首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Highly purified dog heart sarcolemmal membranes, with a content of approximately 5 pmol of muscarinic acetylcholine receptor (mAChR)/mg of protein, were analyzed for mAChR-mediated inhibition of adenylyl cyclase and ligand binding in the absence and the presence of guanine nucleotides. Adenylyl cyclase was found to be coupled to the mAChR, being attenuated approximately 30% in a GTP-dependent manner. Direct binding studies, using 3H-labeled oxotremorine M, showed high affinity binding (apparent KD = 10 nM) that was reduced on nucleotide addition. Dose-response curves for GDP, GTP, and guanyl-5'-yl imidodiphosphate showed them to be equipotent. On the basis of pirenzepine binding, only one type of mAChR, commonly referred to as M2, was detected. Direct binding of [3H]quinuclidinyl benzilate [( 3H]QNB) uncovered 50% more binding sites than 150 nM 3H-labeled oxotremorine M; addition of guanine nucleotides uncovered the existence of positive cooperativity in the binding of [3H]QNB. Agonist displacement curves of [3H]QNB binding, without and with guanine nucleotides, extended over several orders of magnitude, which is inconsistent with single site competitive kinetics. The results and their analysis by computer-assisted curve fitting indicated that the data are well fitted by a model in which a receptor is at least bivalent and exists in two states: one with and the other without cooperativity between its sites, with guanine nucleotides decreasing both the degree of cooperativity between the sites and the proportion of the receptor that is in the cooperative form. Since the guanine nucleotide effect is mediated by the Ni coupling protein, it is suggested that direct binding detects R'Ni complexes (cooperative), R"NiG complexes (cooperative but distinct from R'Ni), and R0 complexes (non-cooperative and unaffected by Ni or NiG), where R = mAChR, Ni = the inhibitory regulatory component of adenylyl cyclase unaffected by guanine nucleotide, and NiG = Ni affected by guanine nucleotide (G).  相似文献   

2.
本文用NEM(N-ethylmaleimide)为探针研究了G蛋白(鸟嘌呤核苷酸调节蛋白,Gp)对小牛睾丸中FSH受体的亲和性及腺苷酸环化酶活性的调节作用。证据表明,①在小牛睾丸细胞膜G蛋白上存在两种类型鸟嘌呤核苷酸结合位点(下简称GTP结合位点),高亲和性低容量结合位点及低亲和性高容量结合位点;②高亲和性结合位点(对NEM敏感)调节腺苷酸环化酶活性,而对NEM相对不敏感的低亲和性位点则不直接参与该酶活性的调节;③G蛋白对受体亲和性的调节则不仅要高亲和性位点的参与,而且主要受低亲和性位点的调节。  相似文献   

3.
To evaluate the relation between the pancreatic cholecystokinin (CCK) receptor and guanine nucleotide-binding protein(s) we studied the effects of nucleotides on 125I-CCK binding to pancreatic acinar plasma membranes, 125I-CCK binding to solubilized 125I-CCK receptors, and the stability of the solubilized 125I-CCK-receptor complex. In plasma membranes, guanine nucleotides both inhibited CCK binding and increased the dissociation of CCK from its receptor. The potency of the nucleotides studied was GTP gamma S = GMP-PNP greater than GTP much greater than ATP. When membranes were solubilized with digitonin, subsequent binding of CCK was insensitive to guanine nucleotides including GTP, GMP-PNP and GTP gamma S. However, if CCK binding occurred before solubilization of the membranes, guanine nucleotides increased dissociation at concentrations and with a specificity similar to that observed for effects on intact pancreatic membranes. It is concluded that guanine nucleotides act via a protein which is separable from the receptor to induce dissociation of bound CCK. Moreover, CCK binding induces an association in the plasma membrane of the CCK receptor with this guanine nucleotide binding protein.  相似文献   

4.
The GAPs, GEFs, and GDIs of heterotrimeric G-protein alpha subunits   总被引:1,自引:0,他引:1  
The heterotrimeric G-protein alpha subunit has long been considered a bimodal, GTP-hydrolyzing switch controlling the duration of signal transduction by seven-transmembrane domain (7TM) cell-surface receptors. In 1996, we and others identified a superfamily of "regulator of G-protein signaling" (RGS) proteins that accelerate the rate of GTP hydrolysis by Galpha subunits (dubbed GTPase-accelerating protein or "GAP" activity). This discovery resolved the paradox between the rapid physiological timing seen for 7TM receptor signal transduction in vivo and the slow rates of GTP hydrolysis exhibited by purified Galpha subunits in vitro. Here, we review more recent discoveries that have highlighted newly-appreciated roles for RGS proteins beyond mere negative regulators of 7TM signaling. These new roles include the RGS-box-containing, RhoA-specific guanine nucleotide exchange factors (RGS-RhoGEFs) that serve as Galpha effectors to couple 7TM and semaphorin receptor signaling to RhoA activation, the potential for RGS12 to serve as a nexus for signaling from tyrosine kinases and G-proteins of both the Galpha and Ras-superfamilies, the potential for R7-subfamily RGS proteins to couple Galpha subunits to 7TM receptors in the absence of conventional Gbetagamma dimers, and the potential for the conjoint 7TM/RGS-box Arabidopsis protein AtRGS1 to serve as a ligand-operated GAP for the plant Galpha AtGPA1. Moreover, we review the discovery of novel biochemical activities that also impinge on the guanine nucleotide binding and hydrolysis cycle of Galpha subunits: namely, the guanine nucleotide dissociation inhibitor (GDI) activity of the GoLoco motif-containing proteins and the 7TM receptor-independent guanine nucleotide exchange factor (GEF) activity of Ric8/synembryn. Discovery of these novel GAP, GDI, and GEF activities have helped to illuminate a new role for Galpha subunit GDP/GTP cycling required for microtubule force generation and mitotic spindle function in chromosomal segregation.  相似文献   

5.
Activation of adenylyl cyclase by cholera toxin A subunit (CT-A) results from the ADP-ribosylation of the stimulatory guanine nucleotide binding protein (GS alpha). This process requires GTP and an endogenous guanine nucleotide binding protein known as ADP-ribosylation factor (ARF). One membrane (mARF) and two soluble forms (sARF I and sARF II) of ARF have been purified from bovine brain. Because the conditions reported to enhance the binding of guanine nucleotides by ARF differ from those observed to promote optimal activity, we sought to characterize the determinants influencing the functional interaction of guanine nucleotides with ARF. High-affinity GTP binding by sARF II (apparent KD of approximately 70 nM) required Mg2+, DMPC, and sodium cholate. sARF II, in DMPC/cholate, also enhanced CT-A ADP-ribosyltransferase activity (apparent EC50 for GTP of approximately 50 nM), although there was a delay before achievement of a maximal rate of sARF II stimulated toxin activity. The delay was abolished by incubation of sARF II with GTP at 30 degrees C before initiation of the assay. In contrast, a maximal rate of activation of toxin by sARF II, in 0.003% SDS, occurred without delay (apparent EC50 for GTP of approximately 5 microM). High-affinity GTP binding by sARF II was not detectable in SDS. Enhancement of CT-A ADP-ribosyltransferase activity by sARF II, therefore, can occur under conditions in which sARF II exhibits either a relatively low affinity or a relatively high affinity for GTP. The interaction of GTP with ARF under these conditions may reflect ways in which intracellular membrane and cytosolic environments modulate GTP-mediated activation of ARF.  相似文献   

6.
T Connolly  R Gilmore 《Cell》1989,57(4):599-610
The signal recognition particle (SRP)-mediated transport of proteins across mammalian endoplasmic reticulum requires GTP in a capacity distinct from polypeptide elongation. We defined the role of GTP by a molecular characterization of translocation intermediates that accumulate after incubation of SRP-ribosome complexes with microsomal membranes. SRP receptor-catalyzed displacement of SRP from ribosomes was GTP-dependent both with intact membranes and with the purified SRP receptor. GTP-specific binding was localized to the alpha subunit of the receptor by photoaffinity labeling and by probing nitrocellulose blots of the receptor with GTP. Analysis of the alpha subunit of the SRP receptor revealed amino acid sequences that are similar to guanine ribonucleotide binding site consensus sequence elements.  相似文献   

7.
We have assessed the functional interactions of two pure receptor proteins with three different pure guanine nucleotide regulatory proteins in phosphatidylcholine vesicles. The receptor proteins are the guinea pig lung beta-adrenergic receptor (beta AR) and the retinal photon receptor rhodopsin. The guanine nucleotide regulatory proteins were the stimulatory (Ns) and inhibitory (Ni) proteins of the adenylate cyclase system and transducin (T), the regulatory protein from the light-activated cyclic GMP phosphodiesterase system in retinal rod outer segments. The insertion of Ns with beta AR in lipid vesicles increases the extent of binding of [35S] GTP gamma S to Ns and in parallel, the total GTPase activity. However, there is little change in the actual rate of catalytic turnover of GTPase activity (defined as mol of Pi released/min/mol of Ns-guanine nucleotide complexes). Enhancement of this turnover rate requires the beta-agonist isoproterenol and is accounted for by an isoproterenol-promoted increase in the rate and extent of [35S]GTP gamma S binding to Ns. The co-insertion of the beta AR with Ni or transducin results in markedly lower stimulation by isoproterenol of both the GTPase activity and [35S]GTP gamma S binding to these nucleotide regulatory proteins indicating that their preferred order of interaction with beta AR is Ns much greater than Ni greater than T. This contrasts with the preferred order of interaction of these different nucleotide regulatory proteins with light-activated rhodopsin which we find to be T approximately equal to Ni much greater than Ns. Nonetheless the fold stimulation of GTPase activity and [35S]GTP gamma S binding in T, induced by light-activated rhodopsin, is significantly greater than the "fold" stimulation of these activities in Ni. This reflects the greater intrinsic ability of Ni to hydrolyze GTP and bind guanine nucleotides (at 10 mM MgCl2, 100-200 nM GTP or [35S] GTP gamma S) compared to T. The maximum turnover numbers for the rhodopsin-stimulated GTPase in both Ni and T are similar to those obtained for isoproterenol-stimulated activity in Ns. This suggests that the different nucleotide regulatory proteins are capable of a common upper limit of catalytic efficiency which can best be attained when coupled to the appropriate receptor.  相似文献   

8.
Digitonin-solubilized turkey erythrocyte beta-adrenergic receptors were reconstituted by dialysis into human erythrocyte acceptor membranes which lack beta receptors. Incorporation of turkey beta receptors into acceptor membranes was directly proportional to the quantity of soluble protein added to the reconstitution system. Reconstituted beta receptors demonstrate saturable [125I]iodohydroxybenzylpindolol binding (Bmax = 11.1 +/- 0.8 fmol/mg, K = 77.8 +/- 8.6 pM) and stereospecificity ((-)-propranolol, K = 11.0 nM; (+)-propranolol, K = 2000 nM; (-)-isoproterenol, K = 250 nM; (+)-isoproterenol, K = 82 micro M). Reconstituted beta receptors appear to be incorporated into acceptor membranes as integral proteins. Reconstituted beta receptors cannot be extracted by high salt or pH (3 to 11); detergent is required for resolubilization of reconstituted beta receptors. Adenylate cyclase stimulation was not obtained in reconstituted membranes since acceptor membranes lack a catalytic subunit. However, guanine nucleotide regulation of agonist affinity was observed indicating a functional reconstitution. GTP (100 micro M) produces a 5-fold decrease in the affinity of isoproterenol for reconstituted beta receptors. Experiments with sulfhydryl reagents indicate that the reconstituted beta receptor couples with the guanine nucleotide regulatory protein of the acceptor membranes. These data describe the successful reconstitution of a beta receptor and indicate that the reconstituted beta receptor can interact with the GTP binding protein of human erythrocyte acceptor membranes.  相似文献   

9.
Mammalian mitochondrial ribosomes possess a binding site for guanine nucleotides. GTP binds in unit stoichiometry and with high affinity (Kd = 15.3 +/- 2.8 nM) to the small subunit of bovine mitochondrial ribosomes. This binding activity survives high salt washes, indicating that the nucleotide binds to an integral site within this subunit. GDP also binds to the small subunit with high affinity (Kd = 17 +/- 5.8 nm) and in unit stoichiometry. The GTP binding activity can be competed with GDP but not appreciably by other nucleotides, indicating that both GTP and GDP bind specifically and to the same site. The non-hydrolyzable analogs of GTP, guanylyl-5'-imidophosphate, and guanylyl-(beta,gamma-methylene)- diphosphonate also bind to the small subunit, but with reduced affinity. These results indicate that mammalian mitochondrial ribosomes, unlike other ribosomes, are able to interact directly with guanosine triphosphate, suggesting that the bound GTP may be involved in a novel regulatory mechanism in mitochondrial protein synthesis.  相似文献   

10.
Radiolabeled ligand binding studies showed that specific receptors for platelet-activating factor are present in human neutrophil membranes. GTP at 10(-7) to 10(-3) M decreased the specific binding of platelet-activating factor to neutrophil membranes in a dose-dependent manner. Inhibition of platelet-activating factor binding was also induced by other guanine nucleotides but not by adenine nucleotides. Our results suggest that platelet-activating factor receptor in human neutrophil membranes may be coupled to a guanine nucleotide binding protein.  相似文献   

11.
The specific mechanism by which the inhibitory guanine nucleotide binding protein (Gi) mediates the inhibition of adenylate cyclase activity is still unclear. The subunit dissociation model, based on studies in purified or reconstituted systems, suggests that the beta gamma subunit, which is dissociated with activation of Gi, inhibits the function of the stimulatory guanine nucleotide binding protein (Gs) by reducing the concentration of the free alpha s subunit. In the present study, Gs protein function is determined by measuring cholera toxin-blockable, isoproterenol-induced increases in guanosine triphosphate (GTP) binding capacity to rat cardiac ventricle membrane preparations. Carbamylcholine totally inhibited this beta-adrenergic receptor-coupled Gs protein function. Pretreatment of the cardiac ventricle membrane with pertussis toxin prevented this muscarinic agonist effect. These results confirm the possibility of an inhibitory agonist-receptor coupled effect through Gi on Gs protein function proximal to the catalytic unit of adenylate cyclase in an intact membrane preparation.  相似文献   

12.
1. The irradiation-inactivation procedure was used to study changes in the state of association of the protein components of adenylate cyclase in intact rat liver plasma membranes by measurement of alterations in the target size determined from the catalytic activity of the enzyme. 2. A decrease in target size at 30 degrees C in response to p[NH]ppG (guanosine 5'-[betagamma-imido]triphosphate) or GTP was demonstrated, which we take to reflect the dissociation of a regulatory subunit. The effect of GTP is potentiated by glucagon. This effect is not observed at 0 degrees C. 3. An increase in target size was observed in response to glucagon in the absence of guanine nucleotides, which we take to reflect the association of glucagon receptor with adenylate cyclase. 4. We propose a model for the activation of adenylate cyclase by glucagon in which the binding of the hormone to its receptor causes an initial association of the receptor with the catalytic unit of the enzyme and a regulatory subunit to form a ternary complex. The subsequent activation of the adenylate cyclase results from the dissociation of the ternary complex to leave a free catalytic unit in the activated state. This dissociation requires the binding of a guanine nucleotide to the regulatory subunit. 5. The effects of variation of temperature on the activation of adenylate cyclase by glucagon and guanine nucleotides were examined and are discussed in relation to the irradiation-activation data. 6. The effectiveness of hormones, guanine nucleotides and combinations of hormone and guanine nucleotides as activators of adenylate cyclase in both rat liver and rat fat-cell plasma membranes was studied and the results are discussed in relation to the model proposed, which is also considered in relation to the observations published by other workers.  相似文献   

13.
Lin B  Maddock JR 《FEBS letters》2001,489(1):108-111
The Caulobacter crescentus GTP binding protein CgtA is a member of the Obg/GTP1 subfamily of monomeric GTP binding proteins. In vitro, CgtA displays moderate affinity for both GDP and GTP, and rapid exchange rate constants for either nucleotide. One possible explanation for the observed rapid guanine nucleotide exchange rates is that CgtA is a bimodal protein with a C-terminal GTP binding domain and an N-terminal guanine nucleotide exchange factor (GEF) domain. In this study we demonstrate that although the N-terminus of CgtA is required for function in vivo, this domain plays no significant role in the guanine nucleotide binding, exchange or GTPase activity.  相似文献   

14.
The regulation of muscarinic receptor binding by guanine nucleotides and N-ethylmaleimide (NEM) was investigated using the agonist ligand, [3H] cis methyldioxolane ([3H] CD). Characterization studies on rat forebrain homogenates showed that [3H] CD binding was linear with tissue concentration and was unaffected by a change in pH from 5.5 to 8.0. The regional variation in [3H] CD binding in the rat brain correlated generally with [3H] (?)3-quinuclidinyl benzilate ([3H] (?)QNB) binding, although the absolute variation in binding was somewhat less. At a concentration of 100 μM, the GTP analogue, guanyl-5′-yl imidodiphosphate [Gpp(NH)p], caused a 43–77% inhibition of [3H] CD binding in the corpus striatum, ileum, and heart. The results of binding studies using several Gpp(NH)p concentrations demonstrated that the potency of this guanine nucleotide for inhibition of [3H] CD binding was greater in the heart than in the ileum. In contrast to its effects on [3H] CD binding, Gpp(NH)p caused an increase in [3H] (?)QNB binding in the heart heart and ileum and no change in [3H] (?)QNB binding in the corpus striatum. When measured by competitive inhibition of [3H] (?)QNB binding to the longitudinal muscle of the ileum, Gpp(NH)p (100 μM) caused an increase in the IC50 values of a series of agonists in a manner that was correlated with the efficacy of these compounds. The results of binding studies on NEM treated forebrain homogenates revealed an enhancement of [3H] CD binding by NEM.  相似文献   

15.
Leucine rich repeat kinase 2 (LRRK2) is a Parkinson's disease (PD) gene that encodes a large multidomain protein including both a GTPase and a kinase domain. GTPases often regulate kinases within signal transduction cascades, where GTPases act as molecular switches cycling between a GTP bound "on" state and a GDP bound "off" state. It has been proposed that LRRK2 kinase activity may be increased upon GTP binding at the LRRK2 Ras of complex proteins (ROC) GTPase domain. Here we extensively test this hypothesis by measuring LRRK2 phosphorylation activity under influence of GDP, GTP or non-hydrolyzable GTP analogues GTPγS or GMPPCP. We show that autophosphorylation and lrrktide phosphorylation activity of recombinant LRRK2 protein is unaltered by guanine nucleotides, when co-incubated with LRRK2 during phosphorylation reactions. Also phosphorylation activity of LRRK2 is unchanged when the LRRK2 guanine nucleotide binding pocket is previously saturated with various nucleotides, in contrast to the greatly reduced activity measured for the guanine nucleotide binding site mutant T1348N. Interestingly, when nucleotides were incubated with cell lysates prior to purification of LRRK2, kinase activity was slightly enhanced by GTPγS or GMPPCP compared to GDP, pointing to an upstream guanine nucleotide binding protein that may activate LRRK2 in a GTP-dependent manner. Using metabolic labeling, we also found that cellular phosphorylation of LRRK2 was not significantly modulated by nucleotides, although labeling is significantly reduced by guanine nucleotide binding site mutants. We conclude that while kinase activity of LRRK2 requires an intact ROC-GTPase domain, it is independent of GDP or GTP binding to ROC.  相似文献   

16.
K Shiozaki  T Haga 《Biochemistry》1992,31(43):10634-10642
Muscarinic acetylcholine receptors (mAChR) purified from porcine atrium were reconstituted into lipid vesicles with GTP-binding regulatory proteins (G proteins, Gi, Go, or Gn) purified from porcine cerebrum. Apparent affinities of the reconstituted mAChR and G proteins for carbachol and GDP, respectively, were estimated from the effects of these ligands on the binding of [3H]-L-quinuclidinyl benzilate ([3H]QNB) to mAChR and [35S]guanosine 5'-O-(3-thiotriphosphate) ([35S]GTP gamma S) to G proteins in the presence of different concentrations of MgCl2. A total of 30-35% of reconstituted mAChRs exhibited low affinity for carbamylcholine, irrespective of the presence or absence of guanine nucleotides, and the remainder of the mAChRs showed high affinities for carbamylcholine in the absence of GTP or GDP and a low affinity in their presence. The affinity for carbamylcholine in the absence of guanine nucleotides, but not in their presence, increased with increases in MgCl2 concentration. Apparent Kd's for carbamylcholine were estimated to be approximately 100 microM in the presence of guanine nucleotides, 1.5 microM in the absence of guanine nucleotide and Mg2+ (< 0.1 microM), and 0.1 microM in the absence of guanine nucleotide and the presence of MgCl2 (10 mM). These results indicate that mAChRs may assume at least three different conformations that are characterized by different affinities for agonists. Furthermore, the data suggest that MgCl2 is not necessary for the formation of the mAChR-G protein complex, but can induce a conformational change in the complex. On the other hand, the presence of MgCl2 was necessary for carbamylcholine to influence the binding of guanine nucleotides.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
In the previous paper, we reported the identification of a 74-kDa G-protein that co-purifies with the alpha 1-adrenergic receptor following ternary complex formation. We report here on the purification and characterization of this 74-kDa G-protein (termed Gh) isolated de novo from rat liver membranes. After solubilization of rat liver membranes with the detergent sucrose monolaurate, Gh was isolated by sequential chromatography using heparin-agarose, Ultrogel AcA 34, hydroxylapatite, and heptylamine-Sepharose columns. The protein, thus isolated, is not a substrate for cholera or pertussis toxin but displays GTPase activity (turnover number, 3-5 min-1) and high-affinity guanosine 5'-O-3-thiotriphosphate (GTP gamma S) binding (half-maximal binding = 0.25-0.3 microM), which is Mg2(+)-dependent and saturable. The relative order of nucleotide binding by Gh is GTP gamma S greater than GTP greater than GDP greater than ITP much much greater than ATP greater than or equal to adenyl-5'-yl imidodiphosphate, which is similar to that observed for other heterotrimeric G-proteins involved in receptor signaling. Moreover, specific alpha 1-agonist-stimulated GTPase (turnover number, 10-15 min-1) and GTP gamma S binding activity could be demonstrated after reconstitution of purified Gh with partially purified alpha 1-adrenergic receptor into phospholipid vesicles. The alpha 1-agonist stimulation of GTP gamma S binding and GTPase activity was inhibited by the alpha-antagonist phentolamine. A 50-kDa protein co-purifies with the 74-kDa G-protein. This protein does not bind guanine nucleotides and may be a subunit (beta-subunit) of Gh. These findings indicate that Gh is a G-protein that functionally couples to the alpha 1-adrenergic receptor.  相似文献   

18.
The regulation by monovalent cations, guanine nucleotides, and bacterial toxins of [3H]FMLP binding to rabbit neutrophil plasma membranes was studied by using dissociation techniques to identify regulatory effects on separate receptor states. Under conditions of low receptor occupancy (1 nM [3H]FMLP) and in both Na+ and K+ buffers, dissociation is heterogenous, displaying two distinct, statistically significant off rates. [3H]FMLP binding was enhanced by substituting other monovalent cations for Na+. In particular, enhanced binding in the presence of K+ relative to Na+ was caused by additional binding to both rapidly and slowly dissociating receptors. Three receptor dissociation rates, two of which appear to correspond to the two affinity states detected in equilibrium binding studies, were defined by specific GTP and pertussis toxin (PT) treatments. Neither GTP, nor PT or cholera toxins (CT) had an effect on the rate of dissociation of [3H]FMLP from the rapidly dissociating form of the receptor. Both 100 microM GTP and PT treatments increased the percentage of rapidly dissociating receptors, correspondingly decreasing the percentage of slowly dissociating receptors. The observed changes in the rapidly and slowly dissociating receptors after GTP, PT, and CT treatments were caused by an absolute decrease in the amount of binding to the slowly dissociating receptors. However, complete inhibition of slowly dissociating receptor binding by GTP, PT, or both was never observed. Both GTP and PT treatments, but not CT treatment, increased by two-fold the rate of dissociation of 1 nM [3H]FMLP from the slowly dissociating form of the receptor, resulting in a third dissociation rate. Thus, slowly dissociating receptors comprise two different receptor states, a G protein-associated guanine nucleotide and PT-sensitive state and a guanine nucleotide-insensitive state.  相似文献   

19.
Pisareva VP  Hellen CU  Pestova TV 《Biochemistry》2007,46(10):2622-2629
Eukaryotic translation initiation factor eIF5B is a ribosome-dependent GTPase that is responsible for the final step in initiation, which involves the displacement of initiation factors from the 40S ribosomal subunit in initiation complexes and its joining with the 60S subunit. Hydrolysis of eIF5B-bound GTP is not required for its function in subunit joining but is necessary for the subsequent release of eIF5B from assembled 80S ribosomes. Here we investigated the kinetics of guanine nucleotide binding to eIF5B by a fluorescent stopped-flow technique using fluorescent mant derivatives of GTP and GDP and of the GTP analogues GTPgammaS and GMPPNP. The affinity of eIF5B for mant-GTP (Kd approximately 14-18 microM) was approximately 7-fold less than for mant-GDP (Kd approximately 2.3 microM), and both guanine nucleotides dissociated rapidly from eIF5B (k-1mant-GTP approximately 22-28 s-1, k-1mant-GDP approximately 10-14 s-1). These properties of eIF5B suggest a rapid spontaneous GTP/GDP exchange on eIF5B and are therefore consistent with it having no requirement for a special guanine nucleotide exchange factor. The affinity of eIF5B for mant-GTPgammaS was about 2 times lower (Kd approximately 6.9 microM) and for mant-GMPPNP 1.5 times higher (Kd approximately 25.7 microM) than for mant-GTP, indicating that eIF5B tolerates modifications of the triphosphate moiety well.  相似文献   

20.
Transducin (T) mediates vision in retinal rods by transmitting light signals detected by rhodopsin to a cGMP phosphodiesterase. The flow of information relies on a subunit association/dissociation cycle of T regulated by a guanine nucleotide exchange/hydrolysis reaction. 5′-[p-(Fluorosulfonyl)benzoyl] guanosine (FSBG) was synthesized and examined here as an affinity label for the guanine nucleotide binding site of T. Although the relative binding affinity of FSBG to T was much lower than for GTP and β,γ-imido-guanosine 5′-triphosphate (GMPPNP), the incorporation of FSBG to T inhibited its light-dependent [3H] GMPPNP binding activity in a concentration dependent manner. Additionally, GDP, GTP and GTP analogs hindered the binding of [3H] FSBG to T. These results demonstrated that FSBG could be used to specifically modify the active site of T. In addition, FSBG was not capable of dissociating T from T:photoactivated rhodopsin complexes, suggesting that in this case FSBG is acting as a GDP analog.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号