首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To characterize the molecular/structural requirements for activationor antagonism of the arginine taste pathways in catfish, Ictaluruspunctatus, structure/activity studies were performed using integratedmultiunit responses and cross-adaptation. Of all the guanidinium-containingcompounds tested, only L-arginine, L--amino-ß-guanidinopropionic acid (L-AGPA) and L-arginine methyl and ethyl esterswere strong stimuli. Results of functional group substitutionsand modification of the L-arginine parent molecule indicatedthat: (i) stereospecificity was observed with D-arginine beinga much less effective stimulus than L-arginine; (ii) an L-aminogroup must be present and unblocked (-chloro-guanidino-N-valericacid and N-acetyl L-arginine were weak or inactive stimuli);(iii) a free carboxylic acid group was not necessary for activity;(iv) the distance between the anomeric carbon and the guanidiniumgroup was not critical (L-AGPA, having two methylene groupsless than L-arginine was a moderately strong stimulus as wasL-canavanine) and (v) modification or substitution of the guanidinumgroup by other basic groups including amine, methyl or dimethylamineor by an isosterc (ureido) resulted in loss of stimulatory ability.In general, those stimuli and analogs that were good cross-adaptersof L-arginine stimulation were also good competitors for L-[3H]argininebinding to a partial membrane fraction (P2) from catfish tasteepithelium. On the other hand, compounds that were poor cross-adaptingstimuli were also poor binding competitors. While D-argininewas a poor stimulus, it did cross-adapt L-arginine and competedwell with L-[3H]arginine for binding to fraction P2.  相似文献   

2.
A single enzyme isolated from Pseudomonas syringae pv. phaseolicola PK2 simultaneously catalyzed two reactions, namely, the formation of ethylene and succinate from 2-oxoglutarate, at a molar ratio of 2:1. In the main reaction, 2-oxoglutarate was dioxygenated to produce one molecule of ethylene and three molecules of carbon dioxide. In the sub-reaction, both 2-oxoglutarate and L-arginine were mono-oxygenated to yield succinate plus carbon dioxide and L-hydroxyarginine, respectively, the latter being further transformed to guanidine and L-delta 1-pyrroline-5-carboxylate. We propose a dual-circuit mechanism for the entire reaction, in which the binding of L-arginine and 2-oxoglutarate in a Schiff-base structure generates a common intermediate for two reactions.  相似文献   

3.
Berka V  Tsai AL 《Biochemistry》2000,39(31):9373-9383
Endothelial nitric oxide synthase (eNOS) is a self-sufficient P450-like enzyme. A P450 reductase domain is tethered to an oxygenase domain containing the heme, the substrate (L-arginine) binding site, and a cofactor, tetrahydrobiopterin (BH(4)). This "triad", located at the distal heme pocket, is the center of oxygen activation and enzyme catalysis. To probe the relationships among these three components, we examined the binding kinetics of three different small heme ligands in the presence and absence of either L-arginine, BH(4), or both. Imidazole binding was strictly competitive with L-arginine, indicating a domain overlap. BH(4) had no obvious effect on imidazole binding but slightly increased the k(on) for L-arginine. L-Arginine decreased the k(on) and k(off) for cyanide by two orders, indicating a "kinetic obstruction" mechanism. BH(4) slightly enhanced cyanide binding. Nitric oxide (NO) binding kinetics were more complex. Increasing the L-arginine concentration decreased the NO binding affinity at equilibrium. In both BH(4)-abundant and BH(4)-deficient eNOS, half of the NO binding sites showed a sizable decrease of the binding rate by L-arginine, with the rate of NO binding at the other half of the sites remaining essentially unaltered by L-arginine, implying that the two heme centers in the eNOS dimer are functionally distinct.  相似文献   

4.
The initial velocity of the oxidation of 4-methylcatechol by grape catechol oxidase was determined. The kinetic analysis indicates that first there is random binding of an oxygen and a 4-methylcatechol molecule to the enzyme. Then one product molecule is released prior to the binding of second 4-methylcatechol molecule which is followed by the release of a second product molecule. The true Km values were determined; they were found to be 0.5 mM for oxygen and 17 mM for 4-methylcatechol.  相似文献   

5.
《Plant science》1987,51(1):9-16
A secreted argnase (molecular weight 245 000) from Evernia prunastri thallus has been purified 1480-fold from media in which the thalli were incubated for 8 h in the dark. The enzyme is a glycoprotein which contains 280 residues of glucose, 27 of fructose and 85 of mannose per molecule. The Km-value of the enzyme has been estimated as 1.5 mM for L-arginine, with an interaction coefficient of nH ≅ 1, calculated from Hill plot. The enzyme is activated by D-usnic acid, the only phenol which appears in the incubation media. This phenol behaves as a non-essential activator of the enzyme with a Ka-value of 0.19 mM.  相似文献   

6.
7.
Separate and combined effects of nitrate (NaNO3) and L-arginine as potential sources of nitric oxide (NO) on the content of endogenous NO in roots of wheat (Triticum aestivum L.) seedlings and on their heat resistance were studied. Both agents increased the seedling resistance to the damaging heating; the effect was maximal at 20 mM NaNO3 or 5 mM L-arginine. The treatment with L-arginine elevated the NO content in the roots within the first 2 h of the treatment. Nitrate caused a stronger and longer rise in nitric oxide. Activity of nitrate reductase considerably (2–3 times) increased in the roots exposed to nitrate. The augmentation in the nitric oxide level caused by nitrate or L-arginine was prevented by the root pretreatment with an inhibitor of nitrate reductase (sodium tungstate) or an inhibitor of animal NO-synthase—NG-nitro-L-arginine methyl ester (L-NAME). Upon the combined treatment with NaNO3 and L-arginine, the nitrateinduced stimulation of the nitrate reductase activity, NO level in the roots, and seedling heat resistance were less pronounced than after separate application. In the presence of L-NAME, the negative influence of L-arginine on nitrate effects was markedly attenuated. The plant exposure to nitrate or L-arginine increased the activities of antioxidant enzymes (superoxide dismutase, catalase, and guaiacol peroxidase). A mixture of NaNO3, and L-arginine caused weaker effects. It was suggested that nitrate-dependent and arginine-dependent pathways of NO formation are antagonistic to each other in wheat roots.  相似文献   

8.
Pseudomonas syringae pv. phaseolicola is the causal agent of the "halo blight" disease of beans. A key component in the development of the disease is a nonhost-specific toxin, Ndelta-(N'-sulphodiaminophosphinyl)-ornithyl-alanyl-homoarginine, known as phaseolotoxin. The homoarginine residue in this molecule has been suggested to be the product of L-arginine:lysine amidinotransferase activity, previously detected in extracts of P. syringae pv. phaseolicola grown under conditions of phaseolotoxin production. We report the isolation and characterization of an amidinotransferase gene (amtA) from P. syringae pv. phaseolicola coding for a polypeptide of 362 residues (41.36 kDa) and showing approximately 40% sequence similarity to L-arginine:inosamine-phosphate amidinotransferase from three species of Streptomyces spp. and 50.4% with an L-arginine:glycine amidinotransferase from human mitochondria. The cysteine, histidine, and aspartic acid residues involved in substrate binding are conserved. Furthermore, expression of the amtA and argK genes and phaseolotoxin production occurs at 18 degrees C but not at 28 degrees C. An amidinotransferase insertion mutant was obtained that lost the capacity to synthesize homoarginine and phaseolotoxin. These results show that the amtA gene isolated is responsible for the amidinotransferase activity detected previously and that phaseolotoxin production depends upon the activity of this gene.  相似文献   

9.
We have used resonance Raman spectroscopy to probe the heme environment of a recently discovered NOS from the pathogenic bacterium Staphylococcus aureus, named SANOS. We detect two forms of the CO complex in the absence of L-arginine, with nu(Fe-CO) at 482 and 497 cm(-1) and nu(C-O) at 1949 and 1930 cm(-1), respectively. Similarly to mammalian NOS, the binding of L-arginine to SANOS caused the formation of a single CO complex with nu(Fe-CO) and nu(C-O) frequencies at 504 and 1,917 cm(-1), respectively, indicating that L-arginine induced an electrostatic/steric effect on the CO molecule. The addition of pterins to CO-bound SANOS modified the resonance Raman spectra only when they were added in combination with L-arginine. We found that (6R) 5,6,7,8 tetra-hydro-L-biopterin and tetrahydrofolate were not required for the stability of the reduced protein, which is 5-coordinate, and of the CO complex, which does not change with time to a form with a Soret band at 420 nm that is indicative of a change of the heme proximal coordination. Since SANOS is stable in the absence of added pterin, it suggests that the role of the pterin cofactor in the bacterial NOS may be limited to electron/proton transfer required for catalysis and may not involve maintaining the structural integrity of the protein as is the case for mammalian NOS.  相似文献   

10.
Octopine dehydrogenase (OcDH) from the adductor muscle of the great scallop, Pecten maximus, catalyzes the NADH dependent, reductive condensation of L-arginine and pyruvate to octopine, NAD+, and water during escape swimming and/or subsequent recovery. The structure of OcDH was recently solved and a reaction mechanism was proposed which implied an ordered binding of NADH, L-arginine and finally pyruvate. Here, the order of substrate binding as well as the underlying conformational changes were investigated by NMR confirming the model derived from the crystal structures. Furthermore, the crystal structure of the OcDH/NADH/agmatine complex was determined which suggests a key role of the side chain of L-arginine in protein cataylsis. Thus, the order of substrate binding to OcDH as well as the molecular signals involved in octopine formation can now be described in molecular detail.  相似文献   

11.
The arginine repressor (ArgR) of Escherichia coli binds to six L-arginine molecules that act as its co-repressor in order to bind to DNA. The binding of L-arginine molecules as well as its structural analogues is compared by means of computational docking. A grid-based energy evaluation method combined with a Monte Carlo simulated annealing process was used in the automated docking. For all ligands, the docking procedure proposed more than one binding site in the C-terminal domain of ArgR (ArgRc). Interaction patterns of ArgRc with L-arginine were also observed for L-canavanine and L-citrulline. L-lysine and L-homoarginine, on the other hand, were shown to bind poorly at the binding site. Figure A general overview of the sites found from docking the various ligands into ArgRc ( grey ribbons). Red coloured sticks: residues in binding site H that was selected for docking  相似文献   

12.
Zhou J  Peluffo RD 《Biophysical journal》2010,99(10):3224-3233
Cationic amino acid transporters are highly selective for L-enantiomers such as L-arginine (L-Arg). Because of this stereoselectivity, little is known about the interaction of these transporters with D-isomers. To study whether these compounds can provide information on the molecular mechanism of transport, inward currents activated by L-Arg with low apparent affinity were measured in whole-cell voltage-clamped cardiomyocytes as a function of extracellular L-Arg and D-Arg concentrations. D-Arg inhibited L-Arg currents in a membrane-potential (VM)-dependent competitive manner, indicating the presence of D-Arg binding sites in the carrier. Analysis of these steady-state currents showed that L- and D-Arg binding reactions dissipate a similar small fraction of the membrane electric field. Since D-Arg is not transported, these results suggest that enantiomer recognition occurs at conformational transitions that initiate amino acid translocation. The VM dependence of maximal current levels suggests that inward currents arise from the slow outward movement of negative charges in the unliganded transporter. Translocation of the L-Arg-bound complex, on the other hand, appears to be electroneutral. D-Arg-dependent transient charge movements, also detected in these cells, displayed a VM-dependent charge distribution and kinetics that are consistent with amino acid binding in an ion well in a shallow, water-filled extracellular binding pocket.  相似文献   

13.
Abstract

This study was undertaken to investigate the effects of oral L-arginine administration and exercising training on the NO concentration emanating from rat tail and NOx in plasma. Obese (fa/fa) Zucker rats (n = 22) were divided into four groups: (1) oral L-arginine administration (A) (n = 6), (2) exercise training (E), (3) exercise training + L-arginine administration (E + A) (n = 5), and (4) non-exercise training + non-L-arginine administration (N) (n = 6). The control (+/+) Zucker rats (n = 22) were also divided into the same four groups. The body weight of the E + A and the A groups was significantly lower than that of the N group. The NO concentration emitted from the tail was higher in the L-arginine (E + A and A) groups than in the non-L-arginine (E and N) groups in both obese and control rats. Exercise training did not affect the skin gas NO concentration in either obese or control rats. Plasma NOx concentrations in four obese rats were significantly higher than those observed in control rats. Exercise training did not influence the level of plasma NOx in obese or control rats. In conclusion, this study confirmed that L-arginine administration increases the skin gas NO concentration and obesity increases the plasma NOx level. The plasma NOx concentrations were not affected by L-arginine administration or exercise training in obese or control rats.  相似文献   

14.
Summary. The effects of demineralized water (DEMI H2O) and 0.5 M ammonium acetate (0.5 M AAc) on losses of L-glutamic acid and L-arginine in the course of shaking and filtration at low temperature (6 °C) were tested. The concentration of L-glutamic acid decreased by 6.3% in DEMI H2O and by 4.9% in 0.5 M AAc, whereas the L-arginine concentration decreased by 6.0% (DEMI H2O) and 10.7% (0.5 M AAc). We found a significantly (P < 0.05) higher degradation of L-arginine in 0.5 M AAc compared with that of DEMI H2O.  相似文献   

15.
Diethylstibestrol (DES) inhibited noncompetitively the ATPase in the plasma membrane fraction from Avena sativa L. cv. Goodfield roots when assayed in the presence of MgSO4 or MgSO4 plus KCl. In the presence of MgSO4, 7.1×10−5 molar DES inhibited the enzyme 50%; whereas in the presence of MgSO4 and KCl, 1.3×10−4 molar DES was required for the same inhibition. Dixon plots indicated that in the presence of MgSO4, one molecule of DES bound to one molecule of ATPase; however, in the presence of MgSO4 and KCl, two or more molecules bound to one ATPase molecule. These results suggested that KCl causes a conformational change in the enzyme which exposes additional binding sites for DES, but that these sites are not as inhibitory as the first binding site.  相似文献   

16.
Mathematical models based on the current understanding of co-operativity in ligand binding to the (macro) molecule and relating the dose-response (saturation) curve of the (macro) molecule ligation to intrinsic dissociation constants characterizing the affinities of ligand for binding sites of both unliganded and partly liganded (macro) molecule have been developed. The simplified models disregarding the structural properties and considerations concerning conformational changes of the (macro) molecule retain the ability to yield sigmoid curves of ligand binding and reflect the co-operativity. Model 1 contains only three parameters, parameter κ (a multiplier characterising the change in the affinity) reflects also the existence and type of co-operativity of ligand binding: κ<1 corresponds to positive co-operativity, κ>1 to the negative and κ=1 to the absence of any co-operativity. Model 2 contains an extra parameter, ω, equilibrium constant for the T0↔R0 transition but fails to produce dose-response, which would suggest negative co-operativity. For any fixed n>1, the deviation of the dose-response (saturation) curve from the Henri hyperbola depends either solely on parameter κ (Model 1) or also on parameter ω (Model 2). The (macro) molecule being a receptor, both models yield a diversity of dose-response curves due to possible variety of efficacies of the (macro) molecule. The models may be considered as extensions of the Henri model: in case the dissociation constants remain unchanged, the proposed models are reduced to the latter.  相似文献   

17.
唐蜜  王晴  杨套伟  张显  徐美娟  饶志明 《微生物学报》2020,60(10):2323-2340
【目的】钝齿棒杆菌是重要的氨基酸生产菌株,本研究针对氮代谢PⅡ信号转导蛋白GlnK展开相关功能研究,分析其在钝齿棒杆菌氮代谢调控及L-精氨酸合成中的作用。【方法】以GlnK蛋白为研究对象,通过基因敲除等遗传方法获得过表达、敲除及敲弱glnK的重组钝齿棒杆菌,研究GlnK对NH_4~+吸收的影响,通过RT-qPCR和酶活测定,从转录水平和蛋白水平上揭示GlnK对氮代谢和L-精氨酸合成相关基因表达水平及酶活的影响,通过5-L发酵罐发酵产L-精氨酸研究GlnK对L-精氨酸合成的影响。【结果】过表达glnK能明显促进NH_4~+的吸收,而敲除glnK后则会抑制NH_4~+的摄取;RT-qPCR和酶活测定发现,相比于野生型菌株Cc5-5,glnK过表达菌株Cc-glnK中与铵吸收相关的基因,表达量平均上调约4.58倍,L-精氨酸合成基因簇中基因的表达水平平均上调1.50倍。Cc-glnK中氮代谢相关蛋白的酶活平均提高46.97%;L-精氨酸合成途径上7个关键酶的酶活平均提高30.00%;5-L发酵罐发酵各重组菌株结果表明,Cc-glnK菌株的产量可达49.53 g/L,产率为0.516 g/(L·h),相比于出发菌株Cc5-5,其L-精氨酸产量提高了28.65%。【结论】过表达GlnK能促进NH_4~+的吸收及利用,并通过影响L-精氨酸合成途径上关键基因的表达水平,提高关键酶的酶活,最终提高L-精氨酸的产量。本研究为后续探索钝齿棒杆菌氮代谢调控机制及代谢工程改造钝齿棒杆菌生产L-精氨酸提供了一种新的策略。  相似文献   

18.
The killing of Entamoeba histolytica trophozoites by phagocytes involves oxidative and nonoxidative mediators. In this study, we determine whether L-arginine-derived nitric oxide (NO) is involved in the killing of E. histolytica trophozoites by activated murine macrophages in vitro. Elicited peritoneal and bone marrow-derived macrophages activated with IFN-gamma alone or with IFN-gamma and LPS killed 62 to 73% of amebae, concomitant with increased levels of nitrate (NO2). Depletion of L-arginine by addition of arginase to culture medium abrogated macrophage amebicidal activity. NG-monomethyl L-arginine, an L-arginine analog, competitively inhibited NO2 release and amebicidal activity in a dose-dependent fashion, without affecting H2O2 production; however, the addition of excess L-arginine competitively restored macrophage amebicidal effects. In culture, sodium nitrite and sodium nitroprusside were cytotoxic to E. histolytica and this was reversed by the addition of myoglobin. Exogenously added FeSO4 prevented macrophage cytotoxicity. Addition of superoxide dismutase, a scavenger of O2-, partially inhibited amebicidal activity, without influencing NO2 production. Untreated and LPS-exposed macrophages produced high levels of H2O2 independent from NO2 production and amebicidal effects. However, the addition of catalase, a scavenger of H2O2, inhibited both amebicidal activity and NO2 production by activated macrophages. Our results demonstrate that NO is the major cytotoxic molecule released by activated macrophages for the in vitro cytotoxicity of E. histolytica and that O2- and H2O2 may be cofactors for the NO effector molecule.  相似文献   

19.
【目的】通过改造谷氨酸棒杆菌JNR中双功能尿苷酰转移/去除酶GlnD,减弱尿苷酰去除酶的活性,增强NH_4~+的转运和利用,提高L-精氨酸的合成。【方法】本文对来源于谷氨酸棒杆菌的突变菌株JNR中的双功能尿苷酰转移/去除酶GlnD进行整合突变,采用同源重组的方法将H_(414)和D_(415)位点突变为两个丙氨酸AA,在此菌株的基础上过量表达PII蛋白GlnK,并对其进行尿苷酰化研究,离子色谱检测摇瓶发酵过程中NH4+的浓度,并对最终的改造菌株进行连续流加发酵分析。【结果】该双功能尿苷酰转移/去除酶在谷氨酸棒杆菌中成功进行整合突变,有效减弱了尿苷酰去除酶的活性;同时过表达PII蛋白GlnK,其酰基化程度明显增强。摇瓶发酵结果表明菌株L4消耗NH_4~+增加,L-精氨酸产量为36.2±1.2 g/L,比对照菌株L3高出22.7%。5-L发酵罐实验结果显示改造菌株L4的L-精氨酸的产量为52.2 g/L,较野生型菌株L0提高了25.3%。【结论】谷氨酸棒杆菌合成L-精氨酸的过程中氮源是必不可少的。减弱GlnD尿苷酰去除酶的活性后,胞内尿苷酰化的GlnK-UMP增加,GlnK-UMP与氮转录调控因子AmtR结合,转运至胞内的NH_4~+浓度提高,促使L-精氨酸产量显著提高。  相似文献   

20.
A comparative kinetic analysis of Pacific salmon and bovine trypsins revealed that the former hydrolyzes p-nitroanilide-N,L-benzoyl-D,L-arginine (BApNA) with a far greater efficiency in comparison with bovine trypsin due to the decrease in Km. The inhibition constants for the BApNA hydrolysis by bovine and salmon trypsin with glycine, beta-alanine, L-lysine, L-arginine and benzamidine were determined. With an increase in the length of the hydrocarbon chain in the inhibitor molecule (i.e., in the order of glycine-beta-alanine-L-lysine) the inhibiting effect increased both with salmon and bovine trypsins. The Ki values for benzamidine and L-arginine appeared to be by one order of magnitude higher with salmon trypsin than with bovine trypsin. L-arginine was a much more effective inhibitor compared to L-lysine when both salmon and bovine trypsins were used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号