological adaptations to infertile soils. Based on recently-published information on a south-western Australian dune chronosequence, we hypothesised that campos rupestres plant communities would similarly contain a relatively large proportion of non-mycorrhizal species, because of the phosphorus-(P) impoverished nature of the soils. We also sought to test the hypothesis that many of these non-mycorrhizal species have high leaf manganese (Mn) concentrations as a consequence of carboxylate exudation to mobilise soil P.

Methods

We conducted flora surveys and quantified mycorrhizal status and foliar Mn concentrations in field sites with strongly-weathered sandy soils. Rhizosphere carboxylates were collected from glasshouse-grown plants to assess a potential correlation of carboxylates and leaf Mn concentrations.

Results

Soils were depleted of all major plant nutrients. Non-mycorrhizal plants were abundant in most field sites (mean relative cover = 48%). Vellozia species were dominant aboveground; belowground, roots were colonised more by dark septate endophytic fungi than by mycorrhizal fungi. From the field sites, foliar Mn concentrations in non-mycorrhizal species increased with decreasing soil P concentrations, but only when soil Mn concentrations were above a minimum threshold (exchangeable [Mn] above detection limit). Across all species, however, there was no relationship of foliar Mn concentrations with soil P concentrations.

Conclusions

Our hypothesis that white-sand campos rupestres communities contain a relatively large proportion of non-mycorrhizal plants was supported. Comparison with similar ecosystems in south-western Australia suggests that plant communities on severely P-impoverished sandy soils, despite differing evolutionary histories and little overlap in plant families, follow convergent evolutionary paths towards increasing abundance of non-mycorrhizal species.
  相似文献   

9.

Background and aims

Layered profiles of designed soils may provide long-term benefits for green roofs, provided the vegetation can exploit resources in the different layers. We aimed to quantify Sedum root foraging for water and nutrients in designed soils of different texture and layering.

Methods

In a controlled pot experiment we quantified the root foraging ability of the species Sedum album (L.) and S. rupestre (L.) in response to substrate structure (fine, coarse, layered or mixed), vertical fertiliser placement (top or bottom half of pot) and watering (5, 10 or 20 mm week?1).

Results

Water availability was the main driver of plant growth, followed by substrate structure, while fertiliser placement only had marginal effects on plant growth. Root foraging ability was low to moderate, as also reflected in the low proportion of biomass allocated to roots (5–13%). Increased watering reduced the proportion of root length and root biomass in deeper layers.

Conclusions

Both S. album and S. rupestre had a low ability to exploit water and nutrients by precise root foraging in substrates of different texture and layering. Allocation of biomass to roots was low and showed limited flexibility even under water-deficient conditions.
  相似文献   

10.

Background

The fungus Colletotrichum is a plant pathogen that causes the anthracnose disease, resulting in huge losses in various crops including the rose-scented geranium (Pelargonium graveolens). Although the bacterial community associated with plants has an important role in the establishment of plant diseases, little is known about what happens in P. graveolens.

Aims

To increase the knowledge about the bacterial community associated with P. graveolens and its relationship with anthracnose disease symptoms.

Methods

Quantitative PCR and high-throughput sequencing were combined to determine the presence of the fungus Colletotrichum and to reveal the bacterial communities associated with different plant parts – root, stem and leaf – and in the rhizosphere and bulk soil, and also to determine the respective bacterial communities associated with P. graveolens leaves symptomatic and asymptomatic for anthracnose disease.

Results

The fungus Colletotrichum was detected in all plant parts and in the surrounding soil. Bacterial communities varied spatially in plants, and the disease symptoms also influenced the composition of the bacterial community. Abundances of operational taxonomic units (OTUs) assigned to the phylum Actinobacteria and to the genus Streptococcus were greatly increased in asymptomatic leaves.

Conclusions

The bacterial community associated to geranium leaves responds to anthracnose symptoms.
  相似文献   

11.

Background and Aims

Soil microbial communities contribute to organic phosphorus cycling in a variety of ways, including secretion of the PhoD alkaline phosphatase. We sampled a long-term grassland fertilization trial in Switzerland characterized by a natural pH gradient. We examined the effects of phosphate depletion and pH on total and active microbial community structures and on the structure and composition of the total and active phoD-harboring community.

Methods

Archaeal, bacterial and fungal communities were investigated using T-RFLP and phoD-harboring members of these communities were identified by 454-sequencing.

Results

Phosphate depletion decreased total, resin-extractable and organic phosphorus and changed the structure of all active microbial communities, and of the total archaeal and phoD-harboring communities. Organic carbon, nitrogen and phosphorus increased with pH, and the structures of all total and active microbial communities except the total fungal community differed between the two pH levels. phoD-harboring members were affiliated to Actinomycetales, Bacilliales, Gloeobacterales, Planctomycetales and Rhizobiales.

Conclusions

Our results suggest that pH and associated soil factors are important determinants of microbial and phoD-harboring community structures. These associated factors include organic carbon and total nitrogen, and to a lesser degree phosphorus status, and active communities are more responsive than total communities. Key players in organic P mineralization are affiliated to phyla that are known to be important in organic matter decomposition.
  相似文献   

12.

Background and aims

Carpobrotus spp. are amongst the most impactful and widespread plant invaders of Mediterranean habitats. Despite the negative ecological impacts on soil and vegetation that have been documented, information is still limited about the effect by Carpobrotus on soil microbial communities. We aimed to assess the changes in the floristic, soil and microbial parameters following the invasion by Carpobrotus cfr. acinaciformis within an insular Mediterranean ecosystem.

Methods

Within three study areas a paired-site approach, comparing an invaded vs. a non-invaded plot, was established. Within each plot biodiversity indexes, C and N soil content, pH and microbial biomass and structure (bacterial and fungal) were assessed.

Results

Invaded plots showed a decrease of α-species richness and diversity. The least represented plant species in invaded plots were those related to grassland habitats. In all invaded soils, a significant increase of carbon and nitrogen content and a significant decrease of pH were registered. Carpobrotus significantly increased bacterial and fungal biomass and altered soil microbial structure, particularly favoring fungal growth.

Conclusions

Carpobrotus may deeply impact edaphic properties and microbial communities and, in turn, these strong modifications probably increase its invasive potential and its ability to overcome native species, by preventing their natural regeneration.
  相似文献   

13.

Aims

Rytidosperma species are native Australian grasses which have different growth rates and phosphorus (P) requirements. This study examined the role of root morphology traits in response to P supply.

Methods

Nine Rytidosperma species ranging from slow- to fast-growth were examined along with Lolium perenne and Bromus hordeaceus. Plants were grown in a glasshouse for 47 days in soil supplied with six levels of P between 0 and 60 mg P per pot. Root mass, length and diameter, root hair length and density, and extent of mycorrhizal colonisation were measured.

Results

Across all species there was a positive correlation (P < 0.001) between P uptake and root mass, length and root hair cylinder volume (RHCV; estimated using root diameter, root hair length and root length) at all levels of P supply. An exception was the RHCV of B. hordeaceus, where expected P uptake was not achieved due to a markedly reduced root length at low-P supply. For the Rytidosperma species, morphological plasticity for specific root length, root mass fraction and root hair length ranged from 1.5-fold to 2.7-fold between high- and low-P supply. However, across all species and P levels no single root morphological trait was identified for universally increasing the size of the root system and P uptake.

Conclusions

Fast-growing species took up more P as a result of an overall larger root mass, greater root length and larger RHCV.
  相似文献   

14.
Phosphorus dynamics in a tropical forest soil restored after strip mining   总被引:1,自引:0,他引:1  

Background and aims

We hypothesized that successful early ecosystem and soil development in these P-deficient soil materials will initially depend on effective re-establishment of P storage and cycling through organic matter. This hypothesis was tested in a 26-year chronosequence of seven lightly fertilized, oxidic soil materials restored to eucalypt forest communities after bauxite mining.

Methods

Total P (Pt) status, Hedley P fractions and partial chemical speciation (NaOH-EDTA extraction and analysed using solution 31P NMR spectroscopy) were determined in the restored soils.

Results

Concentrations of Pt and most Hedley fractions changed with restoration period, declined with depth and were strongly positively correlated with C and N concentrations. Biological P dominated the Labile and Intermediate P fractions while Long-term P was dominantly inorganic. Organic P concentrations in NaOH-EDTA extracts and their chemical natures were similar in restored and unburned native forest sites. Phosphomonoesters were the dominant class of organic P.

Conclusions

Surprisingly rapid P accretion and fractional changes occurred over 26 years, largely in the surface soils and closely associated with organic matter status. Alkaline hydrolysis products of phosphodiesters and pyrophosphate indicated the importance of microbial P cycling. The important consequences for long-term ecosystem development and biological diversity require further study.
  相似文献   

15.

Background and aims

Invasive weeds may exert negative impact on other plant species and soil processes. The observed negative impact of an invasive weed species may be driven by allelopathy or nutrient availability.

Methodology

Sorghum halepense is one of the worst invasive weeds in crop fields. We quantified the species richness in the S. halepense-invaded communities and communities not yet invaded by the weed. Sorghum soil and no-sorghum soil were analysed for total phenolics, microbial activity, available nitrogen (N) and organic carbon. Manipulative experiments were carried out to understand the interference potential of S. halepense. Soil was amended with root or shoot leachate of S. halepense, and its impact on plant growth and soil properties was studied.

Results

Out of four S. halepense-sites, lower plant species richness was observed in one site compared to uninvaded sites. S. halepense-invaded soil had higher levels of total phenolics and lower levels of available N. Higher inhibition in the root growth of Brassica juncea or Bidens pilosa was observed in root leachate-amended soil than shoot leachate-amended soil. Shoot leachate-amended soil had higher levels of total phenolics and available N than root leachate-amended soils. Significant reduction in the available N was observed in soil amended with root leachate. Significant decline in the total phenolics over a period of time was observed in soil amended with root leachate or shoot leachate of S. halepense. Higher CO2 release was observed 24 h after amending soil with root leachate or shoot leachate of S. halepense.

Conclusions

Sorghum halepense interference potential in its soil is likely due to lower levels of available N. Greater reduction in root dry weight of assay species in root leachate amended soil compared to shoot leachate amended soil was likely due to lower levels of available N in root leachate-amended soil. Relative interference potential of both root and shoot leachates or extracts should be evaluated in allelopathy bioassays and further experiments should be designed to distinguish the role of allelochemicals and nutrient availability in plant growth inhibition.
  相似文献   

16.

Background and aims

Microalgae are ubiquitous in paddy soils. However, their roles in arsenic (As) accumulation and transport in rice plants remains unknown.

Methods

Two green algae and five cyanobacteria were used in pot experiments under continuously flooded conditions to ascertain whether a microalgal inoculation could influence rice growth and rice grain As accumulation in plants grown in As-contaminated soils.

Results

The microalgal inoculation greatly enhanced nutrient uptake and rice growth. The presence of representative microalga Anabaena azotica did not significantly differ the grain inorganic As concentrations but remarkably decreased the rice root and grain DMA concentrations. The translocation of As from roots to grains was also markedly decreased by rice inoculated with A. azotica. This subsequently led to a decrease in the total As concentration in rice grains.

Conclusions

The results of the study indicate that the microalgal inoculation had a strong influence on soil pH, soil As speciation, and soil nutrient bioavailability, which significantly affected the rice growth, nutrient uptake, and As accumulation and translocation in rice plants. The results suggest that algae inoculation can be an effective strategy for improving nutrient uptake and reducing As translocation from roots to grains by rice grown in As-contaminated paddy soils.
  相似文献   

17.

Introduction

Acylsugar specialized metabolites function as defenses against insect herbivores, and are the most abundant specialized metabolites produced in Solanaceous trichomes. Metabolite profiling provides the foundation for determining the genetic basis of specialized metabolism and its evolution.

Objectives

To profile and identify acylsugar specialized metabolites in three Petunia species: P. axillaris, P. integrifolia and P. exserta.

Methods

Metabolites were profiled using ultra-high performance liquid chromatography/time-of-flight mass spectrometry (UHPLC/TOF MS). Metabolites were purified using solid phase extraction and HPLC, and structures were established using NMR spectroscopy.

Results

Twenty-eight distinct acylsucrose formulas, representing a sampling of more than 100 different detected chemical forms, were purified from three Petunia species and structures have been proposed based on one- and two-dimensional NMR data. 15 of the 28 purified acylsugars were sucrose pentaesters that possess a malonyl group on the fructose ring. These malonate esters can be readily distinguished from other acylsugars based on distinct masses of pseudomolecular ions and fragment ions generated using multiplexed collision-induced dissociation. Chemical diversity of acylsugars was observed between Petunia species, particularly with respect to the lengths of acyl chains and specific acylation positions.

Conclusions

These findings suggest substrate selectivity of various acyltransferases in Petunia species.
  相似文献   

18.

Background and aims

The changes in the characteristics of Panicum virgatum, an exotic invasive species, after invading various plant communities on the Loess Plateau in China and the main soil nutrient factors in these communities closely associated with invasion remain unclear.

Methods

A pot culture experiment was carried out to simulate the changes in photosynthesis, biomass, and biomass allocation in P. virgatum and to identify the main soil nutrient factors in various soils collected from local plant communities. P. virgatum was grown in soils collected from communities of P. virgatum (PS treatment), Setaria viridis (SS treatment), Bothriochloa ischaemum (BS treatment), and Artemisia sacrorum (AS treatment) and in a mixed soil from the communities of S. viridis, B. ischaemum, and A. sacrorum (MS treatment).

Results

Photosynthesis in P. virgatum differed significantly among the soil treatments. Net photosynthetic rate, stomatal conductance, and photochemical efficiency (Fv/Fm) were highest in PS, whereas single-photon avalanche diode values were highest in PS and SS. The variation of biomass differed significantly in different tissues of P. virgatum in the treatments. Leaf and stem biomasses were highest in PS and SS, and root biomass was highest in PS and MS. Total biomass differed significantly among the treatments, except between BS and MS. Both the leaf to total and stem to total biomass ratios were highest in AS and SS, but the root to total biomass ratio was lowest in these two treatments. A constrained redundancy analysis and a path analysis suggested that the water-soluble nitrate-nitrogen (W-NN) concentration of the soil could significantly affect photosynthesis, biomass, and biomass allocation in P. virgatum.

Conclusions

Photosynthesis, biomass, and biomass allocation in P. virgatum differed significantly when grown in soils from different local plant communities on the Loess Plateau. The soil W-NN concentration in these local plant communities likely has a large impact on the invasive success of P. virgatum.
  相似文献   

19.

Background and Aims

Plant acquisition of endogenous forms of soil phosphorus (P) could reduce external P requirements in agricultural systems. This study investigated the interaction of citrate and phytase exudation in controlling the accumulation of P and depletion of soil organic P by transgenic Nicotiana tabacum plants.

Methods

N. tabacum plant lines including wild-type, vector controls, transgenic plants with single-trait expression of a citrate transporter (A. thaliana frd3) or fungal phytases (phyA: A. niger, P. lycii) and crossed plant lines expressing both traits, were characterized for citrate efflux and phytase exudation. Monocultures and intercropped combinations of single-trait plants were grown in a low available P soil (12 weeks). Plant biomass, shoot P accumulation, rhizosphere soil pH and citrate-extractable-P fractions were determined. Land Equivalent Ratio and complementarity effect was determined in intercropped treatments and multiple-linear-regression was used to predict shoot P accumulation based on plant exudation and soil P depletion.

Results

Crossed plant lines with co-expression of citrate and phytase accumulated more shoot P than single-trait and intercropped plant treatments. Shoot P accumulation was predicted based on phytase-labile soil P, citrate efflux, and phytase activity (Rsq=0.58, P < .0001). Positive complementarity occurred between intercropped citrate- and phytase-exuding plants, with the greatest gains in shoot P occurring in plant treatments with A. niger phyA expression.

Conclusions

We show for the first time that trait synergism associated with the exudation of citrate and phytase by tobacco can be linked to the improved acquisition of P and the depletion of soil organic P.
  相似文献   

20.

Background and aims

Measures of phosphorus (P) in roots recovered from soil underestimate total P accumulation below-ground by crop species since they do not account for P in unrecovered (e.g., fine) root materials. 33P-labelling of plant root systems may allow more accurate estimation of below-ground P input by plants.

Methods

Using a stem wick-feeding technique 33P-labelled phosphoric acid was fed in situ to canola (Brassica napus) and lupin (Lupinus angustifolius) grown in sand or loam soils in sealed pots.

Results

Recovery of 33P was 93 % in the plant-soil system and 7 % was sorbed to the wick. Significantly more 33P was allocated below-ground than to shoots for both species with 59–90 % of 33P measured in recovered roots plus bulk and rhizosphere soil. 33P in recovered roots was higher in canola than lupin regardless of soil type. The proportion of 33P detected in soil was greater for lupin than canola grown in sand and loam (37 and 73 % lupin, 20 and 23 % canola, respectively). Estimated total below-ground P accumulation by both species was at least twice that of recovered root P and was a greater proportion of total plant P for lupin than canola.

Conclusion

Labelling roots using 33P via stem feeding can empower quantitative estimates of total below-ground plant P and root dry matter accumulation which can improve our understanding of P distribution in soil-plant systems.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号