首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Cerebral acetylcholine (ACh) levels in normal animals were found to be 29.6 ± 1.4 (S.E.) nmoles ACh/g of wet tissue. Physostigmine and Soman reduced cerebral cholinesterase (ChE) activity to < 18% of control and increased cerebral ACh levels by 148 and 130% of normal, respectively. Neostigmine failed to alter ChE activity or ACh levels. Atropine decreased ACh levels to 62% of normal. When atropine was given with physostigmine or Soman, the ACh levels were almost normal. Soman failed to increase the levels of ACh in animals protected with atropine and physostigmine. When physostigmine was followed by Soman, cerebral ACh levels were lower than in animals given physostigmine only.Our data indicate that it may be possible to manage ACh concentrations in animals poisoned with irreversible ChE inhibitors by prior treatment with apprópriate dosages of anticholinergic and reversible anti-ChE drugs. The data also suggest that ACh and/or anti-ChEs inhibit the synthesis of ACh.  相似文献   

2.
The presence of 5 or 20 microM choline in the eserinized medium superfusing striatal slices enhanced the spontaneous release of acetylcholine (ACh) at both concentrations and, at 20 microM, the release of transmitter evoked by electrical field stimulation. Neither the electrical stimulation nor the addition of choline altered choline acetyltransferase activity. These results show that ACh release is dependent on the availability of extracellular choline. The rate of choline efflux was 7 times higher than the rate of ACh release, was not affected by stimulation, and was increased by 40% when hemicholinium-3 (HC-3), an inhibition of choline uptake, was present. The muscarinic antagonist atropine (1 microM) increased the evoked release of ACh into both the choline-free medium and that containing 20 microM choline. An adenosine receptor antagonist, 1,3-diethyl-8-phenyl xanthine (10 microM), failed to affect ACh release or the enhancement of release produced by atropine. In medium containing HC-3, stimulation of the slices elicited ACh release for the first 20 min of the 30 min stimulation period (15 Hz); thereafter, although stimulation was continued, the rate of release decreased to that associated with spontaneous release. Tissue ACh contents were not modified by the addition of choline or atropine to the medium, but were depressed by HC-3. Neither atropine nor HC-3 altered tissue choline content. The total amount of ACh + choline released during an experiment was 5-15 times higher than the decrease in tissue levels of these two compounds during the same period of time.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Rabbits intoxicated with soman were treated with various doses of HS-6 at 3 min following administration of soman to establish whether the antidotal efficacy reported for HS-6 against soman can be attributed in part to reactivation of the inhibited cholinesterase (ChE) enzymes. Within 5 min after treating animals intoxicated with soman with 15 or 30 mg/kg of HS-6 (iv) the whole blood ChE activity increased from 6.0 to 30.5 and 44.2% of control activity, respectively. Because HS-6 apparently is able to reactivate completely the unaged inhibited enzyme, HS-6, 60 mg/kg (iv) was used to measure for the first time the in vivo rate of aging of whole blood ChE in soman-intoxicated rabbits. The half time for aging was determined to be 7.6 (5.8 ? 9.4) min, P = 0.05. HS-6 in combination with atropine and pyridostigmine was tested as a pretreatment against soman. When only atropine + pyridostigmine was used in the pretreatment regimen, none of the rabbits survived a 10 LD50 dose of soman (iv). However, when HS-6 (30 mg/kg, iv) was used together with atropine + pyridostigmine in the pretreatment regimen, 87% of the animals survived this high dose of soman. Since HS-6 is a powerful reactivator of unaged, soman-inhibited ChE, the antidotal effectiveness of HS-6 against soman can be attributed in part to the restoration of vital enzyme activity.  相似文献   

4.
Synthesis and release of [3H]acetylcholine ([3H]ACh) were measured in synaptosomes from the guinea pig cerebral cortex after preloading with [3H]choline ([3H]Ch). We demonstrate here that inhibition of choline (Ch) efflux results in an increase in acetylcholine (ACh) synthesis and release. Our findings are as follows: (1) inhibition of [3H]Ch efflux by hemicholinium-3 (HC-3) (100 microM), increased the levels of both the released (116% of control) and the residing (115% of control) [3H]ACh. (2) The muscarinic agonist, McN-A-343 (100 microM), which was previously shown to inhibit Ch efflux, also increased the released (121% of control) and the residing (109% of control) [3H]ACh. (3) Omission of Na+ ions (which are required for Ch transport) from the incubation medium had similar effects to those observed with McN-A-343 and HC-3. These results suggest inverse relationships between Ch efflux on one hand, and ACh synthesis and release on the other hand. (4) Depolarization with 50 mM K+, or with the K+ channel blocker, 4-aminopyridine (100 microM), also increased the total level of [3H]ACh (113 and 107% of nondepolarized synaptosomes, respectively). However, whereas conditions that inhibit Ch transport such as HC-3, McN-A-343 and "no sodium" increased both the residing and the released [3H]ACh depolarization with high K+ or 4-aminopyridine reduced the residing (79 and 87% of control, respectively) and increased only the released [3H]ACh (182 and 148% of control, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Pregangliaaonic stimulation of the cat's superior cervical ganglion in the presence of hemicholinium-3 (HC-3) produced the expected depletion of acetylcholine (ACh) stores, but failed to cause a corresponding reduction in the choline content. These results suggest that either HC-3 possesses an intracellular site of action or that in lower doses it selectively inhibits a specialized choline transport system in cholinergic nerves. At a dose of 2 mg/kg, HC-3 probably blocked ACh synthesis completely in ganglia stimulated at 20 Hz. Under these conditions, there was a rapid depletion of ACh to about 50% of control levels during the first 5 min of stimulation and thereafter the rate of decline in ACh levels proceeded at a much slower pace. Since the 2 mg/kg dose of HC-3 did not raise plasma choline concentrations, it may be assumed that non-specialized choline transport systems in other tissues were not significantly inhibited by this dose of HC-3. However, when the dose of HC-3 was increased to 4 mg/kg, plasma choline levels increased by 58%.  相似文献   

6.
A three component pretreatment regimen composed of a carbamate, atropine and mecamylamine offered complete protection against a multiple lethal doses of Soman in rats. In animals, given chemical pretreatment containing physostigmine in the drug regimen, Soman-induced cerebral acetylcholine (ACh) levels were initially elevated but were back down to normal by 30 min post Soman, but in rats given neostigmine in the pretreatment regimen, ACh concentrations were found to be the highest at 30 min after Soman exposure. The data suggest that peripheral acetylcholinesterase (AChE) and nicotinic and muscarinic ACh receptors are critical sites in organophosphorus (OP) anticholinesterase exposure in rats and should be protected to maximize efficacy against OP intoxication. The data also suggest that carbamates which penetrate the blood-brain barrier may be superior to quaternary carbamates in antagonizing OP exposure in that they could be expected to dampen and rapidly abolish OP-induced rises in total brain ACh which in turn should restore normal neural activity in the brain.  相似文献   

7.
This study aimed to evaluate the antidotal potency of tenocyclidine (TCP) that probably might protect acetylcholinesterase (AChE) in the case of organophosphate poisoning. TCP was tested alone as a pretreatment or in combination with atropine as a therapy in rats poisoned with (1/4) and (1/2) of LD(50) of soman. Possible genotoxic effects of TCP in white blood cells and brain tissue were also studied. Results were compared with previous findings on the adamantyl tenocyclidine derivative TAMORF. TCP given alone as pretreatment, 5 min before soman, seems to be superior in the protection of cholinesterase (ChE) catalytic activity in the plasma than in brain, especially after administration of the lower dose of soman. Plasma activities of the enzyme after a joint treatment with TCP and soman were significantly increased at 30 min (P<0.001) and 24 h (P=0.0043), as compared to soman alone. TCP and atropine, given as therapy, were more effective than TCP administered alone as a pretreatment. The above therapy significantly increased activities of the enzyme at 30 min (P=0.046) and 24 h (P<0.001), as compared to controls treated with (1/4) LD(50) of soman alone. Using the alkaline comet assay, acceptable genotoxicity of TCP was observed. However, the controversial role of TCP in brain protection of soman-poisoned rats should be studied further.  相似文献   

8.
Pretreatment of mice with atropine (17.4 mg/kg) + NaF (5 or 15 mg/kg) had a significant antidotal effect over atropine alone against the lethality produced by soman and sarin. Atropine + NaF (15 mg/kg) was effective against tabun, whereas the lower dose of NaF was not. An effect of NaF on organophosphate inhibited acetylcholinesterase could not account for the antidotal action of NaF. NaF had no effect on liver somanase activity but inhibited aliesterase activity. Aliesterase activity in NaF pretreated somanpoisoned mice was significantly (p < 0.05) higher than in those receiving atropine alone. In CBDP-pretreated mice NaF did not significantly attenuate the toxicity of soman. It is hypothesized that the antidotal effect of NaF versus organophosphate poisoning is due to its antidesensitizing action at nicotinic receptors in the neuromuscular junction and/or sympathetic ganglia in addition to the proposed increased hydrolysis of sarin and direct detoxification of tabun.  相似文献   

9.
Effects of various antidotal treatments on neuronal RNA contents and on soman induced RNA and acetylcholinesterase (AChE) depletion were monitored using quantitative cytochemical techniques. In rats treated only with antidotes, atropine depressed whereas pralidoxime (2-PAM) elevated RNA contents of both caudate and cerebrocortical (Layer V) neurons. Soman produced a virtually complete inhibition of AChE activity and a moderate decline in neuronal RNA contents. Atropine pretreatment partially restored neuronal RNA levels. Atropine+2-PAM prophylaxis eventuated in a complete restoration of RNA levels but no reactivation of AChE. Addition of physostigmine to the atropine +2-PAM treatment regimen resulted in appreciable AChE reactivation but reduced RNA levels. The overall data indicate that: (1) soman-induced neuronal RNA depletion can be completely reversed by antidotal pretreatment; (2) no precise relationship exists between the extents of antidote-induced restoration of RNA and AChE levels; and (3) 2-PAM exerts marked effects on the brain neuronal network which are unrelated to AChE reactivation. It is postulated that effects of soman and antidotes on neuronal RNA metabolism may signify alterations in acetylcholine (ACh) sensitivity and that pharmacologic manipulation of ACh responsiveness during organophosphate cholinesterase poisoning may be a mechanism for additional therapeutic intervention.  相似文献   

10.
Mice deficient for acetylcholinesterase (AChE) have strongly increased extracellular levels of acetylcholine (ACh) in the dorsal hippocampus [Hartmann, J., Kiewert, C., Duysen, E.G., Lockridge, O., Greig, N.H., Klein, J., 2007. Excessive hippocampal acetylcholine levels in acetylcholinesterase-deficient mice are moderated by butyrylcholinesterase activity. J. Neurochem. 100, 1421-1429]. Using microdialysis, we found that increased ACh levels are accompanied by decreased levels of extracellular choline which were 1.60 microM in AChE-deficient mice and 4.36 microM in wild-type mice. Addition of choline (10 microM) to the perfusion fluid, while ineffective in wild-type animals, more than doubled extracellular ACh levels in AChE-deficient mice. High-affinity choline uptake (HACU), as measured ex vivo in corticohippocampal synaptosomes, was more than doubled in AChE-deficient mice. Inhibition of HACU by hemicholinium-3 (HC-3) in vivo reduced extracellular levels of ACh by 60% in wild-type mice but by more than 90% in AChE-deficient mice. Decreased ACh levels caused by infusion of HC-3 or tetrodotoxin (TTX) were accompanied by increased levels of free choline. Infusion of scopolamine (1 microM) caused a fivefold increase of ACh levels in wild-type animals but only a 50% increase in AChE-deficient mice. In conclusion, absence of AChE causes dynamic changes in the ratio of choline to ACh. High levels of extracellular ACh are accompanied by reduced levels of extracellular choline, and ACh release becomes strongly dependent on choline availability. Similar changes may take place in patients chronically exposed to AChE inhibitors.  相似文献   

11.
Regional brain acetylcholine (ACh) utilization was estimated from the rate of decline in ACh content following intracerebroventricular injection of hemicholinum-3 (HC-3, 20 μg). Rats were killed by microwave irradiation at various time intervals after HC-3 injection and ACh levels measured by radioimmunoassay. ACh content declined exponentially in all brain areas, with maximum depletion occurring within 30–60 min. The relative order of cholinergic activity in the regions studied was: hippocampus striatum hypothalamus pons-medulla. Endogenous ACh content was reduced by 13–18% in all regions 24 h after injection of reserpine (5 mg/kg, i.p.). Reserpine did not alter either the utilization rates nor the extent of HC-3-induced depletion of ACh. These results indicate a general effect of reserpine on the functional storage capacity of brain ACh.  相似文献   

12.
Abstract: Changes in extracellular levels of acetylcholine (ACh) and choline (Ch) in the striatum of rats were examined by in vivo microdialysis after intraperitoneal injections of drugs. A dopamine D2 antagonist, sulpiride (20 mg/kg), and a muscarinic antagonist, atropine (3.5 mg/kg), increased ACh levels and decreased Ch levels. On the contrary, the D2 agonist (±)-2-( N -phenylethyl- N -propyl)amino-5-hydroxytetralin (N-434; 5 mg/kg) and an anesthetic, pentobarbital (50 mg/kg), decreased ACh levels and increased Ch levels. Perfusion of 10 µ M hemicholinium-3 (HC-3), a Ch uptake inhibitor, through the striatum induced a complete inhibition of ACh release and increased Ch levels in all drug-treated groups. The degree of relative increase in the level of Ch induced by HC-3 differed among the drug-pretreated groups; compared with the control group, the relative increase was larger in the sulpiride- and atropine-treated groups and smaller in the N-434 and pentobarbital-treated groups. Thus, we demonstrated reciprocal relations between extracellular concentrations of Ch and ACh after treatments by drugs. The data suggest that in the striatum, which is rich in cholinergic innervation, the extracellular Ch concentration is to a large extent determined by activity of the cholinergic transmission reflected in high-affinity choline uptake.  相似文献   

13.
Atropine is known to increase the release of acetylcholine (ACh) from cerebral cortex, and the present experiments tested the effect of this drug upon ACh release in the superior cervical ganglion of the cat. The release of ACh was measured by a radio-enzymic method, which was shown to provide an estimate of the ACh content of samples collected from perfused ganglia that was similar (102%) to that obtained by the method of bioassay more usually used . Atropine (3 X 10(-6) M) increased (3.5 to 4-fold) the amount of ACh released by rat's sliced cerebral cortex incubated in a high (23 mM) potassium medium. However atropine (3 X 10(-6)-3 X 10(-5) M) did not change the amount of ACh released by ganglia during preganglionic nerve stimulation (5-10 Hz). It is concluded that cholinergic nerve terminals in different tissues appear to have different pharmacological properties.  相似文献   

14.
The effect of subchronic pyridostigmine pretreatment on the toxicity of soman, in the absence of supporting therapy (atropine, oxime, and (or) anticonvulsant), as well as its effect on muscarinic cholinoceptor binding characteristics was assessed in the rat. Pretreatment with pyridostigmine by means of an implanted Alzet osmotic minipump for a 5-day total exposure dose of 12 mg/kg inhibited whole blood acetylcholinesterase activity by 73%. This pyridostigmine pretreatment lowered the soman LD50 from 104 micrograms/kg in control animals to 82 micrograms/kg. In addition, the time to onset of soman-induced convulsions in pyridostigmine pretreated animals was significantly (p less than 0.001) reduced. Pyridostigmine pretreatment produced no significant effect on muscarinic cholinoceptor binding in brain or ileum. Lower doses of pyridostigmine pretreatment inhibited acetylcholinesterase activity (65 and 25%); however, LD50 and time to onset of convulsions following soman (140 micrograms/kg) were not significantly different from controls.  相似文献   

15.
Abstract— Acetylcholine (ACh) release from sliced cerebral cortex of rats was measured when the tissue was incubated in a high K+ (46 m m ) medium containing eserine. In the absence of hemicholinium (HC-3), ACh release was well maintained, but in the presence of HC-3, ACh release declined within 15–20 min. Subcellular fractions representing nerve-ending free (cytoplasmic) ACh and nerve-ending bound ACh were prepared from slices that had been stimulated to release ACh in the presence of HC-3. Both nerve-ending stores of ACh were depleted when their content was compared to tissue that had not been stimulated and there was no demonstrable difference in the rate of depletion of either of the two fractions. Stimulating slices with K+ in the absence of HC-3 also depleted cytoplasmic and vesicle-bound ACh. It is concluded that, under these experimental conditions, both nerve ending stores of ACh are available for release and that, in the absence of HC-3, ACh synthesis can maintain ACh release, but cannot maintain tissue ACh content.  相似文献   

16.
Abstract— The natural fluorescence of hemicholinium-3 (HC-3) was used to provide a method for determining its concentration in brain tissue following intraventricular administration of the compound to rats and rabbits. When hemicholinium-3 was perfused through the cerebral ventricles of the rabbit, the highest concentration was found in the pons-medulla oblongata. The effect of a number of compounds on the uptake of hemicholinium-3 in the brain was studied in rats. Choline and tetramethylammonium significantly reduced the uptake of HC-3 from the cerebral ventricles but tetraethylammonium, physostigmine and atropine had no effect. The results are discussed in relation to the known effects of hemicholinium-3 in the central nervous system.  相似文献   

17.
We have investigated the possible mechanisms underlying a developmental decrease in acetylcholine (ACh) receptor mobility in the membrane of cultured, spherical, mononucleate Xenopus embryonic muscle cells (myoballs) utilizing the method of in situ electrophoresis. We observed that between 1 and 4 days in culture, a substantial redistribution of ACh receptors can be induced by the externally applied electric field which resulted in highly asymmetrical ACh sensitivities at the cathode- and anode-facing poles of the cell. Between 5 and 8 days in culture, the extent of ACh receptor redistribution induced by the field declined to a lower level. Pretreatment with cytoskeletal disrupting agents or with a disulfide bond reducing agent before in situ electrophoresis had no effect on 2-day-old cultures but enhanced receptor mobility in 6-day-old cultures. Pretreatment with Ca2+-Mg2+-free saline (CMF), which releases cell coat material in other systems, substantially increased receptor mobility when tested on days 2, 6, and 8. On day 6, pretreatment with CMF containing cytochalasin B (CB) and colchicine produced an even greater increase in receptor mobility as compared to treatment with CB and colchicine alone. Our findings suggest that the developmental decrease in ACh receptor mobility is accounted for by at least two different mechanisms: (1) An early-developing, CMF-sensitive restriction possibly mediated by the cell coat; (2) a later-developing restriction possibly dependent on cytoskeletal elements and disulfide linkages. The recovery of high ACh receptor mobility in the older cultures following some of the pretreatments indicates that factors determining ACh receptor mobility can arise from molecular interactions external to the lipid bilayer.  相似文献   

18.
The high potency with which acetylcholine (ACh) inhibits the binding of the specific muscarinic agonist, [3H]cis methyldioxolane ([3H]CD), has provided the basis for the development of a radio-receptor assay for estimation of ACh. A synaptosomal preparation of the rat cerebral cortex was used as a source of muscarinic receptors. When binding assays were run at 0°C, the IC50 value of ACh was approximately 5 × 10?9 M, which corresponds to 2.5 – 10 pmoles of ACh, depending upon the assay volume. The ACh content of the rat cerebral cortex and corpus striatum was measured following fast microwave irradiation. By measuring the displacement of [3H]CD binding caused by aliquots of the supernatant from tissue homogenates and comparing the displacement values with an ACh standard curve, the ACh content of the cerebral cortex and corpus striatum was calculated to be 19 and 55 nmoles/g wet tissue weight, respectively.  相似文献   

19.
《Insect Biochemistry》1986,16(3):583-587
Acetylcholine (ACh) content was reduced by about 30 pmol or 20% of the initial ACh content in the cockroach sixth abdominal ganglion in response to prolonged (30 min) tetanic stimulation at 40 Hz of the cercal nerves in the presence of 10−3 M hemicholinium-3 (HC-3). The reduction in ACh content in ganglia occurred in the cytoplasmic rather than the vesicular ACh fraction. The latter showed instead a transient increase followed by a gradual decrease to the previous level. Similar changes in ACh in the fractions were produced also by the stimulation, although the ACh content in ganglia did not change in a calcium-free saline, but was reduced in the presence of 50 μM dantrolene or 1–5 mM cobalt chloride. Synaptic transmission at the cercal nerve-giant nerve fiber synapses rapidly decreased and was abolished within a few minutes during tetanic stimulation at 40 Hz, but recovered on reducing the frequency to 0.1 Hz. The decline in transmission was not affected by HC-3, but a significant delay was observed in the recovery following 30 min of tetanic stimulation in the presence of HC-3.These results may suggest that the depletion of ACh as a functional store occurs in the cytoplasmic ACh fraction, rather than in the vesicular one, after prolonged stimulation in the presence of HC-3. The latter fraction shows and increase in the uptake of cytoplasmic ACh that depend on the presence of intracellular calcium ions during stimulation.  相似文献   

20.
This study examined the effect of acetylcholine (ACh) on the hypoxia-induced apoptosis of mouse embryonic stem (ES) cells. Hypoxia (60 h) decreased both the cell viability and level of [3H] thymidine incorporation, which were prevented by a pretreatment with ACh. However, the atropine (ACh receptor [AChR] inhibitor) treatment blocked the protective effect of ACh. Hypoxia (90 min) increased the intracellular level of reactive oxygen species (ROS). On the other hand, ACh inhibited the hypoxia-induced increase in ROS, which was blocked by an atropine treatment. Subsequently, the hypoxia-induced ROS increased the level of p38 mitogen activated protein kinase (MAPK) and Jun-N-terminal kinase (JNK) phosphorylation, which were inhibited by the ACh pretreatment. Moreover, hypoxic exposure (90 min) increased the level of nuclear factor-κB (NF-κB) phosphorylation, which was blocked by a pretreatment with SB 203580 (p38 MAPK inhibitor) or SP 600125 (JNK inhibitor). However, hypoxia (60 h) decreased the protein levels of Bcl-2 and c-IAPs (cellular inhibitor of apoptosis proteins) but increased the level of caspase-3 activation. All these effects were inhibited by a pretreatment with ACh. In conclusion, ACh prevented the hypoxia-induced apoptosis of mouse ES cells by inhibiting the ROS-mediated p38 MAPK and JNK activation as well as the regulation of Bcl-2, c-IAPs, and caspase-3. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号