首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to determine the plant growth-promoting potential of the nodule endophytic Pseudomonas brassicacearum strain Zy-2-1 when used as a co-inoculant of Medicago lupulina with Sinorhizobium meliloti under copper (Cu) stress conditions. Strain Zy-2-1 was capable of producing ACC deaminase activity, IAA and siderophores, and was able to grow in the presence of Cu2+ up to 2.0 mmol/L. Co-inoculation of S. meliloti with Zy-2-1 enhanced M. lupulina root fresh weight, total plant dry weight, number of nodules, nodule fresh weight and nitrogen content in the presence of 100 or 300 mg/kg Cu2+. In the presence of 500 mg/kg Cu2+, co-inoculation with S. meliloti and strain Zy-2-1 increased plant height, number of nodules, nodule fresh weight and nitrogen content in comparison to S. meliloti inoculation alone. Furthermore, a higher amount of Cu accumulation in both shoots and roots and a higher level of Cu translocation to shoots were observed in co-inoculated plants. These results demonstrate that co-inoculation of M. lupulina with S. meliloti and P. brassicacearum Zy-2-1 improves plant growth, nitrogen nutrition and metal extraction potential. This can be of practical importance in the remediation of heavy metal-contaminated soils.  相似文献   

2.
Sinorhizobium meliloti can exhibit diverse modes of surface translocation whose manifestation depends on the strain. The mechanisms involved and the role played by the different modes of surface motility in the establishment of symbiosis are largely unknown. In this work, we have characterized the surface motility shown by two S. meliloti reference strains (Rm1021 and GR4) under more permissive conditions for surface spreading and analyzed the symbiotic properties of two flagella-less S. meliloti mutants with different behavior on surfaces. The use of Noble agar in semisolid minimal medium induces surface motility in GR4, a strain described so far as non-motile on surfaces. The motility exhibited by GR4 is swarming as revealed by the non-motile phenotype of the flagella-less flaAB mutant. Intriguingly, a flgK mutation which also abolishes flagella production, triggers surface translocation in GR4 through an as yet unknown mechanism. In contrast to GR4, Rm1021 moves over surfaces using mostly a flagella-independent motility which is highly reliant on siderophore rhizobactin 1021 production. Surprisingly, this motility is absent in a flagella-less flgE mutant. In addition, we found that fadD loss-of-function, known to promote surface motility in S. meliloti, exerts different effects on the two reference strains: while fadD inactivation promotes a flagella-independent type of motility in GR4, the same mutation interferes with the surface translocation exhibited by the Rm1021 flaAB mutant. The symbiotic phenotypes shown by GR4flaAB and GR4flgK, non-flagellated mutants with opposite surface motility behavior, demonstrate that flagella-dependent motility positively influences competitiveness for nodule occupation, but is not crucial for optimal infectivity.  相似文献   

3.

Background

Soil bacterium Sinorhizobium meliloti (S. meliloti) forms an endosymbiotic partnership with Medicago truncatula (M. truncatula) roots which results in root nodules. The bacteria live within root nodules where they function to fix atmospheric N2 and supply the host plant with reduced nitrogen. The bacterial RNA-binding protein Hfq (Hfq) is an important regulator for the effectiveness of the nitrogen fixation. RNA immunoprecipitation (RIP) method is a powerful method for detecting the association of Hfq protein with specific RNA in cultured bacteria, yet a RIP method for bacteria living in root nodules remains to be described.

Results

A modified S. meliloti gene encoding a His-tagged Hfq protein (HfqHis) was placed under the regulation of the native Hfq gene promoter (Phfqsm). The trans produced HfqHis protein was accumulated at its nature levels during all stages of the symbiosis, allowing RNAs that associated with the given protein to be immunoprecipitated with the anti-His antibody against the protein from root nodule lysates. RNAs that associated with the protein were selectively enriched in the immunoprecipitated sample. The RNAs were recovered by a simple method using heat and subsequently analyzed by RT-PCR. The nature of PCR products was determined by DNA sequencing. Hfq association with specific RNAs can be analyzed at different conditions (e. g. young or older root nodules) and/or in wild-type versus mutant strains.

Conclusions

This article describes the RIP method for determining Sinorhizobium meliloti RNA-Hfq associations in vivo. It is also applicable to other rhizobia living in planta, although some tissue-specific modification related to sample disruption and homogenization may be needed.
  相似文献   

4.
Analysis of the structural polymorphism of eight genes in Sinorhizobium meliloti (nodA, nodB, nodC, and nodH, as well as betA, betB, betC, and betB2) involved in virulence control and salt tolerance, respectively, was carried out in native populations from two geographically distant areas of alfalfa diversity. These areas are located in the North Caucasian gene center of cultivated plants (NCG) and in the modern center of introgressive hybridization of alfalfa located next to the Aral Sea area (PAG) subjected to salinization. RFLP types (alleles) of the nod and bet genes, similar to those in the reference strain Rm1021 (A-type) and different from them (divergent, or D-type alleles) were revealed. The combinations for A- and D-type alleles of the aforementioned genes (analysis of the linkage disequilibrium, LD) were studied in both populations. It was shown that D-type alleles of the nod genes were two times more frequent in the NCG population, while D-type alleles of the bet genes were predominantly identified in the PAG population. At the same time, different combinations of D-type alleles of both the nod and bet genes prevailed in populations. For instance, in the case of the glycine betaine metabolism pathway, these were the betC and betB2 genes in NCG population and betB and betA genes in PAG population. The state of linkage disequilibrium was shown for 60.7% of combinations of alleles of the nod and bet genes in the S. meliloti strains from NCG and more than twice less in strains from the PAG population. It was concluded that clonal lines prevailed in NCG, while the PAG population of S. meliloti had a panmictic structure with revealed single clonal lines.  相似文献   

5.
The nitrogen fixing Sinorhizobium meliloti possesses two genes, ppiA and ppiB, encoding two cyclophilin isoforms which belong to the superfamily of peptidyl prolyl cis/trans isomerases (PPIase, EC: 5.2.1.8). Here, we functionally characterize the two proteins and we demonstrate that both recombinant cyclophilins are able to isomerise the Suc-AAPF-pNA synthetic peptide but neither of them displays chaperone function in the citrate synthase thermal aggregation assay. Furthermore, we observe that the expression of both enzymes increases the viability of E. coli BL21 in the presence of abiotic stress conditions such as increased heat and salt concentration. Our results support and strengthen previous high-throughput studies implicating S. meliloti cyclophilins in various stress conditions.  相似文献   

6.
7.
8.
Ensifer meliloti is a nitrogen-fixing symbiont of the alfalfa legume able to use heme as an iron source. The transport mechanism involved in heme acquisition in E. meliloti has been identified and characterized, but the fate of heme once inside the cell is not known. In silico analysis of E. meliloti 1021 genome revealed no canonical heme oxygenases although two genes encoding putative heme degrading enzymes, smc01518 and hmuS, were identified. SMc01518 is similar to HmuQ of Bradyrhizobium japonicum, which is weakly homologous to the Staphylococcus aureus IsdG heme-degrading monooxygenase, whereas HmuS is homolog to Pseudomonas aeruginosa PhuS, a protein reported as a heme chaperone and as a heme degrading enzyme. Recombinant HmuQ and HmuS were able to bind hemin with a 1:1 stoichiometry and displayed a Kd value of 5 and 4 µM, respectively. HmuS degrades heme in vitro to the biliverdin isomers IX-β and IX-δ in an equimolar ratio. The HmuQ recombinant protein degrades heme to biliverdin IX-δ only. Additionally, in this work we demonstrate that humS and hmuQ gene expression is regulated by iron and heme in a RirA dependent manner and that both proteins are involved in heme metabolism in E. meliloti in vivo.  相似文献   

9.
The legume plant Medicago truncatula Gaertn. can establish a symbiotic interaction with Sinorhizobium meliloti. One of the most limiting factors for symbiosis is phosphate (P) deficiency. Therefore, legumes and their symbiotic partners, rhizobia, have developed mechanisms to adapt to P restriction. In the non-symbiotic state, plants would up-regulate flavonoid biosynthesis via increasing the expression of chalcone synthase (chs), catalyzing the first step of flavonoid synthesis. Simultaneously, bacterial quorum sensing (QS) pathway can regulate the expression of certain genes involved in symbiotic functions of bacteria in response to P availability as well as bacterial population. Since both flavonoids and QS signaling molecules (N-acyl homoserine lactones, AHL) play important roles in the rhizobia-legume symbiosis, we evaluated these processes in the symbiotic state under different P concentrations and bacterial populations. In this study, by using real-time PCR and HPLC, we showed the expression of pt1 (phosphate transporter 1) and chs as well as luteolin production increased, in a time dependent manner, in plants following P limitation. Nod gene inducing flavonoids can up-regulate the bacterial QS pathway which results in an increase in AHL production, possibly to enhance symbiotic behaviors of rhizobia. It has been estimated that there is a feedback loop from bacterial AHL to flavonoid production pathway in legume plants.  相似文献   

10.

Introduction

Sinorhizobium meliloti establishes a symbiosis with Medicago species where the bacterium fixes atmospheric nitrogen for plant nutrition. To achieve a successful symbiosis, however, both partners need to withstand biotic and abiotic stresses within the soil, especially that of excess acid, to which the Medicago-Sinorhizobium symbiotic system is widely recognized as being highly sensitive.

Objective

To cope with low pH, S. meliloti can undergo an acid-tolerance response (ATR(+)) that not only enables a better survival but also constitutes a more competitive phenotype for Medicago sativa nodulation under acid and neutral conditions. To characterize this phenotype, we employed metabolomics to investigate the biochemical changes operating in ATR(+) cells.

Methods

A gas chromatography/mass spectrometry approach was used on S. meliloti 2011 cultures showing ATR(+) and ATR(?) phenotypes. After an univariate and multivariate statistical analysis, enzymatic activities and/or reserve carbohydrates characterizing ATR(+) phenotypes were determined.

Results

Two distinctive populations were clearly defined in cultures grown in acid and neutral pH based on the metabolites present. A shift occurred in the carbon-catabolic pathways, potentially supplying NAD(P)H equivalents for use in other metabolic reactions and/or for maintaining intracellular-pH homeostasis. Furthermore, among the mechanisms related to acid resistance, the ATR(+) phenotype was also characterized by lactate production, envelope modification, and carbon-overflow metabolism.

Conclusions

Acid-challenged S. meliloti exhibited several changes in different metabolic pathways that, in specific instances, could be identified and related to responses observed in other bacteria under various abiotic stresses. Some of the observed changes included modifications in the pentose-phosphate pathway (PPP), the exopolysaccharide biosynthesis, and in the myo-inositol degradation intermediates. Such modifications are part of a metabolic adaptation in the rhizobia that, as previously reported, is associated to improved phenotypes of acid tolerance and nodulation competitiveness.
  相似文献   

11.
The rhizobia are a group of bacteria widely studied for their capacity to form intimate symbiotic relationships with leguminous plants. However, they are also interesting for containing a remarkable abundance of repetitive genetic elements, such as long DNA repeats. In this study we deeply analyzed long, exact DNA repeats in five representative rhizobial genomes; Rhizobium etli, Rhizobium leguminosarum, Bradyrhizobium japonicum, Sinorhizobium meliloti and Mesorhizobium loti. The results suggest that a huge proportion of repeats can be located in either plasmid or chromosome replicons, except in B. japonicum, which lacks plasmids, but contains the largest number, and longest repeat elements of the genomes analyzed here. Interestingly, we detected a slight correlation between the density of repeats (either number or length) and genome size. As expected, the highest percentage of DNA repeats code for mobile genetic elements, including insertion sequences, recombinases, and transposases. Some repeats corresponded to non-coding or intergenic regions, while in genomes like that of R. etli, a significant percentage of large repeats, mainly located in plasmids, were strongly associated with symbiotic and nitrogen fixation activities. In conclusion, our analysis shows that rhizobial genomes contain a high density of long DNA repeats, which might facilitate recombination events and genome rearrangements, functioning in adaption and persistence during saprophytic or symbiotic life.  相似文献   

12.
13.
Cicer arietinum (chickpea) is a legume very sensitive to salinity, and so are most of its rhizobial symbionts belonging to the species Mesorhizobium ciceri. We observed that exogenous trehalose (i.e., added to the growth medium) can significantly improve growth of M. ciceri strain Rch125 under moderate salinity. In order to test if endogenous trehalose (i.e., synthesized by the cell) could also enhance salt tolerance, strain Rch125 was genetically modified with various trehalose biosynthesis genes from Sinorhizobium meliloti 1021 (otsA, treS, treY) and Mesorhizobium loti MAFF 303099 (otsAB). We found that overexpression of otsA or otsAB, but not treS or treY, significantly improved M. ciceri Rch125 growth in saline media. This growth improvement correlated with enhanced trehalose accumulation in otsA- and otsAB-modified cells, suggesting that increased trehalose synthesis via trehalose-6-phosphate can enhance bacterial salt tolerance. Chickpea plants inoculated with M. ciceri Rch125 derivatives carrying extra otsAB or otsA genes formed more nodules and accumulated more shoot biomass than wild type inoculated plants when grown in the presence of NaCl. These results support the notion that improved salt tolerance of the bacterial symbiont can alleviate the negative effects of salinity on chickpeas, and that such improvement in M. ciceri can be achieved by manipulating trehalose metabolism.  相似文献   

14.
15.
Many bacteria belonging to the order Rhizobiales have fixNOQP genes which encode cytochrome oxidase with high affinity to oxygen required for oxidative phosphorylation in microaerophilic conditions. There is one copy of the identified fixNOQP operon in ancestral forms of rhizobia (Bradyrhizobium), as well as in their putative evolutionary predecessors (bacteria related to Rhodopseudomonas). At the same time, forms deeply specialized in symbiosis (Rhizobium leguminosarum, Sinorhizobium meliloti) have multiple (2–3) copies, some of them have a high similarity (>90%) to fixNOQP genes of Bradyrhizobium and Rhodopseudomonas, and others have only 30–50% similarity. Two divergent copies fixNOQP are detected in Tardiphaga, which is a representative of the Bradyrhizobiaceae family, lacking the ability to fix N2 (lack of nif genes encoding the synthesis of nitrogenase) and to induce the formation of nodules on legumes roots (lack of nod genes encoding the synthesis of signal Nod factors activating symbiosis development). The presence of Tardiphaga in nodule bacterial communities from a range of legumes, including Vavilovia formosa (relic representative of the tribe Fabeae, for which R. leguminosarum bv. viciae is the main microsymbiont), suggests that the ancestral gene duplication and subsequent divergence of fixNOQP operon in bacteria related to Tardiphaga opened the possibility of wide dissemination of functionally different copies of this cluster among symbiotically active forms of Rhizobiales. It is possible that the acquisition of fixNOQP genes determines adaptation of bacteria to microaerophilic niches not only in plants nodules but also in their environment (the rhizosphere, rhizoplane, internal portions of soil aggregates).  相似文献   

16.
Knowledge of rhizobium diversity is helping to enable the utilization of rhizobial resources. To analyze the phenotypic and genetic diversity and the symbiotic divergence of rhizobia of Medicago sativa, 30 endophytic and non-endophytic isolates were collected from different parts of five alfalfa varieties in three geographic locations in Gansu, China. Numerical analyses based on 72 phenotypic properties and restriction fragment length polymorphism (RFLP) fingerprinting indicated the abundant phenotypic and genetic diversity of the tested strains. According to the phylogenetic analysis of 16S RNA, atpD, glnII, and recA gene sequences, Rhizobium and Ensifer were further classified into four different genotypes: Rhizobium radiobacter, Rhizobium sp., Rhizobium rosettiformans, and Ensifer meliloti. The differences in architecture and functioning of the rhizobial genomes and, to a lesser extent, environment diversification helped explain the diversity of tested strains. The tested strains exhibited similar symbiotic feature when inoculated onto M. sativa cvs. Gannong Nos. 3 and 9 and Qingshui plants for the clustering feature of their parameter values. An obvious symbiotic divergence of rhizobial strains was observed in M. sativa cvs. Longzhong and WL168HQ plants because of the scattered parameter values. Their symbiotic divergence differed according to alfalfa varieties, which indicated that the sensitivity of different alfalfa varieties to rhizobial strains may differ. Most of the tested strains exhibited plant growth-promoting traits including phosphate solubilization and production of indole-3-acetic acid (IAA) when colonizing plant tissues and soil.  相似文献   

17.

Key message

Our results show that Sorghum bicolor is able to recognize bacteria through its volatile compounds and differentially respond to beneficial or pathogens via eliciting nutritional or defense adaptive traits.

Abstract

Plants establish beneficial, harmful, or neutral relationships with bacteria. Plant growth promoting rhizobacteria (PGPR) emit volatile compounds (VCs), which may act as molecular cues influencing plant development, nutrition, and/or defense. In this study, we compared the effects of VCs produced by bacteria with different lifestyles, including Arthrobacter agilis UMCV2, Bacillus methylotrophicus M4-96, Sinorhizobium meliloti 1021, the plant pathogen Pseudomonas aeruginosa PAO1, and the commensal rhizobacterium Bacillus sp. L2-64, on S. bicolor. We show that VCs from all tested bacteria, except Bacillus sp. L2-64, increased biomass and chlorophyll content, and improved root architecture, but notheworthy A. agilis induced the release of attractant molecules, whereas P. aeruginosa activated the exudation of growth inhibitory compounds by roots. An analysis of the expression of iron-transporters SbIRT1, SbIRT2, SbYS1, and SbYS2 and genes related to plant defense pathways COI1 and PR-1 indicated that beneficial, pathogenic, and commensal bacteria could up-regulate iron transporters, whereas only beneficial and pathogenic species could induce a defense response. These results show how S. bicolor could recognize bacteria through their volatiles profiles and highlight that PGPR or pathogens can elicit nutritional or defensive traits in plants.
  相似文献   

18.
19.
There is growing evidence demonstrating the diversity of foliar endophytic fungi and their ecological roles in the survival of tree seedlings. However, the factors that shape fungal communities in tree seedlings within natural forest ecosystems remain poorly understood. Here, we evaluated the composition of foliar endophytic fungi growing in current-year seedlings of Cornus controversa and Prunus grayana in a cool temperate deciduous forest through a seed-sowing experiment and fungal isolation. The composition of endophytic fungi was affected by canopy tree species, canopy openness, and time after germination. In total, 27 and 22 fungal taxa were isolated from C. controversa and P. grayana seedlings, respectively. The dominant fungal taxa in both seedling species were Colletotorichum spp., and their isolation frequencies were higher under C. controversa canopies than under P. grayana canopies; the frequencies also increased with time after germination. These results suggest that overstory tree species strongly influences the endophytic fungal communities of understory seedlings.  相似文献   

20.

Background and aims

Pseudomonas spp. have previously been isolated from lucerne nodules. The aims of this study were to: 1) investigate the microbiome within a lucerne nodule; and 2) assess the ability of two Pseudomonas spp. isolated from lucerne nodules to form nodules.

Methods

The microbial community within 27 lucerne nodules, collected from plants inoculated with Sinorhizobium meliloti as a seed coat or peat slurry and an uninoculated control, was identified using 16S rRNA based Illumina sequencing. Lucerne seedlings were inoculated with the two Pseudomonas spp. strains. The plants were grown in sterile conditions for 6 weeks and nodulation was assessed. 16S rRNA, nodC, nodA and nifH genes were amplified.

Results

Sinorhizobium was the dominant genus in nodules, comprising 90–99% of all sequences regardless of inoculation treatment. Overall, 9 other genera were identified, with each represented by <3% of the total sequences. Both Pseudomonas strains were able to form nodules with lucerne. From one of these strains, a nodC gene was detected.

Conclusion

Lucerne nodules contained a diverse assemblage of bacterial species, some of which were capable of forming nodules in the absence of rhizobia.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号