首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.

Background and aims

We characterized fungal endophytes of seeds of invasive, non-native Phragmites from three sites in the Great Lakes region to determine if fungal symbiosis could contribute to invasiveness through their effects on seed germination and seedling growth.

Methods

Field-collected seeds were surface sterilized and plated on agar to culture endophytes for ITS sequencing. Prevalence of specific endophytes from germinated and non-germinated seeds, and from seedlings, was compared.

Results

One-third of 740 seeds yielded endophyte isolates. Fifteen taxa were identified with Alternaria sp. representing 54% of all isolates followed by Phoma sp. (21%) and Penicillium corylophilum (12%). Overall germination of seeds producing an isolate (36%) was significantly higher than seeds not producing an isolate (20%). Penicillium in particular was strongly associated with increased germination of seeds from one site. Sixty-three isolates and 11 taxa were also obtained from 30 seedlings where Phoma, Penicillium and Alternaria respectively were most prevalent. There was a significant effect of isolating an endophyte from the seed on seedling growth.

Conclusions

These results suggest that many endophyte taxa are transmitted in seeds and can increase seed germination and seedling growth of invasive Phragmites. The role of fungal endophytes in host establishment, growth and invasiveness in nature requires further research.
  相似文献   

2.

Background and Aims

Leersia oryzoides, a wild relative of rice (Oryza sativa), may carry potential seed-borne bacterial endophytes which could be used to enhance growth of rice. We hypothesized that seed-associated bacteria from L. oryzoides would be compatible with rice and promote seedling growth, development, and survival.

Methods

We isolated bacteria from seed of L. oryzoides and checked compatibility with rice as well as Bermuda grass seeds for seedling growth promotion. Internal colonisation of bacteria into root cells was observed by ROS staining and microscopic observation. Growth promoting bacteria were evaluated for IAA production, phosphate solubilization and antifungal activities.

Results

Overall, ten bacteria were found to be growth promoting in rice seedlings with effects including restoration of root gravitropic response, increased root and shoot growth, and stimulation of root hair formation. All bacteria were identified by 16S rDNA sequencing. Six bacteria were found to become intracellular in root parenchyma and root hairs in rice and in Bermuda grass seedlings. Six bacteria were able to produce IAA in LB broth with highest (47.06 ± 1.99 μg ml?1) by LTE3 (Pantoea hericii). Nine isolates solubilized phosphate and inhibited at least one soil borne fungal pathogen.

Conclusions

Seed bacteria of L. oryzoides are compatible with rice. Many of these bacteria become intracellular, induce root gravitropic response, increase root and shoot growth, and stimulate root hair formation in both rice and Bermuda grass seedlings. Presence of bacteria protects seedlings from soil pathogens during seedling establishment. This research suggests that bioprospecting microbes on near relatives of rice and other crop plants may be a viable strategy to obtain microbes to improve cultivation of crops.
  相似文献   

3.

Introduction

Cellulose microfibril is a major cell wall polymer that plays an important role in the growth and development of plants. The gene cellulose synthase A (CesA), encoding cellulose synthases, is involved in the synthesis of cellulose microfibrils. However, the regulatory mechanism of CesA gene expression is not well understood, especially during the early developmental stages.

Objective

To identify factor(s) that regulate the expression of CesA genes and ultimately control seedling growth and development.

Methods

The presence of cis-elements in the promoter region of the eight CesA genes identified in flax (Linum usitatissimum L. ‘Nike’) seedlings was verified, and three kinds of ethylene-responsive cis-elements were identified in the promoters. Therefore, the effect of ethylene on the expression of four selected CesA genes classified into Clades 1 and 6 after treatment with 10?4 and 10?3 M 1-aminocyclopropane-1-carboxylic acid (ACC) was examined in the hypocotyl of 4–6-day-old flax seedlings.

Results

ACC-induced ethylene either up- or down-regulated the expression of the CesA genes depending on the clade to which these genes belonged, age of seedlings, part of the hypocotyl, and concentration of ACC.

Conclusion

Ethylene might be one of the factors regulating the expression of CesA genes in flax seedlings.
  相似文献   

4.

Background & Aims

Oak seedling establishment is difficult and may be partly explained by litter-mediated interactions with neighbors. Litter effects can be physical or chemical and result in positive or negative feedback effects for seedlings. Mediterranean species leaves contain high levels of secondary metabolites which suggest that negative litter effects could be important.

Methods

Seedlings of Quercus ilex and Quercus pubescens were grown for two years in pots with natural soil and litter inputs from 6 Mediterranean woody species, artificial litter (only physical effect) or bare soil.

Results

Litter types had highly different mass loss (41–80%), which correlated with soil organic C, total N and microbial activity. Litter of Q. pubescens increased soil humidity and oak seedlings aerial biomass. Litters of Cotinus coggygria and Rosmarinus officinalis, containing high quantities of phenolics and terpenes respectively, decomposed fast and led to specific soil microbial catabolic profiles but did not influence oak seedling growth, chemistry or mycorrhization rates.

Conclusions

Physical litter effects through improved soil humidity seem to be predominant for oak seedling development. Despite high litter phenolics content, we detected no chemical effects on oak seedlings. Litter traits conferring a higher ability to retain soil moisture in dry periods deserve further attention as they may be critical to explain plant-soil feedbacks in Mediterranean ecosystems.
  相似文献   

5.
6.

Aims

The present study was planned to investigate the diversity of 1-aminocyclopropane-1-carboxylate (ACC) deaminase producing bacteria from the rhizosphere of wheat plants and subsequent evaluation of selected PGPR on growth enhancement of wheat seedlings under drought and saline conditions.

Methods

ACC deaminase producing plant growth promoting rhizobacteria (PGPR) were isolated from the rhizosphere of wheat and identified using 16S rRNA gene sequence analysis. Isolates were evaluated for various direct and indirect plant growth promoting (PGP) traits. Plant inoculation experiment was conducted using isolates IG 19 and IG 22 in wheat to assess their plant growth promotion potential under salinity and drought stress.

Results

Thirty-eight ACC deaminase producing PGPR were isolated which belonged to 12 distinct genera and falling into four phyla γ-proteobacteria, β-proteobacteria, Flavobacteria and Firmicutes. Klebsiella sp. was the most abundant genera and followed by Enterobacter sp. The isolates exhibited ACC deaminase activities ranging from 0.106–0.980 μM α- ketobutyrate μg protein?1 h?1. The isolates showed multiple PGP traits such as IAA production, phosphate, zinc, potassium solubilization and siderophore production. Enterobacter cloacae (IG 19) and Citrobacter sp. (IG 22) inoculated wheat seedlings showed notable increases in fresh and dry biomass under non-stress as well as under stressed condition.

Conclusion

To the best of our knowledge this is the first report of presence of ACC deaminase activity and other PGP traits from the genus Citrobacter and Empedobacter. Our finding revealed that the γ-proteobacteria group dominated the wheat rhizosphere. Plant inoculation with PGPR could be a sustainable approach to alleviate abiotic stresses in wheat plants. These native PGPR isolates could be used as potential biofertilizers for sustainable agriculture.
  相似文献   

7.

Background and aims

Low nitrogen negatively affects soil fertility and plant productivity. Glucose-6-phosphate dehydrogenase (G6PDH) and Epichloë gansuensis endophytes are two factors that are associated with tolerance of Achnatherum inebrians to abiotic stress. However, the possibility that E. gansuensis interacts with G6PDH in enhancing low nitrogen tolerance of host grasses has not been examined.

Methods

A. inebrians plants with (E+) and without E. gansuensis (E?) were subjected to different nitrogen concentration treatments (0.1, 1, and 7.5 mM). After 90 days, physiological studies were carried out to investigate the participation of G6PDH in the adaption of host plants to low nitrogen availability.

Results

Low nitrogen retarded the growth of A. inebrians. E+ plants had higher total dry weight, chlorophyll a and b contents, net photosynthesis rate, G6PDH activity, and GSH content, while having lower plasma membrane (PM) NADPH oxidase activity, NADPH/NADP+ ratios, and MDA and H2O2 than in E? A. inebrians plants under low nitrogen concentration.

Conclusions

The presence of E. gansuensis played a key role in maintaining the growth of the A. inebrians plants under low nitrogen concentration by regulating G6PDH activity and the NADPH/NADP+ ratio and improving net photosynthesis rate.
  相似文献   

8.

Background and aims

The current study was undertaken to investigate the mechanism underlying Boron (B)-alleviated phosphate (P) deficiency in Arabidopsis thaliana. Furthermore, we were interested to explore whether this alleviation of P deficiency by B could extend to Brassica crops.

Methods

Arabidopsis thaliana or Brassica oleracea plants were grown under P-sufficient or -deficient condition with or without extra B for 7 days, then shoots and roots of B. oleracea were sampled for analysis of soluble P content while those of A. thaliana were harvested for analysis of total P content, soluble P content and nitric oxide (NO) as well as for cell wall extraction and RNA isolation.

Results

A. thaliana plants showed reduced root growth and decreased P content in the root under P-deficient conditions, but improved root growth when supplemented with additional B. Further analysis revealed that exogenous B elevated the cell wall pectin content and facilitated the release of P in P-deficient seedlings, thus more soluble P was available to sustain growth under P deficiency. Furthermore, B supplement also increased soluble P in P-deficient cabbage (Brassica oleracea var. capitata L.), an economically important vegetable crop. P deficiency alone was sufficient to induce NO accumulation, and in combination with B application further enhanced NO accumulation, while exogenous application of NO scavenger c-PTIO [2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide] counteracted this positive effect of B, indicating that NO is positively involved in B-mediated alleviation of P deficiency.

Conclusions

Our study reveals the critical role of B in improving the growth of P-deficient plants, and also provides evidence implicating the involvement of NO signal.
  相似文献   

9.

Aims

Sclerotia of Sclerotinia sclerotiorum survive in soil and germinate to produce apothecia which release airborne ascospores. Current control methods rely predominantly on the use of fungicides to kill ascospores. The aim of this research was to identify potential biofumigation treatments which suppress sclerotial germination, providing a potential alternative and long-term approach to disease management.

Methods

Microcosm and in vitro experiments were conducted using dried and milled plant material from six different biofumigant crop plants to determine effects on carpogenic germination of sclerotia and mycelial growth of S. sclerotiorum.

Results

All biofumigant plants significantly reduced germination of S. sclerotiorum sclerotia in the microcosm experiments, but were less effective against larger sclerotia. In vitro experiments showed a direct effect of biofumigant volatiles on both the mycelial growth of S. sclerotiorum, and carpogenic germination of sclerotia, where the most effective treatment was B. juncea ‘Vittasso’.

Conclusions

It was clear from this study that biofumigant crop plants have potential as part of an integrated disease management system for control of S. sclerotiorum. The microcosm experiments described here provide a straightforward and reliable screening method for evaluating different biofumigants for activity.
  相似文献   

10.

Background and aims

Soil salinization with high pH condition is a major abiotic stress to plant growth and crop productivity. Helianthus tuberosus L. is an important stress tolerant plant and can survive in the saline-alkali soil and semiarid areas. The aim of this study is to identify the effect of alkali stress on H. tuberosus through global proteomics analysis and improve understanding of the alkalinity resistance of plants.

Methods

H. tuberosus seedlings were exposed to different level alkali stress for 7 days. Protein profiling was quantified by conducting MS-based comparative proteomics analysis. RT-PCR study was carried out to analyze the mRNA expression levels of candidate alkali stress response proteins.

Results

The response of H. tuberosus to alkali stress was detected at both physiological and molecular levels. 104 differentially expressed proteins from H. tuberosus leaves response to Na2CO3 treatment were successfully identified. Functional categorization of these identified proteins showed that the accumulation level of proteins involved in glycolysis, TCA cycle, PSI system, ROS scavenging and signal transduction increased under alkali stress.

Conclusions

Based on the observation of plant growth and the investigation of molecular regulation, H.tuberosus could resist certain alkali stress by modulating carbohydrate metabolism and redox homeostasis. These findings provide a new sight into the underlying molecular mechanisms of alkali resistance in plant.
  相似文献   

11.

Background and aims

Layered profiles of designed soils may provide long-term benefits for green roofs, provided the vegetation can exploit resources in the different layers. We aimed to quantify Sedum root foraging for water and nutrients in designed soils of different texture and layering.

Methods

In a controlled pot experiment we quantified the root foraging ability of the species Sedum album (L.) and S. rupestre (L.) in response to substrate structure (fine, coarse, layered or mixed), vertical fertiliser placement (top or bottom half of pot) and watering (5, 10 or 20 mm week?1).

Results

Water availability was the main driver of plant growth, followed by substrate structure, while fertiliser placement only had marginal effects on plant growth. Root foraging ability was low to moderate, as also reflected in the low proportion of biomass allocated to roots (5–13%). Increased watering reduced the proportion of root length and root biomass in deeper layers.

Conclusions

Both S. album and S. rupestre had a low ability to exploit water and nutrients by precise root foraging in substrates of different texture and layering. Allocation of biomass to roots was low and showed limited flexibility even under water-deficient conditions.
  相似文献   

12.

Background and aims

Pseudomonas spp. have previously been isolated from lucerne nodules. The aims of this study were to: 1) investigate the microbiome within a lucerne nodule; and 2) assess the ability of two Pseudomonas spp. isolated from lucerne nodules to form nodules.

Methods

The microbial community within 27 lucerne nodules, collected from plants inoculated with Sinorhizobium meliloti as a seed coat or peat slurry and an uninoculated control, was identified using 16S rRNA based Illumina sequencing. Lucerne seedlings were inoculated with the two Pseudomonas spp. strains. The plants were grown in sterile conditions for 6 weeks and nodulation was assessed. 16S rRNA, nodC, nodA and nifH genes were amplified.

Results

Sinorhizobium was the dominant genus in nodules, comprising 90–99% of all sequences regardless of inoculation treatment. Overall, 9 other genera were identified, with each represented by <3% of the total sequences. Both Pseudomonas strains were able to form nodules with lucerne. From one of these strains, a nodC gene was detected.

Conclusion

Lucerne nodules contained a diverse assemblage of bacterial species, some of which were capable of forming nodules in the absence of rhizobia.
  相似文献   

13.

Background and aims

Intraspecific aggregation of plant individuals can promote species coexistence by delaying competitive exclusions. However, such impacts may differ among species with contrasting spatial architecture and rely on the spatial distribution of resources.

Methods

We grew a phalanx clonal plant Carex neurocarpa (with aggregated ramets) and a guerilla one Bolboschoenus planiculmis (with diffused ramets) in monocultures or in 1:1 mixtures with an even or a clustered distribution pattern of the two species in homogeneous or heterogeneous soils.

Results

After 16 months, shoot biomass and ramet number were greater in mixtures than in monocultures in C. neurocarpa, but smaller in B. planiculmis. However, the growth of neither C. neurocarpa nor B. planiculmis differed between even and clustered mixtures. Soil nutrient heterogeneity did not significantly affect the growth of either species, but increased relative yield of B. planiculmis and decreased that of C. neurocarpa.

Conclusions

The relative importance of intra- vs. interspecific competition depends on the spatial architecture of plants, and soil nutrient heterogeneity slows down competitive exclusion by decreasing differences in competitive ability between plants. However, our results do not support the idea that intraspecific aggregation of individuals alters competitive interactions between species.
  相似文献   

14.

Background

The fungus Colletotrichum is a plant pathogen that causes the anthracnose disease, resulting in huge losses in various crops including the rose-scented geranium (Pelargonium graveolens). Although the bacterial community associated with plants has an important role in the establishment of plant diseases, little is known about what happens in P. graveolens.

Aims

To increase the knowledge about the bacterial community associated with P. graveolens and its relationship with anthracnose disease symptoms.

Methods

Quantitative PCR and high-throughput sequencing were combined to determine the presence of the fungus Colletotrichum and to reveal the bacterial communities associated with different plant parts – root, stem and leaf – and in the rhizosphere and bulk soil, and also to determine the respective bacterial communities associated with P. graveolens leaves symptomatic and asymptomatic for anthracnose disease.

Results

The fungus Colletotrichum was detected in all plant parts and in the surrounding soil. Bacterial communities varied spatially in plants, and the disease symptoms also influenced the composition of the bacterial community. Abundances of operational taxonomic units (OTUs) assigned to the phylum Actinobacteria and to the genus Streptococcus were greatly increased in asymptomatic leaves.

Conclusions

The bacterial community associated to geranium leaves responds to anthracnose symptoms.
  相似文献   

15.

Background and aims

Common bean (Phaseolus vulgaris L.) nodulates with a wide range of rhizobia. Amongst these is Bradyrhizobium, which is inefficient but able to induce profuse nodulation on this crop. Based on this observation, we tested whether co-inoculating bradyrhizobia with a more standard common bean symbiont, Rhizobium tropici, could stimulate growth and nodulation of common bean, thus contributing to a more effective symbiosis.

Methods

Rhizobium tropici was co-inoculated with two Bradyrhizobium strains applied at three different doses (104, 106, and 108 CFU seed?1) under sterile conditions, and at a single dose (108 CFU seed?1) in non-sterile soil. Plant biomass, nodulation, and N accumulation in plant tissues were evaluated.

Results

Co-inoculated plants produced more nodules, and accumulated more shoot dry biomass and nitrogen than plants inoculated with R. tropici alone under gnotobiotic conditions. Significant responses were observed at the highest inoculum dose and a significant correlation between dose and shoot dry weight was observed. Co-inoculation increased biomass and N accumulation in non-sterile soil, although with a smaller magnitude.

Conclusions

Altogether, our findings suggest that the co-inoculation with bradyrhizobia contributed to an improved symbiotic interaction between R. tropici and common beans.
  相似文献   

16.

Introduction

Botanicals containing iridoid and phenylethanoid/phenylpropanoid glycosides are used worldwide for the treatment of inflammatory musculoskeletal conditions that are primary causes of human years lived with disability, such as arthritis and lower back pain.

Objectives

We report the analysis of candidate anti-inflammatory metabolites of several endemic Scrophularia species and Verbascum thapsus used medicinally by peoples of North America.

Methods

Leaves, stems, and roots were analyzed by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) and partial least squares-discriminant analysis (PLS-DA) was performed in MetaboAnalyst 3.0 after processing the datasets in Progenesis QI.

Results

Comparison of the datasets revealed significant and differential accumulation of iridoid and phenylethanoid/phenylpropanoid glycosides in the tissues of the endemic Scrophularia species and Verbascum thapsus.

Conclusions

Our investigation identified several species of pharmacological interest as good sources for harpagoside and other important anti-inflammatory metabolites.
  相似文献   

17.

Objectives

Identification of novel microbial factors contributing to plant protection against abiotic stress.

Results

The genome of plant growth-promoting bacterium Pseudomonas fluorescens FR1 contains a short mobile element encoding a novel type of extracellular polyhydroxybutyrate (PHB) polymerase (PhbC) associated with a type I secretion system. Genetic analysis using a phbC mutant strain and plants showed that this novel extracellular enzyme is related to the PHB production in planta and suggests that PHB could be a beneficial microbial compound synthesized during plant adaptation to cold stress.

Conclusion

Extracellular PhbC can be used as a new tool for improve crop production under abiotic stress.
  相似文献   

18.

Aims

Seeds are vectors of a diversified microbiota including plant pathogens. To better understand transmission of common bacterial blight (CBB) agents to bean seeds, we analyzed the role of non-pathogenic xanthomonads on seed transmission efficiency and investigated the location of Xanthomonas citri pv. fuscans (Xcf) into seeds and plantlets.

Methods

Competition between CBB and NP strains was initially assessed in vitro and then extended in planta to monitor the impact of co-inoculation on Xcf seed transmission. Moreover, location of Xcf strains in seeds and seedlings was visualized using a combination of gfp-tagged strain and DOPE-FISH/CSLM.

Results

Whereas CBB agent growth was inhibited in vitro by some seed-borne non-pathogenic xanthomonads strains, these strains did not transmit efficiently to seed through floral pathway and did not affect Xcf seed transmission. Xcf cells were observed entering seed through vascular elements and parenchyma of funiculus, but also micropyle and testa. Xcf cells were observed, moreover, among other bacteria on radicle surfaces, especially tip, in cotyledons, and plumules.

Conclusions

CBB agents are more efficient than non-pathogenic xanthomonads in using the floral route to colonize seeds. CBB agents are located within different niches in the seed tissues up to the embryonic axis.
  相似文献   

19.

Introduction

Mass spectrometry imaging (MSI) experiments result in complex multi-dimensional datasets, which require specialist data analysis tools.

Objectives

We have developed massPix—an R package for analysing and interpreting data from MSI of lipids in tissue.

Methods

massPix produces single ion images, performs multivariate statistics and provides putative lipid annotations based on accurate mass matching against generated lipid libraries.

Results

Classification of tissue regions with high spectral similarly can be carried out by principal components analysis (PCA) or k-means clustering.

Conclusion

massPix is an open-source tool for the analysis and statistical interpretation of MSI data, and is particularly useful for lipidomics applications.
  相似文献   

20.

Background

Leishmaniasis and malaria are the two most common parasitic diseases and responsible for large number of deaths per year particularly in developing countries like Pakistan. Majority of Pakistan population rely on medicinal plants due to their low socio-economic status. The present review was designed to gather utmost fragmented published data on traditionally used medicinal plants against leishmaniasis and malaria in Pakistan and their scientific validation.

Methods

Pub Med, Google Scholar, Web of Science, ISI Web of knowledge and Flora of Pakistan were searched for the collection of data on ethnomedicinal plants. Total 89 articles were reviewed for present study which was mostly published in English. We selected only those articles in which complete information was given regarding traditional uses of medicinal plants in Pakistan.

Results

Total of 56 plants (malaria 33, leishmaniasis 23) was found to be used traditionally against reported parasites. Leaves were the most focused plant part both in traditional use and in in vitro screening against both parasites. Most extensively used plant families against Leishmaniasis and Malaria were Lamiaceae and Asteraceae respectively. Out of 56 documented plants only 15 plants (Plasmodia 4, Leishmania 11) were assessed in vitro against these parasites. Mostly crude and ethanolic plant extracts were checked against Leishmania and Plasmodia respectively and showed good inhibition zone. Four pure compounds like artemisinin, physalins and sitosterol extracted from different plants proved their efficacy against these parasites.

Conclusions

Present review provides the efficacy and reliability of ethnomedicinal practices and also invites the attention of chemists, pharmacologist and pharmacist to scientifically validate unexplored plants that could lead toward the development of novel anti-malarial and anti-leishmanial drugs.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号