首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Sloths are very responsive to epinephrine and norepinephrine; i.v. injection of 1 microgram/kg elevates systolic pressure 80 and 90% respectively. 2. Doses as low as 0.01 microgram/kg of epinephrine as well as norepinephrine raise diastolic pressure. 3. Similarity of effects of these catecholamines can be explained on the basis of the low proportion of skeletal muscle (35 vs 45% in most mammals) and a small liver which reduces the proportion of beta 2 dilators to alpha constrictors responding to epinephrine. 4. Slowness of reflexes allows clear separation of early (0-20 sec), direct accelerating heart rate effect (up 15% with 1 microgram/kg of norepinephrine) and later (20-60 sec), reflex bradycardia (down 30% from control level). 5. Sloths are more sensitive to the vasodilating effects of isoproterenol or less sensitive to beta 1 cardiac stimulating effects than most laboratory mammals; doses as low as 0.1 microgram/kg cause a fall in mean arterial pressure not overcome by increased heart rate.  相似文献   

2.
Epinephrine increases glycogenolysis in resting skeletal muscle, but less is known about the effects of epinephrine on exercising muscle. To study this, epinephrine was given intraarterially to one leg during two-legged cycle exercise in nine healthy males. The epinephrine-stimulated (EPI) and non-stimulated (C) legs were compared with regard to glycogen, glucose, glucose 6-phosphate (G6P), alpha-glycerophosphate (alpha-GP), and lactate contents in muscle biopsies taken before and after the 45-min submaximal exercise, as well as brachial arterial-femoral venous (a-fv) differences for epinephrine, norepinephrine, lactate, glucose, and O2 during exercise. During exercise the arterial plasma epinephrine concentration was 4.8 +/- 0.8 nmol/l and the femoral venous epinephrine concentrations were 10.3 +/- 2.1 and 3.9 +/- 0.6 nmol/l, respectively, in the EPI and C leg. During exercise the a-fv difference for lactate was greater (-0.41 +/- 0.14 vs. -0.21 +/- 0.14 mmol/l; P less than 0.001), and the a-fv difference for glucose was smaller (0.07 +/- 0.12 vs. 0.24 +/- 0.12 mmol/l; P less than 0.01) in the EPI than in the C leg, but the a-fv differences for O2 were similar. Muscle glycogen depletion (137 +/- 63 vs. 99 +/- 43 mmol/kg dry muscle; P less than 0.1) and the muscle concentrations of glucose (P less than 0.05), alpha-GP (P less than 0.1), G6P (P greater than 0.1), and lactate (P greater than 0.1) tended to be higher in the EPI than the C leg after exercise. These findings suggest that physiological concentrations of epinephrine may enhance muscle glycogenolysis during submaximal exercise in male subjects.  相似文献   

3.
Recent experiments demonstrate that feedforward sympathetic beta-adrenoceptor coronary vasodilation occurs during exercise. The present study quantitatively examined the contributions of epinephrine and norepinephrine to exercise coronary hyperemia and tested the hypothesis that circulating epinephrine causes feedforward beta-receptor-mediated coronary dilation. Dogs (n = 10) were chronically instrumented with a circumflex coronary artery flow transducer and catheters in the aorta and coronary sinus. During strenuous treadmill exercise, myocardial oxygen consumption increased by approximately 3.9-fold, coronary blood flow increased by approximately 3.6-fold, and arterial plasma epinephrine concentration increased by approximately 2.4-fold over resting levels. At arterial concentrations matching those during strenuous exercise, epinephrine infused at rest (n = 6) produced modest increases (18%) in flow and myocardial oxygen consumption but no evidence of direct beta-adrenoceptor-mediated coronary vasodilation. Arterial norepinephrine concentration increased by approximately 5. 4-fold during exercise, and coronary venous norepinephrine was always higher than arterial, indicating norepinephrine release from cardiac sympathetic nerves. With the use of a mathematical model of cardiac capillary norepinephrine transport, these norepinephrine concentrations predict an average interstitial norepinephrine concentration of approximately 12 nM during strenuous exercise. Published dose-response data indicate that this norepinephrine concentration increases isolated coronary arteriolar conductance by approximately 67%, which can account for approximately 25% of the increase in flow observed during exercise. It is concluded that a significant portion of coronary exercise hyperemia ( approximately 25%) can be accounted for by direct feedforward beta-adrenoceptor coronary vascular effects of norepinephrine, with little effect from circulating epinephrine.  相似文献   

4.
We investigated the possibility that blood pressure elevation induced by salt excess may be secondary to a neurogenic mechanism. The compound SK&F 64139 (50 mg/kg) known to inhibit central and peripheral phenylethanolamine N-methytransferase (PNMT) the enzyme necessary for the conversion of norepinephrine to epinephrine, was given by oral gavage to two groups of subtotally nephrectomized rats maintained for five days on either a high salt (HS) or low salt (LS) diet respectively. Blood urea nitrogen (BUN) and hematocrit were not different between the two groups, while body weight and serum Na were significantly higher in the HS animals. Baseline mean blood pressure (BP) was higher in the HS animals (HS 154 ± 4.7 vs LS 121 ± 3.7 mmHg, p<0.001) and decreased by 39 ± 6.9 mmHg one and one half hour post SK&F 64139 to normotensive levels in the HS as opposed to a decrease of 10 ± 1.8 mmHg in the LS group. Baseline heart rate (HR) was higher in the LS group (474 ± 17 beats/min) vs the HS group (408 ± 17, p<0.05), and decreased significantly after SK&F 64139 in both groups to the same extent (by 17.6% in the HS vs 13.3% in the LS). A third group of subtotally nephrectomized rats maintained for five days on a HS diet were given by oral gavage the compount SK&F 29661 (100 mg/kg), a PNMT inhibitor which does not cross the blood-brain barrier. Following SK&F 29661, there was no significant decrease in mean BP (153 ± 5 to 149 ± 4 mmHg) and a less than 2% decrease in HR. Baseline plasma norepinephrine (NE) was higher in the HS as compared to the LS group (1.50 ± 0.16 vs 0.904±0.15 ng/ml, respectively, p<0.05) and a significant correlation was found between plasma NE level and decrease in BP following SK&F 64139 (r=0.65, p<0.01). Not withstanding possible effects of some ancillary properties of SK&F 64139, these data support the hypothesis that a neurogenic component, possibly mediated via central epinephrine containing neurons, contributes to the BP elevation induced by salt excess.  相似文献   

5.
Experiments were performed to assess the possible neurally mediated constriction in active skeletal muscle during isometric hand-grip contractions. Forearm blood flow was measured by venous occlusion plethysmography on 5 volunteers who exerted a series of repeated contractions of 4 s duration every 12 s at 60% of their maximum strength of fatigue. The blood flows increased initially, but then remained constant at 20-24 ml X min(-1) X 100 ml(-1) throughout the exercise even though mean arterial blood pressure reached 21-23 kPa (160-170 mm Hg). When the same exercise was performed after arterial infusion of phentolamine, forearm blood flow increased steadily to near maximal levels of 38.7 +/- 1.4 ml X min(-1) X 100 ml(-1). Venous catecholamines, principally norepinephrine, increased throughout exercise, reaching peak values of 983 +/- 258 pg X ml(-1) at fatigue. Of the vasoactive substances measured, the concentration of K+ and osmolarity in venous plasma also increased initially and reached a steady-state during the exercise but ATP increased steadily throughout the exercise. These data indicate a continually increasing alpha-adrenergic constriction to the vascular beds in active muscles in the human forearm during isometric exercise, that is only partially counteracted by vasoactive metabolites.  相似文献   

6.
Epinephrine is widely used as a vasoconstrictor or inotrope in shock, although it may typically induce or augment lactic acidosis. Ongoing debate addresses the question of whether hyperlactatemia per se is a sign of tissue perfusion deficit or aerobic glycolysis. We wanted to test the hypothesis that epinephrine has selective detrimental effects on visceral perfusion and metabolism. We performed rigorous regional venous blood gas analyses as well as intraperitoneal microdialysis. We used a mathematical model to calculate regional arteriovenous CO(2) content gradients and estimated the magnitude of the Haldane effect in a porcine model of prolonged hypotensive shock induced by endotoxin infusion (mean arterial blood pressure < 60 mmHg). Subsequently, vasopressors (epinephrine or norepinephrine) were administered and adjusted to maintain systemic mean arterial pressure > 70 mmHg for 4 h. Epinephrine caused systemic hyperlactatemia and acidosis. Importantly, both systemic and regional venous lactate-to-pyruvate ratios increased. Epinephrine was associated with decreasing portal blood flow despite apparently maintained total splanchnic blood flow. Epinephrine increased gastric venous-to-arterial Pco(2) gradients and CO(2) content gradients with decreasing magnitude of the Haldane effect, and the regional gastric respiratory quotient remained higher after epinephrine as opposed to norepinephrine infusion. In addition, epinephrine induced intraperitoneal lactate and glycerol release. We did not observe these adverse hemodynamic or metabolic changes related to norepinephrine with the same arterial pressure goal. We conclude that high CO(2) content gradients with decreasing magnitude of the Haldane effect pinpoint the most pronounced perfusion deficiency to the gastric wall when epinephrine, as opposed to norepinephrine, is used in experimental endotoxin shock.  相似文献   

7.
Abundant evidence has been gathered to suggest that mitochondrial DNA (mtDNA) sustains many more mutations and greater oxidative damage than does nuclear DNA in human tissues. Uremic patients are subject to a state of enhanced oxidative stress due to excess production of oxidants and a defective antioxidant defense system. This study was conducted to investigate mtDNA mutations and oxidative damage in skeletal muscle of patients with chronic uremia. Results showed that large-scale deletions between nucleotide position (np) 7,900 and 16,300 of mtDNA occurred at a high frequency in muscle of uremic patients. Among them, the 4,977-bp deletion (mtDNA4977) was the most frequent and most abundant large-scale mtDNA deletion in uremic skeletal muscle. The proportion of mtDNA4977 was found to correlate positively with the level of 8-hydroxy 2-deoxyguanosine (8-OHdG) in the total DNA of skeletal muscle (r=0.62, p<0.05). Using long-range PCR and DNA sequencing, we identified and characterized multiple deletions of mtDNA in skeletal muscle of 16 of 19 uremic patients examined. The 8,041-bp deletion, which occurred between np 8035 and 16,075, was flanked by a 5-bp direct repeat of 5-CCCAT-3. Some of the deletions were found in more than 1 patient. On the other hand, we found that the mean 8-OHdG/105 dG ratio in the total cellular DNA of muscle of uremic patients was significantly higher than that of the controls (182.7 ± 63.6 vs. 50.9 ± 21.5, p=0.05). In addition, the mean 8-OHdG/105 dG ratio in muscle mtDNA of uremic patients was significantly higher than that in nuclear DNA (344.0 ± 56.9 vs. 146.3 ± 95.8, p=0.001). Moreover, we found that the average content of lipid peroxides in mitochondrial membranes of skeletal muscle of uremic patients was significantly higher than that of age-matched healthy subjects (23.76 ± 6.06 vs. 7.67 ± 0.95 nmol/mg protein; p<0.05). The average content of protein carbonyls in the mitochondrial membranes prepared from uremic skeletal muscles was significantly higher than that in normal controls (24.90 ± 4.00 vs. 14.48 ± 1.13 nmol/mg protein; p<0.05). Taken together, these findings suggest that chronic uremia leads to mtDNA mutations together with enhanced oxidative damage to DNA, lipids, and proteins of mitochondria in skeletal muscle, which may contribute to the impairment of mitochondrial bioenergetic function and to skeletal myopathy commonly seen in uremic patients.  相似文献   

8.
The purpose of the present study was to characterize the role of catecholamines in the regulation of skeletal muscle glycogen metabolism during exercise. Using the rat hindlimb perfusion technique we have measured skeletal muscle glycogen content, glycogen phosphorylase and synthase activities in sympathectomized and/or demedullated rats under epinephrine treatment (10(-7) M) at rest and during muscle contraction. When epinephrine and/or norepinephrine deficiency was induced, muscle contraction resulted in a decrease in glycogen content (-63%) despite a decrease in glycogen phosphorylase activity ratio (0.25 to 0.11; p less than 0.001) and an increase in glycogen synthase activity ratio (0.13 to 0.27; p less than 0.001). Under these conditions, epinephrine treatment further reduced glycogen content while blunting the changes in the activity ratio of the rate-limiting enzymes. These data indicate that catecholamines do not play a primary role in skeletal muscle glycogen breakdown during acute exercise and suggest that allosteric regulators may be of prime importance.  相似文献   

9.
Epinephrine and norepinephrine together (E + NE) and epinephrine (E) alone were infused intravenously in stepwise increasing doses during progressive isotonic tetanic contractions. The goal was to mimic, for in situ dog skeletal muscle, the concentrations of these catecholamines in the blood and the contractions during progressive exercise. The concentrations of lactate and O2 in arterial and muscle venous blood, the arterial plasma concentration of E and NE, PO2 in arterial and muscle venous blood, and the venous outflow were measured. The infusions caused a rise in plasma E and NE like those seen in progressive exercise. Compared with no-infusion controls, the E + NE infusions and the E alone infusion resulted in significant increases in maximal lactic acid output by the muscles during the contractions from 0.24 mumol X g-1 X min-1 in the controls to 0.44 and 0.54 mumol X g-1 X min-1 during E + NE and E alone infusions, respectively. The venous O2 concentrations and partial pressures were not reduced by the infusions. Both infusions resulted in a rise of arterial lactate concentration that could not be accounted for by the lactic acid output of the contracting muscles. The E alone infusions were associated with a rise in maximal O2 uptake during the contractions. Since the effects of the E + NE and E alone infusions were similar, it was suggested that E is more active than NE. It was suggested that E also increased lactic acid production in tissues other than the working muscles.  相似文献   

10.
The purpose of this study was to determine whether blood flow (BF) and vascular resistance (VR) are controlled differently in the nonactive arm and leg during submaximal rhythmic exercise. In eight healthy men we simultaneously measured BF to the forearm and calf (venous occlusion plethysmography) and arterial blood pressure (sphygmomanometry) and calculated whole limb VR before (control) and during 3 min of cycling with the contralateral leg at 38, 56, and 75% of peak one-leg O2 uptake (VO2). During the initial phase of exercise (0-1.5 min) at all work loads, BF increased and VR decreased in the forearm (P less than 0.05), whereas calf BF and VR remained at control levels. Thereafter, BF decreased and VR increased in parallel and progressive fashion in both limbs. At end exercise, forearm BF and VR were not different from control values (P greater than 0.05); however, in the calf, BF tended to be lower (P less than 0.05 at 75% peak VO2 only) and VR was higher (23 +/- 9, 44 +/- 14, and 88 +/- 23% above control at 38, 56, and 75% of peak VO2, respectively, all P less than 0.05). In a second series of studies, forearm and calf skin blood flow (laser-Doppler velocimetry) and arterial pressure were measured during the same levels of exercise in six of the subjects. Compared with control, skin BF was unchanged and VR was increased (P less than 0.05) in the forearm by end exercise at all work loads, whereas calf skin BF increased (P less than 0.05) and VR decreased (P less than 0.05). The present findings indicate that skeletal muscle and skin VR are controlled differently in the nonactive forearm and calf during the initial phase of rhythmic exercise with the contralateral leg. Skeletal muscle vasodilation occurs in the forearm but not in the calf; forearm skin vasoconstricts, whereas calf skin vasodilates. Finally, during exercise a time-dependent vasoconstriction occurs in the skeletal muscle of both limbs.  相似文献   

11.
The effect of increasing plasma concentrations of free fatty acids on substrate utilization in muscle during exercise was investigated in 11 healthy young males. One hour of dynamic knee extension at 80% of knee-extensor maximal work capacity was performed first with one leg and then with the other leg during infusion of Intralipid and heparin. Substrate utilization was assessed from arterial and femoral venous blood sampling as well as from muscle biopsies. Intralipid infusion increased mean plasma free fatty acid concentrations from 0.54 +/- 0.08 to 1.12 +/- 0.09 (SE) mM. Thigh glucose uptake during rest, exercise, and recovery was decreased by 64, 33, and 42%, respectively, by Intralipid, whereas muscle glycogen breakdown and release of lactate, pyruvate, and citrate were unaffected. Concentrations of glucose, glucose 6-phosphate, and lactate in muscle before and at termination of exercise were unaffected by Intralipid. During exercise, net leg uptake of plasma free fatty acids was not measurably increased by Intralipid, whereas uptake of ketone bodies was. Local respiratory quotient across the leg was not changed by Intralipid (control 0.87 +/- 0.02, Intralipid 0.86 +/- 0.02). Arterial concentrations of insulin, norepinephrine, and epinephrine were similar in the two trials. It is concluded that at rest and during exercise at a moderate intensity (requiring approximately equal contributions from fat and carbohydrate metabolism), muscle carbohydrate metabolism is affected only with regard to uptake of glucose when plasma concentrations of lipid and lipid metabolites are increased. This effect may be by direct inhibition of glucose transport rather than by the classic glucose-fatty acid cycle.  相似文献   

12.
Previous studies have shown that high-altitude hypoxic hypoxia is associated with reduced ventilatory capacity that may be related to skeletal muscle weakness. In the present investigation, ascent to high altitude (4, 000 m) was simulated experimentally by exposure of male rats (Sprague-Dawley, 250–350 g), anesthetized with thiopental sodium (25 mg/kg, i.p.), to a breathing gas mixture of 12% oxygen diluted in 88% nitrogen (FiO2 = 0.12). Determinations of oxygen saturation on micro- samples (250 ul) of arterial and central venous blood were made spectrophotometrically. Neuromuscular conduction latency was measured following electrostimulation of the sciatic nerve (1–5 V, 0.5 msec duration, 1–40 Hz) and recording of the electromyogram from the gastrocnemius muscle. Experimental hypoxia (FiO2 = 0.12) produced a highly significant increase in conduction latency from a control value (mean ± SEM) of 3.06 ± 0.16 msec to 4.02 ± 0.31 msec (n = 10, P < 0.001). Conduction latency increased with decreasing arterial oxygen saturation from a control value of 92.9% ± 0.18% to 83.2% ± 0.76% (P<0.001) in the absence of statistically significant changes in central venous oxygen saturation, central venous pressure, arterial and central venous pH, and heart rate. A significant decrement in the mean arterial blood pressure from a control value of 85 ± 1.5 mm Hg to 69 ± 1.5 mm Hg suggests that local ischemia may be a component of this model. These responses were accompanied by marked reduction in uptake of 3, 3′-diaminobenzidine (DAB) by gastrocnemius muscle mitochondria, suggesting decreased intracellular activity of cytochrome oxidase. It was concluded that exposure of rodents to hypoxic gas mixtures may provide a suitable model for studying the mechanism of skeletal muscle weakness associated with ascent to high altitude and of other conditions wherein the supply of oxygen to tissues is limited.  相似文献   

13.
The experimental objective was to determine whether moderate to severe hypoxemia increases skeletal muscle sympathetic nervous activity (MSNA) in resting humans without increasing venous plasma concentrations of norepinephrine (NE) and epinephrine (E). In nine healthy subjects (20-34 yr), we measured MSNA (peroneal nerve), venous plasma levels of NE and E, arterial blood pressure, heart rate, and end-tidal O2 and CO2 before (control) and during breathing of 1) 12% O2 for 20 min, 2) 10% O2 for 20 min, and 3) 8% O2 for 10 min--in random order. MSNA increased above control in five, six, and all nine subjects during 12, 10, and 8% O2, respectively (P less than 0.01), but only after delays of 12 (12% O2) and 4 min (8 and 10% O2). MSNA (total activity) rose 83 +/- 20, 260 +/- 146, and 298 +/- 109% (SE) above control by the final minute of breathing 12, 10, and 8% O2, respectively. NE did not rise above control at any level of hypoxemia; E rose slightly (P less than 0.05) at one time only with both 10 and 8% O2. Individual changes in MSNA during hypoxemia were unrelated to elevations in heart rate or decrements in blood pressure and end-tidal CO2--neither of which always fell. We conclude that in contrast to some other sympathoexcitatory stimuli such as exercise or cold stress, moderate to severe hypoxemia increases leg MSNA without raising plasma NE in resting humans.  相似文献   

14.
Park SY  Kim YW  Kim JE  Kim JY 《Life sciences》2006,79(23):2228-2233
In this study, to determine if age associated changes in fat metabolism in skeletal muscle and liver were related with sympathetic activity, we measured sympathetic activity and palmitate oxidation rate, carnitine palmitoyltransferase-1 (CPT-1) activity, and triglyceride concentration in skeletal muscle and liver of rats at 8, 30 and 60 weeks of age. Body weight, intra-abdominal percent of fat mass, and plasma level of insulin, leptin, and triglyceride were all significantly increased with age. Tissue triglyceride concentration was increased with age in liver and skeletal muscle. The palmitate oxidation rate in liver and skeletal muscle was reduced with age in rats and inversely correlated with tissue triglyceride concentration. CPT-1 activity was not altered with age. Plasma catecholamine concentration and sympathetic activity, as measured by spectral analysis of heart rate variability, were increased with age. Plasma norepinephrine or epinephrine and tissue triglyceride had a positive correlation in liver and skeletal muscle. Plasma norepinephrine or epinephrine to tissue triglyceride ratio was similar according to age. In summary, in spite of increased sympathetic activity with age, the tissue triglyceride concentration was increased. Increased sympathetic activity may be the compensatory response and the reduced capacity of fatty acid oxidation is a main cause of obesity.  相似文献   

15.
D Ratge  E Knoll  H Wisser 《Life sciences》1986,39(6):557-564
Plasma free and sulfoconjugated norepinephrine (NE), epinephrine (E) and dopamine (DA) concentrations measured in patients with thrombocytopenia or thrombocytosis, in newborns and pregnant women were not statistically different from values determined in 41 healthy volunteers. The percentage free to total NE, E and DA was 30 +/- 10%, 35 +/- 11% and 1.5 +/- 1.1% (mean +/- SE) in the controls, resp; not different from the previously described patients or from patients with liver failure who showed significantly higher free and conjugated NE and E levels when compared with controls (p less than 0.01, resp.). Conjugated catecholamine (CA) levels from the femoral artery and from multiple sites in the venous system sampled in patients undergoing intracardiac measurements were identical. The data suggest that sulfation of CA may not be simply ascribed to platelets, to the liver, to vascular beds, or to organs along the vena cava including the adrenal glands. The parallel increase of free and conjugated NE with age in healthy controls, as well as the unchanged degree of conjugation in patients with increased spillover of NE and E caused by a pheochromocytoma or by a heart attack, suggest that there is a balance between free and sulfated CA. A normal ratio of free to conjugated NE and E observed in patients receiving high dosage DA infusion further indicates that there is an adequate sulfate supply and no apparent substrate inhibition of the conjugation process. Because the percentage free of total NE, E and DA were significantly lower in patients in the hypothyroid state when compared with controls (p less than 0.01, resp.), hypothyroidism may affect the balance of free to conjugated CA in a yet unknown way.  相似文献   

16.
The effects of TA-3090 (clentiazem) and nifedipine on basal sympathoadrenal activity and on the adrenal medullary response during splanchnic nerve stimulation were studied in dogs anesthetized with sodium pentobarbital. Plasma concentrations of epinephrine and norepinephrine were measured in aortic and adrenal venous blood before and after acute administration of the drugs, as well as during left splanchnic nerve stimulation before and after administration of drugs. Following intravenous injections, TA-3090 (30, 100, and 300 micrograms/kg) did not affect basal circulating catecholamine levels, whereas nifedipine (10, 30, and 100 micrograms/kg) markedly increased aortic epinephrine and norepinephrine concentrations in a dose-dependent manner in correlation with progressive decreases in mean arterial pressure. The changes in aortic epinephrine and norepinephrine concentrations were inversely related to those in mean arterial pressure (r = 0.603, p < 0.01; r = 0.536, p < 0.01; respectively). In response to direct splanchnic nerve stimulation (2 Hz, 2 ms, 1 min, 12 V), adrenal venous epinephrine and norepinephrine concentrations significantly increased, with a high degree of reproducibility. The catecholamine responses to splanchnic nerve stimulation were not affected by either TA-3090 or nifedipine at any dose tested. The present results suggest that the increases in circulating catecholamine levels following nifedipine administration are due to baroreflex activation secondary to the drug-induced hypotension. The study indicates that both TA-3090 and nifedipine did not significantly affect L-type Ca2+ channels related to catecholamine release in the adrenal medulla under the present experimental conditions.  相似文献   

17.
Normotensive adults homozygous for glycine (Gly) of the Arg16/Gly beta2-adrenergic-receptor polymorphism have 1) greater forearm beta2-receptor mediated vasodilation and 2) a higher heart rate (HR) response to isometric handgrip than arginine (Arg) homozygotes. To test the hypothesis that the higher HR response in Gly16 subjects serves to maintain the pressor response [increased cardiac output (CO)] in the setting of augmented peripheral vasodilation to endogenous catecholamines, we measured continuous HR (ECG), arterial pressure (Finapres), and CO (transthoracic echocardiography) during isometric, 40% submaximal handgrip to fatigue in healthy subjects homozygous for Gly (n = 30; mean age +/- SE: 30 +/- 1.2, 13 women) and Arg (n = 17, age 30 +/- 1.6, 11 women). Resting data were similar between groups. Handgrip produced similar increases in arterial pressure and venous norepinephrine and epinephrine concentrations; however, HR increased more in the Gly group (60.1 +/- 4.3% increase from baseline vs. 45.5 +/- 3.9%, P = 0.03), and this caused CO to be higher (Gly: 7.6 +/- 0.3 l/m vs. Arg: 6.5 +/- 0.3 l/m, P = 0.03), whereas the decrease in systemic vascular resistance in the Gly group did not reach significance (P = 0.09). We conclude that Gly16 homozygotes generate a higher CO to maintain the pressor response to handgrip. The influence of polymorphic variants in the beta2-adrenergic receptor gene on the cardiovascular response to sympathoexcitation may have important implications in the development of hypertension and heart failure.  相似文献   

18.
Increased circulating epinephrine levels paralled cardiac hypertrophy in response to aortic constriction in the dog. Venous levels of epinephrine were significantly elevated at 24, 48, 72 and 96 hours postcoarctation. There were not significant arterial or venous alterations in norepinephrine levels. Dogs administered propranolol daily had no detectable hypertrophy 96 hours postcoarctation. We suggest that an increased epinephrine level may contribute to the physiological trigger(s) for cardiac hypertrophy.  相似文献   

19.
Ten normal healthy subjects performed a rhythmic handgrip at 30% MVC (maximal voluntary contraction) with and without arterial occlusion of the same limb. Contralateral forearm and calf venous capacitance were simultaneously measured by venous occlusion plethysmography. During rhythmic handgrip at 30% MVC contralateral venous capacitance decreased by -7.17% in the forearm and by -5.14% in the calf. With arterial occlusion the decreases in venous capacitance were even more pronounced: contralateral forearm -14.4% and calf -13.1%. In a second set of experiments (n = 5) rhythmic handgrip at 30% MVC with arrest of the forearm circulation 5 s prior to the cessation of contraction was applied to examine the influence of chemically sensitive metaboreceptors per se on the evoked limb venoconstriction. During the postexercise arterial occlusion forearm venous volume decreased further to -30.6% whereas calf venous volume increased slightly but remained below the control value. After the cessation of the arterial occlusion both forearm and calf capacitance returned to baseline values. Thus, this study provided evidence that as well as a chemically generated reflex arising from the working muscle, central command was found to be involved in the increase in venomotor tone in the nonexercising limbs during rhythmic handgrip at 30% MVC.  相似文献   

20.
We tested the hypothesis that venous emptying serves as a stimulus for vasodilation in the human forearm. We compared the forearm blood flow (FBF; pulsed Doppler mean blood velocity and echo Doppler brachial artery diameter) response to temporary elevation of a resting forearm from below to above heart level when venous volume was allowed to drain versus when venous drainage was prevented by inflation of an upper arm cuff to approximately 30 mmHg. Arm elevation resulted in a rapid reduction in venous volume and pressure. Cuff inflation just before elevation effectively prevented these changes. FBF was briefly reduced by approximately 16% following arm elevation. A transient (86%) increase in blood flow began by approximately 5 s of arm elevation and peaked by 8 s, indicating a vasodilation. This response was completely abolished by preventing venous emptying. Arterial inflow below heart level was markedly elevated by 343% following brief (4 s) forearm elevation. This hyperemia was minor when venous emptying during forearm elevation had been prevented. We conclude that venous emptying serves as a stimulus for a transient (within 10 s) vasodilation in vivo. This vasodilation can substantially elevate arterial inflow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号