首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In mice receiving i.v. low doses of 3H-LSD the accumulation of radioactivity in brain appears to reflect a selective binding to high affinity sites as indicated by the heterogenous regional distribution (paralleling that observed in in vitro binding studies) and by the saturable character of the process (ED50 around 30μg.kg?1 in cerebral cortex).The identity of the binding sites was assessed in various regions by administration of agonists or antagonists of different neurotransmitters. In cortex specific accumulation of 3H-LSD was easily prevented by administration of serotonin antagonists (cyproheptadine, methysergide, methiothepin) or by tryptamine derivatives (psilocin, psilocybin, dimethyltryptamine) and 5-hydroxytryptophan + pargyline. Among neuroleptics some prevented 3H-LSD binding (spiperone, haloperidol) whereas 1mg.kg?1 pimozide was ineffective. In addition a large variety of agents (adrenergic, cholinergic, morphine) were ineffective. These data suggest a selective binding to cortical serotonin receptors.  相似文献   

2.
The small subunit (SSU) of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) possesses a binding site that can be photoaffinity labeled with [32P]8-azidoadenosine 5′ triphosphate (N3ATP). In the present study, photoaffinity labeling was used to compare the nucleotide analog binding properties of SSU in the Rubisco holoenzyme complex (holoE SSU) with the properties of isolated SSU and the precursor form (pSSU) that contains a transit peptide. To facilitate these studies, the complete coding regions of tobacco (Nicotiana tabacum L.) SSU and pSSU were cloned into pET expression vectors and the polypeptides were synthesized in Escherichia coli. Protein import studies showed that cloned pSSU polypeptides were imported into intact chloroplasts, where they were processed to the mature form and assembled into the Rubisco holoenzyme. Cloned SSU and pSSU isolated from E. coli were photoaffinity labeled with N3ATP. The apparent Kd value for SSU and pSSU, 18 micromolar N3ATP, was identical to the value determined for holoE SSU. However, differences in photolabeling between cloned SSU or pSSU and holoE SSU were apparent in the level of protection afforded by ATP and UTP, in the response of photolabeling to free Mg2+, and in the higher photolabeling efficiency that characterized the cloned SSU. Treatment of the Rubisco holoenzyme with a concentration of urea sufficient to disassociate the subunits markedly increased photoincorporation into SSU, indicating that intersubunit associations within the holoenzyme complex may be the major factor influencing photolabeling efficiency of SSU. Thus, differences in SSU conformation between the isolated and assembled states affect photolabeling efficiency and other nucleotide analog binding properties of the SSU, but not the apparent affinity for N3ATP.  相似文献   

3.
The ADP/ATP carrier of beef heart mitochondria is able to bind 2-azido-[α-32P]ADP in the dark with a Kd value of 8 μM. 2-Azido ADP is not transported and it inhibits ADP transport and ADP binding. Photoirradiation of beef heart mitochondria with 2-azido-[α-32P]ADP results mainly in photolabeling of the ADP/ATP carrier protein; photolabeling is prevented by carboxyatractyloside, a specific inhibitor of ADP/ATP transport. Upon photoirradiation of inside-out submitochondrial particles with 2-azido-[α-32P]ADP, both the ADP/ATP carrier and the β subunit of the membrane-bound F1-ATPase are covalently labeled. The binding specificity of 2-azido-[α-32P]ADP for the β subunit of F1-ATPase is ascertained by prevention of photolabeling of isolated F1 by preincubation with an excess of ADP.  相似文献   

4.
The maximal stoichiometry for [3H]GTP binding to depolymerized tubulin with saturating amounts of added [3H]GTP is 0.4 mol/110,000 g protein. In contrast, 1 mol of radioactive nucleotide is incorporated into microtubules as a result of polymerization with [3H]GTP. The different stoichiometries result from a difference in the nucleotide binding properties of ring protein under polymerizing and nonpolymerizing conditions: ring protein at 0 °C is devoid of binding activity but binds added radioactive guanine nucleotide during microtubule assembly. The radioactive nucleotide which is incorporated into rings during microtubule assembly is not displaced by excess GDP, although it is at a site which is distinct from the N site.  相似文献   

5.
The injection of 2-14C-dopamine into the haemocoel of the American cockroach at ecdysis results in the binding of diphenols to blood proteins. These same proteins are apparently translocated to the cuticle where the label becomes incorporated into the hard insoluble matrix. On the other hand, if labelled dopamine is injected during the pre-ecdysis period, the radioactivity is found bound to the protein but it is not incorporated into the cuticle. Further investigations have revealed that translocation occurs during the immediate postecdysial phase, which suggests that the epidermal permeability may be mediated by bursicon, the tanning hormone.  相似文献   

6.
Propofol, a widely used intravenous general anesthetic, acts at anesthetic concentrations as a positive allosteric modulator of γ-aminobutyric acid type A receptors and at higher concentration as an inhibitor of nicotinic acetylcholine receptors (nAChRs). Here, we characterize propofol binding sites in a muscle-type nAChR by use of a photoreactive analog of propofol, 2-isopropyl-5-[3-(trifluoromethyl)-3H-diazirin-3-yl]phenol (AziPm). Based upon radioligand binding assays, AziPm stabilized the Torpedo nAChR in the resting state, whereas propofol stabilized the desensitized state. nAChR-rich membranes were photolabeled with [3H]AziPm, and labeled amino acids were identified by Edman degradation. [3H]AziPm binds at three sites within the nAChR transmembrane domain: (i) an intrasubunit site in the δ subunit helix bundle, photolabeling in the nAChR desensitized state (+agonist) δM2-18′ and two residues in δM1 (δPhe-232 and δCys-236); (ii) in the ion channel, photolabeling in the nAChR resting, closed channel state (−agonist) amino acids in the M2 helices (αM2-6′, βM2-6′ and -13′, and δM2-13′) that line the channel lumen (with photolabeling reduced by >90% in the desensitized state); and (iii) at the γ-α interface, photolabeling αM2-10′. Propofol enhanced [3H]AziPm photolabeling at αM2-10′. Propofol inhibited [3H]AziPm photolabeling within the δ subunit helix bundle at lower concentrations (IC50 = 40 μm) than it inhibited ion channel photolabeling (IC50 = 125 μm). These results identify for the first time a single intrasubunit propofol binding site in the nAChR transmembrane domain and suggest that this is the functionally relevant inhibitory binding site.  相似文献   

7.
The binding of flunitrazepam (FNZP) by human α1-acid glycoprotein (hAGP) and the relationships between the extent of drug binding and desialylation and the genetic variants of hAGP were examined. The photolabeling specificity of [3H]FNZP was confirmed by findings in which other hAGP-binding ligands inhibited the formation of covalent bonds between [3H]FNZP and hAGP. The photolabeling of asialo-hAGP suggested that sialic acid does not involve in the binding of [3H]FNZP. No difference in the labeling could be found between the F1 * S variants and A variant. Similarly, FNZP did not show a difference in binding affinity to the two genetic variants of hAGP. Sequence analysis of the photolabeled peptide indicated a sequence corresponding to Tyr91-Arg105 of hAGP.  相似文献   

8.
A photoreactive (d-Ala2, p-N3-Phe4-Met5)enkephalin derivative was prepared, iodinated with carrier-free 125I, and then purified by high-performance liquid chromatography. The purified radioactive photoprobe was monoiodinated at the amino terminal tyrosine residue. This radioactive photoprobe was used to photoaffinity label membranes prepared from the rat brain (minus cerebellum) and the spinal cord. The photolabeled membranes were analyzed by sodium dodecyl sulfate gel electrophoresis. A 46,000-Da protein was specifically photolabeled in these membrane preparations. The photolabeling of this protein was inhibited by peptides related to enkephalin but not by unrelated substance P or gastrin tetrapeptide. A concentration-dependent inhibition of the photolabeling of the 46,000-Da protein was observed in the presence of competing ligands specific for the μ-, δ-, and κ-opioid receptors. These data demonstrate that the radioactive photoprobe labels the μ-, δ-, and κ-opioid receptors. Although there is no evidence available to show that the 46,000-Da protein is identical in all the cases, our data strongly suggest that it is a binding protein common to all of the opioid receptor subtypes.  相似文献   

9.
A new radioiodinated (2.2 Ci/μmol) iodocyanopindolol derivative carrying a 4-(3-trifluoromethyldiazirino)benzoyl residue has been synthesized. The long-wavelength absorption of the diazirine permits formation of the carbene by photolysis under very mild conditions. [125I]ICYP-diazirine binds with high affinity (Kd = 60 pM) to β-receptors from turkey erythrocyte membranes. Upon irradiation, [125I]ICYP-diazirine is covalently incorporated in a Mr 40 000 protein. Stereoselective inhibition of photolabeling by the (?)enantiomers of alprenolol and isoproterenol indicated that the Mr 40 000 protein contains a β-adrenergic binding site. The yield of specific labeling was up to 8.2% of total β-receptor binding sites. The Mr 40 000 protein photolabeled in the membrane could be solubilized at comparable yield with either digitonin or Triton X-100. Irradiation of digitonin-solubilized turkey erythrocyte membranes with [125I]ICYP-diazirine resulted in specific labeling of two proteins with Mr 40 000 and 50 000. In guinea-pig lung membranes, at least five proteins were photolabeled, of which one (with approximate Mr 67 000) was labeled specifically.  相似文献   

10.
In vivo receptor binding was examined using 3H-spiperone and 3H-pimozide for dopamine receptors and 3H-LSD for serotonin receptors. Two strategies for improving total: nonspecific binding ratios were tested. The first was to deplete endogenous ligands by various pharmacological treatments prior to 3H-ligand administration in an attempt to increase specific receptor binding; the second was to perfuse the brain with ice-cold saline after 3H-ligand administration in an attempt to reduce nonspecific binding. Alteration of dopamine and serotonin by administering d-amphetamine, reserpine, alpha-methyl-paratyrosine or parachlorophenylalanine did not significantly elevate striatal: cerebellar or cortical: cerebellar (measures of total: nonspecific) bonding ratios. However, perfusion with ice-cold saline significantly improved the ratios for both dopamine and serotonin receptors. Thus, cold saline perfusion may be of value in reducing blank values in autoradiographic and other studies requiring invivo labelling of receptors.  相似文献   

11.
The presence of an uptake system and a functional glycine receptor in adrenal medulla chromaffin cells was investigated using an autoradiographic technique in adrenal gland slices. Specific3[H]-glycine binding was observed in both adrenal cortex and medulla slices, while only specific binding of [3H]strychnine was seen only in chromaffin cells and was not associated with cortical cells. [3H]Glycine binding sites in the cortex are apparently different from those of [3H]strychnine binding sites in the medulla since excess strychnine does not displace [3H]glycine from adrenal cortex but does so from medulla. This difference supports biochemical evidence for glycine transport into medulla cells and glycine receptor sites on the chromaffin cell membrane.  相似文献   

12.
The effect of thyroxine on biosynthesis of microvillus membrane glycoproteins has been investigated in organ culture of 18-day-old chick embryonic duodenum. Explants incorporate [3H]leucine and [3H]glucosamine continuously, and overall incorporation is enhanced by 10 nM thyroxine during 48 h of labeling; this increase in radioactivity is associated with vesicles released from the microvilli. Light microscope autoradiography, pulse labeling of brush border fragments, and pulse chase experiments reveal that [3H]glucosamine is incorporated into brush border at an increasing rate during culture, and that newly synthesized glycoproteins are discharged into the medium along with brush border enzymes (alkaline phosphatase and maltase). These results suggest that thyroxine stimulates biosynthesis of microvillus membrane glycoproteins, in addition to stimulating vesiculation of the membrane. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of 3H-labeled vesicles and brush border fragments show that [3H]leucine and [3H]glucosamine are incorporated into proteins of high molecular weight. Two protein bands are identified as alkaline phosphatase and maltase. Thyroxine stimulates glycosylation of these enzymes, but does not change protein patterns. Radioactivity assay of alkaline phosphatase- and maltase-active gel slices suggests that thyroxine stimulation of these enzyme activities during culture is not correlated with de novo synthesis of these proteins.  相似文献   

13.
Laila Zaki 《FEBS letters》1984,169(2):234-240
The reaction of phenylglyoxal, a reagent specific for arginine residues, with erythrocyte membrane at pH 7.4 results in complete inhibition of sulfate equilibrium exchange across human red cells. The inactivation was found to be concentration and time depenent. The binding sites of this reagent in the anion transport protein (band 3) under these conditions were determined by using [14C]phenylglyoxal. The rate of incorporation of the radioactivity into band 3 gave a good correlation with the rate of inactivation. Under conditions where the transport is completely inhibited about 6 mol [14C]phenylglyoxal are incorporated into 1 mol band 3. Treating the [14C]phenylglyoxalated ghosts at different degrees of inactivation with extracellular chymotrypsin showed that about two-thirds of these binding sites are located on the 60 kDa fragment.  相似文献   

14.
Enhancement of γ-aminobutyric acid type A receptor (GABAAR)-mediated inhibition is a property of most general anesthetics and a candidate for a molecular mechanism of anesthesia. Intravenous anesthetics, including etomidate, propofol, barbiturates, and neuroactive steroids, as well as volatile anesthetics and long-chain alcohols, all enhance GABAAR function at anesthetic concentrations. The implied existence of a receptor site for anesthetics on the GABAAR protein was supported by identification, using photoaffinity labeling, of a binding site for etomidate within the GABAAR transmembrane domain at the β-α subunit interface; the etomidate analog [3H]azietomidate photolabeled in a pharmacologically specific manner two amino acids, α1Met-236 in the M1 helix and βMet-286 in the M3 helix (Li, G. D., Chiara, D. C., Sawyer, G. W., Husain, S. S., Olsen, R. W., and Cohen, J. B. (2006) J. Neurosci. 26, 11599–11605). Here, we use [3H]azietomidate photolabeling of bovine brain GABAARs to determine whether other structural classes of anesthetics interact with the etomidate binding site. Photolabeling was inhibited by anesthetic concentrations of propofol, barbiturates, and the volatile agent isoflurane, at low millimolar concentrations, but not by octanol or ethanol. Inhibition by barbiturates, which was pharmacologically specific and stereospecific, and by propofol was only partial, consistent with allosteric interactions, whereas isoflurane inhibition was nearly complete, apparently competitive. Protein sequencing showed that propofol inhibited to the same extent the photolabeling of α1Met-236 and βMet-286. These results indicate that several classes of general anesthetics modulate etomidate binding to the GABAAR: isoflurane binds directly to the site with millimolar affinity, whereas propofol and barbiturates inhibit binding but do not bind in a mutually exclusive manner with etomidate.  相似文献   

15.
The synthesis of a surface protein has been studied in Paramecium through double-labeling experiments using [14C]- and [3H]leucine-labeled bacteria as the source of radioactive amino acid. Over a 4–5 h incubation period, the turnover rate was found to be higher than that of overall cell protein. In addition, the initial label is apparently utilized during the chase period, being incorporated into protein via a puromycin insensitive pathway.  相似文献   

16.
The hyphal walls of three mycobionts, isolated from the lichens Xanthoria parietina, Tornabenia intricata and Sarcogyne sp. were investigated by two techniques: microautoradiography of fungal colonies exposed to radioactive carbohydrate precursors; and binding, in vivo, of fluorescein conjugated lectins to hyphal walls of such colonies.N-[3H] acetylglucosamine was readily incorporated into tips, young hyphal walls and septa of the three mycobionts and the free-living fungus Trichoderma viride, but not into Phytophthora citrophthora, indicating that chitin is a major component of the mycobionts' hyphal walls. All three mycobionts, but neither of the free-living fungi, incorporated [3H] mannose and [3H] mannitol into their hyphal walls.Fluorescein-conjugated wheat germ agglutinin was bound to the hyphal walls of the three mycobionts and T. viride, but not to the walls of P. citrophthora; the binding pattern was similar to the grain pattern obtained in autoradiographs after short N-[3H] acetylglucosamine labelling. As wheat germ agglutinin binds specifically to chitin oligomers, the lectin binding tests further confirmed that chitin is a mycobiont hyphal wall component.Binding characteristics of several fluorescein-conjugated lectins to the three mycobionts indicated that this technique can yield useful information concerning the chemical composition of hyphal wall surfaces.List of abbreviations FITC fluorescein isothiocyanate - WGA wheat germ agglutinin - TCA trichloroacetic acid - PNA peanut agglutinin - LA lotus agglutinin - Glc NAc N-acetylglucosamine - ConA concanavalin A - SBA soybean agglutinin - WBA waxbean agglutinin Part of an M.Sc. thesis submitted by A. Braun to the Department of Botany, Tel Aviv University.  相似文献   

17.
The synthesis of fatty acids and lipids in Nannochloropsis sp. was investigated by labeling cells in vivo with [14C]-bicarbonate or [14C]-acetate. [14C]-bicarbonate was incorporated to the greatest extent into 16:0, 16:1, and 14:0 fatty acids, which are the predominant fatty acids of triacylglycerols. However, more than half of the [14C]-acetate was incorporated into longer and more desaturated fatty acids, which are constituents of membrane lipids. [14C]-acetate was incorporated most strongly into phosphatidylcholine, which rapidly lost label during a 5-h chase period. The label associated with phosphatidylethanolamine also decreased during the chase period, whereas label in other membrane lipids and triacylglycerol increased. The dynamics of labeling, along with information regarding the acyl compositions of various lipids, suggests that 1) the primary products of chloroplast fatty acid synthesis are 14:0, 16:0, and 16:1; 2) C20 fatty acids are formed by an elongation reaction that can utilize externally supplied acetate; 3) phosphatidylcholine is a site for desaturation of C18 fatty acids; and 4) phosphatidylethanolamine may be a site for desaturation of C20 fatty acids.  相似文献   

18.
Rabbit thymocytes were isolated and incubated for various lengths of time with concanavalin A. The cultures were pulsed for the last 12.5 min of incubation with equimolar mixtures of radioactively labelled fatty acids, either [3H]arachidonate and [14C]oleate or [3H]arachidonate and [14C]palmitate, and the uptake of each fatty acid into phospholipid of plasma membrane was determined. Upon binding of the mitogen, the fatty acids were incorporated at an increased rate with a new steady state being reached between 12.5 and 42.5 min after stimulation. Initially after 12.5 min, when the two fatty acids were added together, no preferential incorporation of the polyunsaturated fatty acid arachidonate was seen compared to the saturated or monounsaturated ones, palmitate or oleate. However shortly thereafter arachidonate, when compared to palmitate or oleate, started to be preferentially incorporated into plasma membrane phospholipid so that by 4 h after activation, only arachidonate was incorporated at an increased rate: the uptake of palmitate and oleate had reverted to that of unstimulated cells. In contrast, when palmitate or oleate were added alone, after 4 h of activation incorporation was increased similar to that of arachidonate, suggesting that all long chain fatty acids compete for the same activated enzyme(s). A detailed analysis of incorporation into phospholipid species showed that all fatty acids were taken up with the highest rate into phosphatidylcholine. After activation, fatty acid incorporation was increased by approx. 50% for phosphatidylcholine: the highest stimulation rates were observed with phosphatidylinositol (3–7-fold) and phosphatidylethanolamine (2–3-fold). The data suggest that shortly after stimulation with mitogens, the membrane phospholipids start to change by replacing saturated and monounsaturated fatty acids by polyunsaturated ones, thus creating a new membrane.  相似文献   

19.
Between 60% and 100% of epidermal growth factor (EGF) binding activity was recovered from membranes of the A431 human epidermoid carcinoma cell line treated with solutions containing the nonionic detergent Triton X-100. Approximately half of the recovered binding activity was sedimented at low centrifugal forece and hence was operationally insoluble in nonionic detergent solution. Receptors in both the detergent-soluble and -insoluble fractions displayed similar affinities for 125I-EGF, and the values were in good agreement with those obtained for receptors in untreated membranes. The receptors in both fractions also formed identical direct linkage complexes with 125I-EGF in similar yield, providing no evidence for partitioning of different molecular species of EGF receptors in the detergent-soluble and -insoluble fractions. Gel chromatography of the detergent-soluble membrane fraction on Sepharose 6-B revealed heterogeneity of 125I-EGF binding activity; the smallest and most monodisperse peak of activity resolved by this technique was eluted at a Stokes radius of 95 Å. Operationally soluble 125I-EGF binding activity also behaved heterogeneously during velocity sedimentation; more than half the activity sedimented more rapidly than the apparently monidisperse, 7S form. An average of less than half the nonionic detergent-solubilized activity recovered from 10 independent membrane preparations behaved as an apparently monodisperse entity. Since a maximum of 60% of 125I-EGF binding activity was operationally soluble, less than 25% of the total EGF binding activity was recovered in an apparently monodisperse form. The remaining 75% of the EGF receptors displayed a marked tendency to exist as aggregates in nonionic detergent solutions.  相似文献   

20.
The fat body of Sarcophaga peregrina larvae was shown to incorporate 3H-β-ecdysone when it was incubated with the hormone in vitro. Most of the incorporated radioactivity was found in the cytoplasmic fraction as free β-ecdysone, not as a protein-β-ecdysone complex.Rapid uptake and accumulation of β-ecdysone was observed in the membrane vesicles of fat body cells in vitro. The apparent Km value for uptake was estimated to be 1·25 × 10?7 M. The β-ecdysone in the membrane vesicles was rapidly released when 2,4-dinitrophenol was added. These results suggest that β-ecdysone was incorporated into the membrane vesicles by active transport and not by free diffusion. The hormone is probably incorporated into larval tissues by the same mechanism as it is incorporated into the membrane vesicles of fat body cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号