首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In 8 freely moving rats the circadian variation in the eletrolyte excretion was studied. Food was available during either the dark or the light period. The lights were on from 0800–2000 hr. Potassium, phosphate and magnesium showed peak excretion values during the dark period under both feeding conditions, although the maxima occurred 2.5 hr earlier when the rats were fed during the light period; minimum excretion was recorded just prior to feeding. Sodium excretion followed a different pattern; for animals fed during the night, maximum excretion occurred almost at the end of the dark period and minimum excretion at the start of the feeding period. For day-fed animals these values were recorded 5 and 4 hours earlier, respectively. Calcium excretion reached a maximum after the feeding period and a minimum shortly after the onset of feeding. From this study it can be concluded that the peak excretions of potassium, phosphate and magnesium are only slightly influenced by the feeding regimen, indicating that they depend mainly on an endogenous rhythm. In contrast, the minimum excretion of these ions is determined by feeding. For calcium maximum as well as minimum excretion is correlated with the feeding regimen. The excretion pattern of sodium differs from that of calcium, as well as potassium, phosphate and magnesium, indicating that it is controlled by a different mechanism.  相似文献   

2.
Abstract

The diurnal excretion patterns of several electrolytes and urea were studied in 5 freely moving rats on an elemental diet (Vivonex) administered either orally or as a continuous intragastric feeding; the lights were on from 07.00–19.00 h and off from 19.00–07.00 h. During continuous feeding the diurnal rhythms persisted, although the amplitude was lower than during oral feeding. The maximum excretion rates of potassium, phosphate and urea all coincided under both feeding regimens. The time of the maximum calcium excretion rate coincided with that of sodium during oral feeding but not during continuous feeding. During continuous feeding the maximum calcium excretion rate shifted from 04.00 to 10.00 h. The diurnal excretion of magnesium during continuous feeding was abolished, possibly as a result of the low calcium intake. From this study it can be concluded that duringcontinuous intragastric feeding all of the studied excretion patterns persist, with the exception of magnesium, which indicates that these rhythms are not merely the result of the intermittent intake of food and minerals.  相似文献   

3.
The effects of streptozotocin induced diabetes (50 mg/Kg) on the circadian rhythms in the excretion of sodium and potassium as well as their plasma concentration rhythms were investigated. Control (C) and diabetic (D) rats were studied during a light-dark (12h:12h) cycle and fed ad libitum. Statistically significant circadian rhythms were found for sodium and potassium excretion in C rats. The orthophases of both rhythms occurred in the dark phase, the potassium one occurring before that of sodium. In D rats there is increased excretion of both sodium and potassium with the rhythmicity maintained for sodium excretion only, which has an earlier orthophase than in the C rats. Plasma sodium and potassium concentrations showed a statistically significant circadian pattern in C rats, with orthophase in the light phase. This rhythmicity only appears in plasma potassium concentration for D rats, with orthophase at the end of the dark phase. The results in diabetic rats may suggest that the glomerular filtration rate (GFR) and/or tubular reabsorption rhythms are still contributing to the sodium excretory rhythm, and that the loss of the circadian rhythm in sodium plasma concentration has no influence on the sodium excretion rhythm. Nevertheless, the loss of the potassium excretion rhythm may suggest a disruption of the variations in the secretory process, as this excretion seems to be independent of the plasma potassium concentration rhythm, which is not lost in D rats.  相似文献   

4.
The effects of streptozotocin induced diabetes (50 mg/Kg) on the circadian rhythms in the excretion of sodium and potassium as well as their plasma concentration rhythms were investigated. Control (C) and diabetic (D) rats were studied during a light-dark (12h:12h) cycle and fed ad libitum. Statistically significant circadian rhythms were found for sodium and potassium excretion in C rats. The orthophases of both rhythms occurred in the dark phase, the potassium one occurring before that of sodium. In D rats there is increased excretion of both sodium and potassium with the rhythmicity maintained for sodium excretion only, which has an earlier orthophase than in the C rats. Plasma sodium and potassium concentrations showed a statistically significant circadian pattern in C rats, with orthophase in the light phase. This rhythmicity only appears in plasma potassium concentration for D rats, with orthophase at the end of the dark phase. The results in diabetic rats may suggest that the glomerular filtration rate (GFR) and/or tubular reabsorption rhythms are still contributing to the sodium excretory rhythm, and that the loss of the circadian rhythm in sodium plasma concentration has no influence on the sodium excretion rhythm. Nevertheless, the loss of the potassium excretion rhythm may suggest a disruption of the variations in the secretory process, as this excretion seems to be independent of the plasma potassium concentration rhythm, which is not lost in D rats.  相似文献   

5.
The influence of food and water intake on renal function was assessed by comparisons between the hyperphagic Zucker obese rat and its lean littermate, which demonstrates nocturnal dominance in activity. Serum creatinine and cortisol levels, creatine kinase activities, creatinine and urine clearances, and sodium and potassium excretion rates were measured over a 24-hour period in both lean and obese rats (n = 24 each). Six rats in each group were studied every 8 h to permit characterization over a 12-hour light/dark cycle at 2-hour intervals. Urine and creatinine clearances were increased in lean rats during the dark phase coincident with onset of eating. Similarly, renal sodium and potassium excretion rates were markedly increased during the dark cycle, despite relatively constant serum potassium and sodium levels over the 24-hour period. In contrast, no circadian patterns in urine and creatinine clearances were found in the obese rat, which exhibits continuous feeding habits throughout the 24-hour period. Moreover, renal electrolyte excretion in the obese rat was modestly increased during the dark cycle, unlike the significant differences over time observed in lean rats. Serum creatinine levels were increased during the dark cycle in both rat groups. Creatine kinase activity, a measure of ambulatory activity, was constant in lean rats during the study period. Although creatine kinase activity was increased in obese rats during the dark cycle, no correlations with renal functional parameters were found. These results indicate that differences in food and water intake are significant determinants in diurnal cyclic changes in renal function.  相似文献   

6.
Circadian changes in renal hemodynamics and urinary glycosaminogly-can (GAG) excretion were studied in normal Sprague-Dawley rats to further investigate rhythms in kidney function. Urinary water, protein, and GAG excretion, as well as glomerular filtration rate (GFR) and renal plasma flow (RPF), were determined every 4h over the 24h cycle in an attempt to characterize any temporal changes. Urinary flow rate and proteinuria peaked during the dark activity period of the animals, consistently at the same hour, whereas the lowest values were detected during the resting phase. GAG are mucopolysaccharides entering the constitution of the glomerular basement membrane (GBM), which is the key component in the process of glomerular filtration. Similarly, the urinary excretion rate of GAG showed a circadian rhythmicity in phase with urinary water and protein excretion, with markedly increased values observed during the nocturnal phase of the animals. Moreover, GFR and RPF were demonstrated to exhibit large circadian variations in phase with renal excretory rhythmicity, showing nighttime values significantly greater compared to daytime ones. Strong correlations were found between GFR and RPF rhythms, as well as between GAG and GFR, and GAG and RPF rhythms, although the latter were not statistically significant. This pattern suggests that the circadian rhythmicity in urinary excretion rate of GAG in physiological conditions could presumably be secondary to the temporal changes in renal hemodynamics. In this respect, knowledge of renal chronobiology helpfully contributes to increase our understanding of renal physiology.  相似文献   

7.
The circadian rhythms of food and 1% NaCl intake, and urine, Na+, Cl- and K+ excretion were followed up in male Wistar rats before and one week after bilateral adrenalectomy at 4-hour intervals during two consecutive days. The circadian rhythms of plasma renin activity (PRA) and plasma immunoreactive insulin (IRI) were evaluated after decapitation of both intact and adrenalectomized rats at 08, 16 and 24 h. To all rats 1% NaCl was offered instead of drinking water. Adrenalectomy did not cause any significant phase shift in the cosine curves approximating the data collected at 4-hour intervals. The circadian rhythms showed the same relationships before and after the operation: the rhythms of food intake, K+ excretion and saline intake preceded significantly the rhythms of urine, Na+ and Cl- excretion. Adrenalectomy induced an increase in mean PRA and shifted its minimal value from 08 to 24 h. After the operation mean IRI decreased and the minimal value shifted from 16 to 24 h. It was concluded that adrenal glands do not play an important role in the synchronization of the circadian rhythms of food and 1% NaCl intake, urine and synchronization of the circadian rhythms of food and 1% NaCl intake, urine and electrolyte excretion with the illumination cycle, but play a relevant role in the synchronization of the circadian rhythms of PRA and IRI in the rat.  相似文献   

8.
Daily rhythms in melatonin secretion were monitored in four healthy adult males by measuring the melatonin contents of sequential 4-hour urine specimens and of plasma samples collected at 12-hour intervals, or, in one subject, continuously for 24 hours. All subjects exhibited similar diurnal rhythms, with peak urinary melatonin excretion rates and blood melatonin levels occurring during the daily period of darkness and sleep. When the daily light/dark regimen was phase-shifted by 180°, the plasma and urinary melatonin rhythms required 5–7 days (depending on the subject) to re-entrain to the new schedule. Simultaneous measurements of plasma melatonin levels and melatonin excretion rates indicate that urinary melatonin reflects, with remarkable fidelity, circulating melatonin levels.  相似文献   

9.
The dorsomedial hypothalamus (DMH) is a site of circadian clock gene and immediate early gene expression inducible by daytime restricted feeding schedules that entrain food anticipatory circadian rhythms in rats and mice. The role of the DMH in the expression of anticipatory rhythms has been evaluated using different lesion methods. Partial lesions created with the neurotoxin ibotenic acid (IBO) have been reported to attenuate food anticipatory rhythms, while complete lesions made with radiofrequency current leave anticipatory rhythms largely intact. We tested a hypothesis that the DMH and fibers of passage spared by IBO lesions play a time-of-day dependent role in the expression of food anticipatory rhythms. Rats received intra-DMH microinjections of IBO and activity and body temperature (T(b)) rhythms were recorded by telemetry during ad-lib food access, total food deprivation and scheduled feeding, with food provided for 4-h/day for 20 days in the middle of the light period and then for 20 days late in the dark period. During ad-lib food access, rats with DMH lesions exhibited a lower amplitude and mean level of light-dark entrained activity and T(b) rhythms. During the daytime feeding schedule, all rats exhibited food anticipatory activity and T(b) rhythms that persisted during 2 days without food in constant dark. In some rats with partial or total DMH ablation, the magnitude of the anticipatory rhythm was weak relative to most intact rats. When mealtime was shifted to the late night, the magnitude of the food anticipatory activity rhythms in these cases was restored to levels characteristic of intact rats. These results confirm that rats can anticipate scheduled daytime or nighttime meals without the DMH. Improved anticipation at night suggests a modulatory role for the DMH in the expression of food anticipatory activity rhythms during the daily light period, when nocturnal rodents normally sleep.  相似文献   

10.
In SLJ-1 we proposed to study three major objectives. They were; 1. hormonal changes associated with fluid and electrolyte metabolism, 2. the effect of space flight on the circadian rhythms of endocrine and metabolic systems, 3. the changes in the indices of the bone and muscle metabolism during space flight. In this report, the changes in the bone metabolism during Spacelab-J will be presented with a special emphasis on urinary excretion of pyridinium cross-links. Timed urine samples from three Japanese payload specialists were obtained for 3 days from May 19 to 21, 1991 (one year before the launch = L-1 year). Immediately before the launch (L-3 to L-0), urine samples were obtained from a payload specialist who was on board the Space Shuttle Endeavor (PS). During the inflight period (flight from September 3 to 10 in 1992), urine samples from the PS were collected by using Urine Monitoring System (UMS). After the landing, they were obtained from the PS for three days (R+0-R+2). Various parameters related to bone metabolism such as hydroxyproline, pyridinium cross-links and calcium were determined. It was noted that excretion of hydroxyproline decreased during the preflight periods when compared with that in the control L-1 year period. The average excretory rate during control period was 846.2 +/- 198.7 milligrams/hour (mean +/- SD), while those in the preflight 474.6 +/- 171.1 milligrams/hour, suggesting the diminished collagen intake during the preflight period. Average excretion rate of pyridinium cross-links during the first 4 mission days (MD0-MD3) was similar to that of preflight and control L-1 year period. However, it was significantly increased during the last 4 mission days (MD4-MD7). It returned to the preflight level during postflight days (R+0-R+2). Increased urinary excretion of calcium during the last 4 mission days were also observed. These results suggest that increase in bone resorption could occur during relatively short stay in microgravity.  相似文献   

11.
Abstract

By means of a microcomputer‐assisted, electronic recording system five physiological, circadian rhythms of the rabbit were monitored: locomotor activity, hard faeces excretion, food intake, urine excretion and water intake.

During 120 days of continuous light conditions (30 lx) the animals exhibited a free‐running circadian rhythm. After the fading out of aftereffects of the preceding light: dark schedule on day 51 ± 11 the animals ran free with an individually distinct period length of > 24.0 h (τ: 24.48 ± 0.10 (SD) h). Spectral analysis of coherent data of 50–84 days showed that in addition to the circadian period persistent ultradian periods of 6.1, 8.2 and 12.3 h were present. Within each individual the five functions proved to be tightly coupled during the free‐run, during the time of reentrainment and when entrained with the LD 12:12. While during LD 12:12 the animals exhibited a bimodal rhythm, during the free‐run the rhythm was unimodal in all five functions. In one animal a “splitting”; of the free‐running period occurred. Both components ran free with different period length. They fused again after 38 days. The “splitting”; was reflected in all five functions of this animal.

The behavioural characteristics of meal duration and ‐frequency, duration of activity and ‐intervals, of water intake and urination did not show significant differences during the conditions of LD 12:12 and LL.

The results support Pittendrigh's model of two systems of oscillators, selectively susceptible to the transitions of dark : light and light : dark. Our results suggest that in the rabbit the five functions are governed in common by both oscillator‐systems.  相似文献   

12.
In lactating animals, the food consumption increases several-fold for milk supply to the pups. The present study was conducted to clarify the relationship between the hyperphagia during lactation and hypothalamic leptin receptor (Ob-Rb) mRNA expression, cerebrospinal fluid (CSF) and circulating leptin and glucose levels. Food intakes significantly higher in lactation than in non-lactation at all time points (3 points: light phase, 4 points: dark phase) of the day. However, the expression of the hypothalamic Ob-Rb mRNA showed similar circadian rhythms in both the non-lactation and lactation, with only slight differences between the two groups. CSF leptin and glucose levels were constant throughout the day in both non-lactation and lactation, and there was almost no difference between the two groups at each time point. Circulating leptin and glucose levels showed circadian rhythms only in the non-lactating period, and were lower in lactation than in non-lactation, especially in the dark phase. In conclusion, the present study provides evidence that Ob-Rb mRNA expression fluctuates in the lactation period as well as in the non-lactation period, suggesting that the expression profile of whole hypothalamic Ob-Rb may not contribute to the difference in food consumption between lactation and non-lactation, and that chronic decrease in blood glucose levels may be associated with the increase in food consumption during lactation.  相似文献   

13.
This study investigated the functional linkage between food availability and activity behavior in the Palaearctic Indian night migratory blackheaded bunting (Emberiza melanocephala) subjected to artificial light-dark (LD) cycles. Two experiments were performed on photosensitive birds. In the first one, birds were exposed to short days (LD 10/14; Experiment 1A), long days (LD 13/11; Experiment 1B), or increasing daylengths (8 to 13?h light/d; Experiment 1C) and presented with food either for the whole or a restricted duration of the light period. In Experiments 1A and 1B, illumination of the light and dark periods or of the dark period, alone, was changed to assess the influence of the light environment on direct and circadian responses to food cycles. In the second experiment, birds were exposed to LD 12/12 or LD 8/16 with food availability overlapping with the light (light and food presence in phase) or dark period (light and food presence in antiphase). Also, birds were subjected to constant dim light (LL(dim)) to examine the phase of the activity rhythms under synchronizing influence of the food cycles. Similarly, the presentation of food ad libitum (free food; FF) during an experiment examined the effects of the food-restriction regimes on activity rhythms. A continuous measurement of the activity-rest pattern was done to examine both the circadian and direct effects of the food and LD cycles. Measurement of activity at night enabled assessment of the migratory phenotype, premigratory restlessness, or Zugunruhe. The results show that (i) light masked the food effects if they were present together; (ii) birds had a higher anticipatory activity and food intake during restricted feeding conditions; and (iii) food at night alone reduced both the duration and amount of Zugunruhe as compared to food during the day alone. This suggests that food affects both the daily activity and seasonal Zugunruhe, and food cycles act as a synchronizer of circadian rhythms in the absence of dominant natural environmental synchronizers, such as the light-dark cycle.  相似文献   

14.
Selmaoui B  Touitou Y 《Life sciences》2003,73(26):3339-3349
Plasma melatonin and cortisol are characterized by a marked circadian rhythm, but little information is available about the reproducibility and stability of these rhythms over several weeks in the same subjects. This study examined the characteristics of these rhythms in 31 healthy human subjects 20 to 30 years of age. They were synchronized with a diurnal activity from 0800 to 2300 and nocturnal rest. They participated in three 24-hour sessions (S1, S2, and S3): S2 took place two weeks after S1 and S3 4 weeks after S2. Blood samples were taken during each session at 3-hour intervals from 1100 to 2000 and hourly from 2200 to 0800. Comparison of the circadian rhythms between groups used repeated measures 2-way ANOVA, the cosinor method, and Bingham's test. Intraindividual variations were compared by the cosinor method and Bingham's test. The groups did not differ, but a slight difference in the amplitude or acrophase of individual circadian rhythms was observed in 5 of 31 subjects for melatonin and 1 of 31 for cortisol. The circadian means did not differ over the three sessions. These results show that the circadian profile of cortisol and melatonin are highly reproducible over a six-week period, in both individuals and groups. Our study clearly shows that these hormones can be considered to be stable markers of the circadian time structure and therefore useful tools to validate rhythms' synchronisation of human subjects.  相似文献   

15.
Northern brown bandicoots (Isoodon macrourus) were subjected to restricted feeding for 3 h in the middle of the light period of a 14: 10 light/dark cycle and immediately following this in constant dark. When feeding was restricted to the middle of the light period of the light/dark cycle, all bandicoots maintained a nocturnal activity rhythm. In addition to the nocturnal rhythm, a few bandicoots showed meal-anticipatory activity during the light period. In bandicoots that did not show meal-anticipatory activity, diurnal activity was sometimes evident either during or shortly after the daily meal time. The observation of meal-anticipatory activity in some bandicoots suggests that this species may have a mechanism separate from the light-entrainable mechanism that allows the daily anticipation of periodically available food sources. In the next stage of the experiment, which was in constant dark, the meal was presented at the same time of day as it had been in the previous stage. In all bandicoots, the previously light-entrained component of activity free-ran and was eventually affected by the restricted feeding schedule to some degree. Bandicoots showed weak entrainment and relative coordination, suggesting that restricted feeding is a weak zeitgeber in this species. Evidence also suggesting that two separate but coupled pacemakers control the activity rhythms of the bandicoot was that (a) bandicoots simultaneously showed free-running light-entrainable rhythms and meal-entrained anticipatory rhythms; (b) in several bandicoots, the light-entrainable rhythm was phase advanced when it free-ran through the meal time; and (c) in one bandicoot, meal-entrained anticipatory activity was forced away from the meal time when the previously light-entrained component of activity free-ran through it.  相似文献   

16.
The circadian rhythm of hexobarbital sleeping time and lipids content in liver and serum were studied in 226 male Sprague-Dawley rats pretreated daily at 0800-0900 with 70 mg/kg (study 1 or 3) or 50 mg/kg (study 2) phenobarbital (PB) orally for 7 days. Thereafter, eight (study 1) or five (study 2 and 3) rats each were studied at 4-hr intervals at 1000, 1400, 1800, 2200, 0200, 0600 and 1000 through the following day. The lighting schedule in the colony was 12:12 ± light:dark (light from 0600 to 1800). The hexobarbital sleeping times of PB-pretreated rats were generally shortened compared to the controls and no circadian rhythm was observed. PB-treatment increased slightly the liver content of cholesterol, and significantly that of triglycerides and phospholipids. Liver cholesterol and phospholipids showed circadian rhythms with peaks during the dark phase. No circadian rhythm of liver triglycerides existed. In serum, levels of triglycerides and phospholipids were slightly lowered by PB-treatment, while levels of cholesterol and beta-lipoprotein were not influenced. Serum values did not exhibit circadian rhythms.  相似文献   

17.
B D Manning  M Mason 《Life sciences》1975,17(2):225-232
Six male subjects (19–23 years old) underwent a 7-day control period with respect to diet, temperature (22C), and sleep (7.5 hrs), followed by a 2-day exposure to 15C and a 2-day recovery period (22C). Urine collections were made every 8 hours commencing at 2300 hours; MHPG and VMA were assayed using gas-liquid chromatography. During the control period a diurnal rhythmicity was demonstrated for MHPG and VMA with maxima at 0700–1500 hours. The mean excretory rates for MHPG and VMA were 0.71 ± 0.04 μg and 2.6 ± 0.2 μg per milligram creatinine (± S.E.), respectively. Cold exposure abolished the rhythms for MHPG and VMA and caused an 18% increase in MHPG excretion. In contrast, VMA excretion was not altered. Significant correlations were obtained with MHPG excretion and both urinary cortisol and rectal temperature. The data suggest that MHPG excretion may be indicative of changes in norephinephrine metabolism in the central nervous system, although alterations in peripheral degradative pathways cannot be ruled out. Careful interpretation of changes in MHPG excretion in clinical studies is emphasized due to the relative ease of altering MHPG metabolism.  相似文献   

18.
Removal of drinking water at the start of the dark period reduced food intake in freely feeding rats within 45 min. Both first and later meals were smaller during 7.5 h of water deprivation, but meal frequency did not change. Ingestion of a normal-sized meal (3 g) rapidly increased plasma tonicity when drinking water was withheld, but intravenous infusions of hypertonic NaCl causing similar increases in plasma tonicity did not reduce feeding. Feeding during 6 h of water deprivation was restored by slowly infusing the volume of water normally drunk into the stomach, jejunum, or cecum, but not in the vena cava or hepatic portal vein. The infusions did not alter water or electrolyte excretion or affect food intake in rats allowed to drink. We conclude that the inhibition of feeding seen during water deprivation is mediated by a sensor that is located in the gastrointestinal tract or perhaps in the mesenteric veins draining the gut, but not the hepatic portal vein or the liver. In the absence of drinking water, signals from this sensor provoke the early termination of a meal.  相似文献   

19.
Phase movements of apparent circadian rhythms during 2 wk of forward or backward displacement of the sleep-wake cycle were investigated in four experimental series in a subject. The 7-hr delay or advance of sleep due to a westward or an eastward transmeridian flight was duplicated by corresponding sleep displacements during experimental night shifts. Sudden phase advances (or delays) by several hours were observed in the rhythms of continuously recorded rectal temperature and urinary excretion rates (4-hr collection intervals) of adrenaline, noradrenaline and aldosterone the first day after sleep-wake displacement. The desired 7-hr phase-shifts were reached more quickly and completely when the phase was delayed than when it was advanced. In addition, the best-fitting period of these rhythms became shorter than 24 hr when the phase was delayed, and longer than 24 hr when it was advanced. The apparent rhythms of urine flow and electrolyte excretions (potassium, sodium, zinc) were much weaker and their phase movements more irregular than those of hormonal excretion. It is concluded that the sudden phase-shifts resulted from the immediate adaptation of the exogenous components of the rhythms to the demands of the displaced sleep-wake patterns (masking effects) and that the true phase-shifts of the endogenous components followed more slowly and gradually.  相似文献   

20.
Phase movements of apparent circadian rhythms during 2 wk of forward or backward displacement of the sleep-wake cycle were investigated in four experimental series in a subject. The 7-hr delay or advance of sleep due to a westward or an eastward transmeridian flight was duplicated by corresponding sleep displacements during experimental night shifts. Sudden phase advances (or delays) by several hours were observed in the rhythms of continuously recorded rectal temperature and urinary excretion rates (4-hr collection intervals) of adrenaline, noradrenaline and aldosterone the first day after sleep-wake displacement. The desired 7-hr phase-shifts were reached more quickly and completely when the phase was delayed than when it was advanced. In addition, the best-fitting period of these rhythms became shorter than 24 hr when the phase was delayed, and longer than 24 hr when it was advanced. The apparent rhythms of urine flow and electrolyte excretions (potassium, sodium, zinc) were much weaker and their phase movements more irregular than those of hormonal excretion. It is concluded that the sudden phase-shifts resulted from the immediate adaptation of the exogenous components of the rhythms to the demands of the displaced sleep-wake patterns (masking effects) and that the true phase-shifts of the endogenous components followed more slowly and gradually.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号