首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of theophylline and theobromine on cellular respiration and on membrane transport of calcium has been studied in isolated rat liver mitochondria, using oxygen and Ca2+ selective electrodes. A linear decrease in respiratory coefficients, in the total amount and rate of "extra" oxygen consumption induced by ADP is observed with drug concentration. Theobromine does not show any appreciable effect on these respiratory parameters, but this result is similar to that observed with theophylline for the same concentration range. Calcium uptake coupled to respiration is inhibited by both drugs depending on their concentrations. Theobromine is more effective than theophylline. Calcium saturation of the mitochondria takes place in all cases after 36 +/- 2 s but only a 20% of the maximum calcium uptake observed in the absence of the drugs is determined in the presence of 15 mM theophylline or only 1.8 mM theobromine. Comparative studies show direct correlation between the pharmacological activities as stimulants of caffeine, theophylline and theobromine and their behaviour as inhibitors of calcium uptake coupled to respiration by mitochondria.  相似文献   

2.
《The Journal of cell biology》1984,98(5):1645-1655
We studied retinal photoreceptors of Rana pipiens by using techniques designed to investigate calcium localization. Particularly useful were methods in which intracellular sites of calcium uptake were detected by incubation of saponin-treated isolated retinas in calcium-containing media, with oxalate present as a trapping agent. With these procedures, cell compartments accumulate deposits, which can be shown to contain calcium by x-ray microanalysis. Calcium accumulation was prominent in the rough endoplasmic reticulum in the myoid region. In addition, deposits were observed in agranular reticulum and in certain Golgi- associated compartments of the myoid region, in mitochondria, in axonal reticulum, and in agranular reticulum of presynaptic terminals. Calcium was also detected in the endoplasmic reticulum of retinas fixed directly upon isolation, by a freeze-substitution method. The factors influencing accumulation of calcium in the endoplasmic reticulum were evaluated by a semiquantitative approach based on determining the relative frequency of calcium oxalate crystals under varying conditions. Calcium accumulation was markedly enhanced by ATP. Studies with a nonhydrolyzable ATP analogue (adenylyl- imidodiphosphate ) and with inhibitors of the sarcoplasmic reticulum Ca2+-Mg2+ ATPase (mersalyl and tetracaine) indicated that this ATP-dependent calcium uptake reflects an energy-dependent process roughly comparable to that in the sarcoplasmic reticulum.  相似文献   

3.
ATP-dependent calcium uptake of rat liver microsomes is examined following ingestion of CC14 (2.5 ml/kg). Within 30 min there is an abrupt drop in calcium uptake activity of the liver microsomes. This activity remains down for 48 hours before slowly returning to normal levels. The effect is specific for CC14 as contrasted with CHC13 and CH2Cl2. The CCl4 does not affect similar calcium uptake activity of kidney microsomes. Calcium uptake activity of the liver mitochondria is unaffected. The first 12 hours after CCl4 ingestion there is a relatively slow rise in the calcium content of the liver tissue and mitochondria. After 12 hours a much larger influx of calcium into the tissue and the mitochondria takes place. Forty-eight hours after CCl4 ingestion the process begins to slowly reverse. The following postulated sequence may relate to the CCl4 hepatotocicity. CCl4 is activated to free radicals by the liver endoplasmic reticulum. The free radical inactivate calcium pump activity of the liver endoplasmic reticulum. Calcium levels of the cytoplasm increase and significantly modify ion permeability of the plasma membrane. High levels of external calcium enter the cytoplasm and are sequestered in the mitochondria. The high level of mitochondrial calcium uptake inhibits mitochondrial oxidative phosphorylation. The specific sensitivity of the calcium pump activity of liver microsomes to CCl4 further establishes the identity of a system seperate from the mitochondrial system. The above postulated sequence of events would suggest a critical role in liver metabolism for calcium pump activity of the endoplasmic reticulum.  相似文献   

4.
The mitochondrial calcium uniporter behaves as a cooperative mechanism, where the velocity is dependent on [Ca2+]ex. Transport kinetics follows a sigmoidal behavior with a Hill coefficient near 2.0, indicating the binding of at least two calcium molecules. Calcium transport in mitochondria is dependent on a negative inner membrane potential and is inhibited by policationic ruthenium compounds. In this study, calcium uptake activity was reconstituted into cytochrome oxidase vesicles by incorporating solubilized mitochondrial proteins. Calcium accumulation plotted against increasing Ca2+ concentrations followed a sigmoidal behavior with a Hill coefficient of 1.53. The uptake was sensitive to ruthenium policationic inhibitors, e.g. ruthenium red and Ru360. After mitochondrial proteins were separated by preparative isoelectrofocusing and incorporated into cytochrome oxidase vesicles, two peaks of calcium uptake activity were recovered. One of the activities was inhibited by Ru360, while the second activity was insensitive to Ru360 and was associated with proteins focused at very acidic isoelectric points. By using a thiol-group crosslinker and radiolabeled Ru360, we proposed a scheme of partial dissociation of the uniporter inhibitor-binding subunit under acidic conditions.  相似文献   

5.
Calcium uptake by the microsomal and mitochondrial fractions of pig coronary artery and guinea pig ileum was studied in the presence of ATP, ATP plus oxalate and without ATP and oxalate. Microsomes and mitochondria of both smooth muscles were found to be unable to accumulate appreciable amounts of calcium in the absence of ATP. Oxalate noticeably stimulated the calcium uptake of the mitochondrial fraction from pig coronary artery but had little effect on calcium uptake by the microsomal fraction of this smooth muscle. The calcium uptake of microsomes and mitochondria from guinea pig ileum was not or only slightly enhanced by oxalate. There are typical kinetics regarding the time course and the extent of calcium uptake by microsomes and mitochondria from pig coronary artery and guinea pig ileum. In comparison, considerable qualitative and quantitative differences between both smooth muscles are observed. The high ATP-dependent calcium uptake capacity of the mitochondria from pig coronary artery and guinea pig ileum are a further argument for the hypothesis that these organelles may play an important role in the contraction-relaxation mechanism of smooth muscle.  相似文献   

6.
The current studies were designed to investigate calcium uptake by intestinal jejunal sacs as well as in intestinal mitochondria of spontaneously hypertensive rats and their genetically matched WKY control rats. Kinetics of jejunal calcium uptake by jejunal sacs of adult SHR and WKY rats showed a significant decrease in Vmax of calcium uptake in SHR (227 +/- 24 versus 423 +/- 22 nmol.g tissue-1.3 min-1) compared to WKY rats P less than 0.001. To explore the intracellular handling of calcium by the intestinal mitochondria, calcium uptake was characterized by intestinal mitochondria before (suckling and weanling periods) and after (adult period) development of hypertension. Calcium uptake by intestinal mitochondria was driven by ATP in the presence of succinate as a respiratory substrate. Calcium uptake was stimulated several fold by the presence of ATP compared to no ATP conditions. Maximal calcium uptake occurred between 15-30 min and was significantly greater in adult SHR and WKY rats compared to corresponding values in weanling and suckling rats. Maximal ATP dependent calcium uptake in adult, weanling and suckling WKY rats was significantly greater compared to corresponding mean values in each age group in SHR (P less than 0.001). Oligomycin (10 micrograms/mg protein) inhibited calcium uptake partially. Ruthenium red (0.25 microM), 1 mM sodium azide and 0.5 mM dinitrophenol inhibited calcium uptake by more than 80% in both SHR and WKY rats. Kinetic parameters for ATP stimulated calcium uptake at 10 s revealed a Vmax of 0.56 +/- 0.6, 3.46 +/- 0.23 and 3.95 +/- 0.52 nmol/mg protein/10 s in suckling, weanling and adult WKY rats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Polyamines Stimulate Mitochondrial Calcium Transport in Rat Brain   总被引:3,自引:1,他引:2  
The effects of the polyamines spermine and spermidine on rat brain mitochondrial calcium transport were examined using a variety of techniques for measuring the kinetics of calcium uptake and the buffering capabilities of isolated mitochondria. Spermine both increased the rate of calcium accumulation and decreased the set-point to which isolated mitochondria buffer free calcium concentration. In the presence of physiological concentrations of sodium and magnesium, spermine lowered the extramitochondrial calcium level to approximately 0.3 microM, a value close to the resting intracellular calcium concentration. The effect of polyamines was concentration dependent, with a half-maximal effect of spermine observed at approximately 0.1-0.4 mM (respiratory substrate dependent), whereas spermidine was approximately 10 times less potent. Calcium transport by hippocampal mitochondria was stimulated markedly more by spermine than was calcium transport by mitochondria isolated from brainstem. The stimulatory effect of spermine was not due to an increase in the transport of respiratory substrates inside the mitochondria nor to an effect on the enzymes using these respiratory substrates. An examination of the effect of spermine on the kinetics of calcium uptake indicated that spermine increased calcium uptake maximally at low calcium concentrations. Beyond that level, the stimulatory effect of spermine decreases, and spermine can even inhibit calcium uptake. These results are in good agreement with previous reports on the effects of polyamines on calcium transport in mitochondria from peripheral tissue. They support the hypothesis that spermine increases the rate of calcium uptake by mitochondria by increasing the affinity of the uniporter for calcium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Sulfate uptake into skin fibroblasts from patients with cystic fibrosis is increased. Sulfate transport studies were carried out in skin fibroblasts isolated from age/sex matched cystic fibrosis and normal subjects. Sulfate transport occurred mainly via a carrier-mediated proton-stimulated S04(2)-/Cl-exchange. The capacity (Vmax) of the uptake system operating at physiological concentrations of sulfate was stimulated in cystic fibrosis, but the affinity of the carrier for sulfate was not altered.  相似文献   

9.
The rate of calcium uptake in brown adipose tissue mitochondria is here shown to be a sensitive parameter of energisation in this tissue, as demonstrated by high susceptibility to purine nucleotides and albumin. Complete uptake of low amounts of calcium generally requires added phosphate. Bicarbonate can at least partially substitute for phosphate, whereas acetate cannot. Calcium transport in brown fat mitochondria is of interest due to recent indications of an important role of this organelle in regulation of cytosolic calcium levels.  相似文献   

10.
The rate of calcium uptake in brown adipose tissue mitochondria is here shown to be a sensitive parameter of energisation in this tissue, as demonstrated by high susceptibility to purine nucleotides and albumin. Complete uptake of low amounts of calcium generally requires added phosphate. Bicarbonate can at least partially substitute for phosphate, whereas acetate cannot. Calcium transport in brown fat mitochondria is of interest due to recent indications of an important role of this organelle in regulation of cytosolic calcium levels.  相似文献   

11.
Zenisek D  Matthews G 《Neuron》2000,25(1):229-237
Mitochondria are thought to be important in clearing calcium from synaptic terminals. It is unclear, however, whether the principal role of mitochondria in pre-synaptic calcium handling is to take up Ca2+ directly or to fuel Ca2+ removal by other mechanisms. We used patch clamp techniques and fluorescence imaging to examine calcium clearance mechanisms, including mitochondrial uptake, in single synaptic terminals of retinal bipolar neurons. We found that extrusion through the ATP-dependent Ca2+ pump of the plasma membrane is the dominant form of Ca2+ removal in the synaptic terminal. Calcium uptake into mitochondria was sometimes evident with large Ca2+ loads but was consistently observed only when plasma membrane extrusion was inhibited. We conclude that mitochondria act primarily as an energy source in clearance of Ca2+ from bipolar cell synaptic terminals.  相似文献   

12.
The effect of lidocaine seizures on cellular accumulation of calcium was studied in hippocampal subfields CA1 and CA3 and the dentate gyrus of rats, using the combined oxalate-pyroantimonate method. The specificity of the reaction was ascertained by EGTA treatment and X-ray microanalysis. In control rats, calcium was visualized between myelin lamellae of axons, in synaptic vesicles and in some lysosomes. Two hours after onset of lidocaine seizures selective neuronal degenerations appeared in hippocampal subfields CA1 and CA3 but not in the dentate gyrus. Calcium deposits were present in numerous mitochondria of pyramidal cells and, occasionally, also of neuroglial cells. Many of these mitochondria exhibited ultrastructural alterations. Calcium uptake was most prominent in the CA3 sector but was also present in the CA1 subfield as well as the dentate gyrus. Intracellular calcium uptake, in consequence, is not the unique attribute of selectively vulnerable hippocampal neurons.  相似文献   

13.
The kinetic properties of the NADH dehydrogenase of the mitochondrial respiratory chain, assayed as NADH-dependent rotenone-sensitive cytochrome c reductase have been studied in mitochondria isolated from mononuclear white blood cells in patients affected by cystic fibrosis. Data reported here show that the apparent Km of the enzyme for NADH is significantly decreased in cystic fibrosis mitochondria. These findings are independent of the age or the clinical state of the disease and have also been obtained with mitochondria isolated from cultured skin fibroblasts. These observations support the notion that cystic fibrosis is possibly accompanied by alterations of intracellular membranes and these are evident also in circulating cells and cultured fibroblasts.  相似文献   

14.
Calcium transport and ATPase activities were determined in the heavy and mitochondrial fractions isolated from the left and right atria as well as ventricles of dogs. Ultrastructural distribution of these organelles in different areas of the myocardium was also examined. Calcium binding, calcium uptake, and calcium ATPase activities of the atrial microsomes were lower than those of the ventricles. On the other hand, mitochondrial calcium binding and uptake activities in the right atrium were higher than those in other areas. The mitochondrial total ATPase activities in the atria were also higher than those in the ventricles. Mitochondrial as well as microsomal yields from ventricles were significantly higher. Size and number of mitochondria in the ventricles were greater whereas no striking difference in the distribution of sarcoplasmic reticulum was apparent in different areas of the heart. Poorly developed calcium transport functions in the atrial microsomes may be one of the factors responsible for the generation of lower contractile force in this tissue in comparison with the ventricle.  相似文献   

15.
G.E. Bunce  Betty Wang Li 《BBA》1977,460(1):163-170
Fractions rich in either primary or secondary lysosomes were prepared from rat renal cortex by differential centrifugation and evaluated for their capacity for net calcium uptake. No uptake was observed in the absence of ATP. A vigorous uptake did take place in the presence of ATP but it was largely prevented by azide and other inhibitors of mitochondrial calcium uptake, suggesting that it was attributable to contamination by mitochondria. Evidence was obtained for an inhibitory influence of the secondary lysosomal fraction on mitochondrial calcium uptake.  相似文献   

16.
Calcium uptake into bovine epididymal spermatozoa is enhanced by introducing phosphate in the suspending medium (Babcock et al. (1975) J. Biol. Chem. 250, 6488-6495). This effect of phosphate is found even at a low extracellular Ca2+ concentrations (i.e., 5 microM) suggesting that phosphate is involved in calcium transport via the plasma membrane. Bicarbonate (2 mM) cannot substitute for phosphate, and a relatively high bicarbonate concentration (20 mM) causes partial inhibition of calcium uptake in absence of Pi. In the presence of 1-2 mM phosphate, 20 mM bicarbonate enhances Ca2+ uptake. The data indicate that the plasma membrane of bovine spermatozoa contains two carriers for Ca2+ transport: a phosphate-independent Ca2+ carrier that is stimulated by bicarbonate and a phosphate-dependent Ca2+ carrier that is inhibited by bicarbonate. Higher phosphate concentrations (i.e., 10 mM) inhibit Ca2+ uptake into intact cells (compared to 1.0 mM phosphate) and this inhibition can be relieved partially by 20 mM bicarbonate. This effect of bicarbonate is inhibited by mersalyl. Calcium uptake into the cells is enhanced by adding exogenous substrates to the medium. There is no correlation between ATP levels in the cells and Ca2+ transport into the cell. ATP levels are high even without added exogenous substrate and this ATP level is almost completely reduced by oligomycin, suggesting that ATP can be synthesized in the mitochondria in the absence of exogenous substrate. Calcium transport into the sperm mitochondria (washed filipin-treated cells) is absolutely dependent upon the presence of phosphate and mitochondrial substrate. Bicarbonate cannot support Ca2+ transport into sperm mitochondria. There is good correlation between Ca2+ uptake into intact epididymal sperm and into sperm mitochondria with the various substrates used. This indicates that the rate of calcium transport into the cells is determined by the rate of mitochondrial Ca2+ uptake and respiration with the various substrates.  相似文献   

17.
Calcium-activated phosphate uptake in contracting corn mitochondria   总被引:10,自引:9,他引:1       下载免费PDF全文
The phosphate inhibition of succinate-powered contraction in corn mitochondria can be reversed with calcium. Associated with this reversal is an accumulation of phosphate and calcium. Both ions are essential for accumulation, although strontium will partially substitute for calcium. Arsenate does not substitute for phosphate except in producing the inhibition of contraction.

The antibiotics oligomycin and aurovertin do not block the phosphate inhibition of contraction or the calcium-activated phosphate uptake associated with the release of the inhibition. Dinitrophenol uncouples the phosphate uptake but permits full contraction.

Calcium promotes inorganic phosphate accumulation in root tissue as well as in mitochondria.

The results are discussed from the viewpoint of theories of calcium reaction with high energy intermediates of oxidative phosphorylation. It is concluded that calcium probably reacts with X~P in corn mitochondria, rather than with X~I as with animal mitochondria.

  相似文献   

18.
Fractions rich in either primary or secondary lysosomes were prepared from rat renal cortex by differential centrifugation and evaluated for their capacity for net calcium uptake. No uptake was observed in the absence of ATP. A vigorous uptake did take place in the presence of ATP but it was largely prevented by azide and other inhibitors of mitochondrial calcium uptake, suggesting that it was attributable to contamination by mitochondria. Evidence was obtained for an inhibitory influence of the secondary lysosomal fraction on mitochondrial calcium uptake.  相似文献   

19.
Calcium metabolism was investigated in HeLa cells. 90% of the calcium of the cell monolayer is bound to an extracellular cell coat and can be removed by trypsin-EDTA. The calcium concentration of the naked cell, freed from its coat, is 0.47 mM. The calcium concentration of the medium does not affect the concentration of the naked cell calcium. However, the calcium of the cell coat is proportional to the calcium concentration in the medium. Calcium uptake into the cell coat increases with increasing calcium concentration of the medium, whereas uptake by the naked cell is independent of the calcium of the medium. Anaerobic conditions and metabolic inhibitors do not inhibit calcium uptake by the cell, a fact suggesting that this transfer is a passive phenomenon. The calcium in the extracellular cell coat, was not affected by parathyroid hormone. In contrast, the hormone increased the cellular calcium concentration by stimulating calcium uptake or by enhancing calcium binding to some cell components. These results suggest that, contrary to current thinking, parathyroid hormone influences the cellular calcium balance by mobilizing calcium from the extracellular fluids in order to increase its concentration in some cellular compartment. It is proposed that these effects can enhance calcium transport.  相似文献   

20.
Calcium uptake by an endoplasmic reticulum-enriched membrane fraction isolated from rat small intestine was investigated using a rapid filtration technique. Calcium sequestration was stimulated by the presence of ATP and released by the calcium ionophore A23187. ATP stimulation of calcium uptake was dependent on the presence of magnesium, inhibited by vanadate, and refractory to calmodulin. Kinetic studies revealed a K0.5 for the ATP-stimulated uptake of 62.5 nM Ca and a Jmax of 1.4 nmol of Ca/mg protein X min. A high dietary calcium load stimulated maximal uptake by 80% with no change in affinity. The magnitude of maximal uptake and the high affinity of this transport system suggest that the endoplasmic reticulum may play a significant role in cytosolic calcium sequestration and that extracellular calcium leads to modulation of intracellular endoplasmic reticulum calcium buffering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号