共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Insulin receptor substrate 1 (IRS-1) plays a unique role in normal epidermal physiology 总被引:1,自引:0,他引:1
Sadagurski M Nofech-Mozes S Weingarten G White MF Kadowaki T Wertheimer E 《Journal of cellular physiology》2007,213(2):519-527
Insulin receptor substrate (IRS) proteins play a central role in insulin signaling. Previously we have demonstrated that insulin is essential for normal skin development and function. In the present study we investigated the involvement of the IRS-1 and IRS-2 proteins in skin physiology and in mediating insulin action in skin. For this purpose we have investigated the effects of inactivation of each of the IRSs on skin, studying skin sections and primary skin cells derived from IRS-1 or IRS-2 null mice. We have demonstrated that while the skin of the IRS-2 null mice appeared normal, the skin of the IRS-1 null mice was thinner and translucent. Histological analysis revealed that the thinning of the IRS-1 null skin was a consequence of the thinning of the spinous compartment, consisting of fewer layers. Proliferation of the IRS-1 and IRS-2 null skin epidermal cells was normal. However, the differentiation process of the IRS-1 skin and skin cells was impaired. There was a marked decrease in the induction of the expression of K1, the marker of advanced stages of skin differentiation. In contrary, IRS-2 inactivation had no effects on skin differentiation. In conclusion, we have shown for the first time that IRS-1 but not IRS-2 has an effect on skin formation and development, being one of the main activators of the differentiation process in skin keratinocytes. Furthermore, we suggest that IRS-1 and IRS-2 have distinct roles in skin physiology. 相似文献
3.
Protein-protein interactions are required for most cellular functions, yet little is known about the relationship between protein-protein interaction affinity and biological activity. To investigate this issue, we engineered a series of mutants that incrementally reduced the affinity of the yeast Sho1p SH3 domain for its in vivo target, the MAP kinase kinase Pbs2p. We demonstrate a strong linear correlation between the binding energy of these mutants and quantitative in vivo outputs from the HOG high-osmolarity response pathway controlled by Sho1p. In addition, we find that reduction in binding affinity for the correct target within this pathway causes a proportional increase in misactivation of the related mating pheromone response pathway and that strong binding affinity alone does not guarantee efficient biological activity. Our experiments also indicate that a second binding surface on the Sho1p SH3 domain is required for its proper in vivo function. 相似文献
4.
We have examined the role of autophosphorylation in insulin signal transmission by oligonucleotide directed mutagenesis of seven potential tyrosine autophosphorylation sites in the human insulin receptor. Chinese hamster ovary cells transfected with these receptors were analyzed for insulin stimulated 2-deoxyglucose uptake, thymidine incorporation, endogenous substrate phosphorylation, and in vitro kinase activity. We found that phosphorylation on tyrosine residues 953, 1316, and 1322 were not necessary for receptor-mediated signal transduction. Mutation of tyrosine 960 reduced but did not abolish the signaling capabilities of the receptor. Finally, the simultaneous mutation of tyrosine residues 1146, 1150, and 1151 (the numbering system is that of Ullrich et al. (Ullrich, A., Bell, J. R., Chen, E. Y., Herrera, R., Petruzzelli, L. M., Dull, T. J., Gray, A., Coussens, L., Liao, Y. C., Tsubokawa, M., Mason, A., Seeburg, P.H., Grunfeld, C., Rosen, O. M., and Ramachandran, J. (1985) Nature 313, 756-761) resulted in a biologically inactive receptor, suggesting that the insulin receptor can be inactivated by removal of key autophosphorylation sites. 相似文献
5.
The phytohormone ethylene is perceived in Arabidopsis by a five-member receptor family. Earlier work has demonstrated that the basic functional unit for an ethylene receptor is a disulfide-linked homodimer. We recently reported in The Journal of Biological Chemistry that the ethylene-receptor ETR1 physically associates with other ethylene receptors through higher order interactions, suggesting the existence of receptor clusters. Here we consider the implications of such clusters upon the mechanism of ethylene signal transduction. In particular, we consider how such clustering provides a cooperative mechanism, akin to what has been found for the prokaryotic chemoreceptors, by which plant sensitivity to ethylene may be increased. In addition, we consider how the dominant ethylene insensitivity conferred by some receptor mutations, such as etr1-1, may also be propagated by interactions among members of the ethylene receptor family.Key words: ethylene, receptor, ETR1, cooperativity, ArabidopsisThe plant hormone ethylene regulates growth and development, and is perceived by a five-member family of receptors (ETR1, ERS1, ETR2, ERS2 and EIN4) in Arabidopsis.1 Genetic analysis indicates that ethylene receptors are functionally redundant and negatively regulate ethylene responses through interactions with the Raf-like kinase CTR1.2–5 The functional unit of an ethylene receptor in a disulfide-linked homodimer, with each homodimer capable of binding one ethylene molecule.6,7 However, several observations suggest that propagation of the ethylene signal through the receptors is likely to involve more than just ethylene-induced changes within individual receptor homodimers. First, Arabidopsis is amazingly sensitive to ethylene and can respond to ethylene concentrations as low as 0.2 nl/L,8 300-fold lower than the Kd of the receptors for ethylene, which suggests that some mechanism exists for amplifying the input signal.7,9 Second, ethylene-insensitive mutations in the binding sites of the receptors exhibit greater dominance than would be predicted solely from a lesion within one member of the receptor family.10In our paper published in The Journal of Biological Chemistry,11 we demonstrate that the Arabidopsis ethylene receptor ETR1 physically associates with other ethylene receptors through higher order interactions. Such physical interactions suggest that the receptors exist in plants as clusters, and that models for cooperative signaling previously applied to the histidine-kinaselinked chemoreceptors of bacteria may also be applicable to the evolutionarily related ethylene receptors of plants. In bacteria, the highly packed chemoreceptors are found in clusters at one or both poles of the cell.12,13 Structural studies indicate that chemoreceptors can associate to form a ‘trimer of dimers’14,15 and also support the possibility that domain swapping may occur to produce a large interconnected array of receptors. 16 Our studies indicate that ethylene receptors can interact through their cytosolic GAF domains, identifying one possible interface through which conformational changes could be propagated in an ethylene receptor cluster.A higher-order cooperative mechanism among the ethylene receptors may explain the high sensitivity of plants to ethylene. In this model, the ethylene receptors amplify ethylene signaling by lateral signal output. Binding of ethylene to one receptor induces the conformation change of the receptor from a tense state (T) to a relaxed state (R). This conformational change is then propagated to other empty receptors in the cluster due to their physical associations with the receptor in the R state. As a result empty receptors also adopt the relaxed state (R′), resulting in amplification of the initial signal. It should be noted here that mutational evidence supports the unbound state of the receptors (T state) as being the lower energy conformation of the receptors.17 Thus, according to this model, part of the energy from ligand binding would be used to transmit conformational changes to the neighboring receptors.An alternative model that may also explain the high sensitivity of ethylene responsiveness in plants, and one that is not necessarily incompatible with the previous model, is a conjugation model.18 Here it is hypothesized that, due to the physical proximity of the ethylene receptors, that ethylene released from one receptor then binds to another receptor rather than diffusing away. Through this conjugation mechanism, one ethylene molecule could amplify its signal by converting the conformations of multiple ethylene receptors from the ethylene-unbound state (T) to the ethylene-bound state (R). This model is based on several assumptions. One assumption is that a single ethylene molecule can bind ethylene receptors in the same cluster multiple times due to the dynamic binding of ethylene and ethylene receptor. A second assumption is that, after ethylene is released from one ethylene receptor, the recovery time for that receptor to resume the T state is longer than the time required for the released ethylene to bind to and convert another receptor from the T to the R state.Models for cooperativity need to also explain the dominant ethylene insensitivity of various mutant receptors such as etr1-1, in which a missense mutation results in a receptor incapable of binding ethylene. Several studies indicate that the etr1-1 mutant receptor acts cooperatively to affect the signal output from other wild-type receptors (i.e., the presence of the etr1-1 receptor in its T state increases the likelihood of other receptors adopting the T state).10,11 This observation can be most readily explained if the dominant ethylene-insensitive mutations result in a receptor that requires more energy to undergo the T to R transition than do the wild-type receptors. For example, the etr1-1 mutation may increase the stability of the T form (a T′ state). There is evidence to support this possibility. The etr1-1 missense mutation results in a receptor unable to chelate a copper cofactor necessary for ethylene binding,19 but the effects of this mutation on signaling are different from wild-type receptors that lack their copper cofactor. The etr1-1 mutant receptor appears locked in its T state, whereas wild-type receptors lacking the copper cofactor appear to be in the R state.20 Thus etr1-1 is truly a gain-of-function mutation that alters the conformation of the receptor in ways not necessarily predicted from just the loss of the copper cofactor.In conclusion, we have attempted here to provide models that can resolve an apparent contradiction in the cooperative signaling behavior exhibited by ethylene receptors. The high sensitivity of plants to ethylene suggest cooperative changes in which an R state can be propagated within a receptor cluster, but the dominance of the ethylene ethylene-insensitive mutant etr1-1 suggests that the T state can also be propagated within a receptor cluster. It should be born in mind, however, that ethylene signaling is mediated by multiple signaling components. The ethylene receptors regulate ethylene responses through interaction with and modulation of CTR1 kinase activity. Thus, the total kinase activity of CTR1 represents the signal output from the receptors. This situation is very similar to that of the bacterial chemoreceptors, which regulate the activity of an associated histidine kinase, and, as with the chemoreceptors, the stoichiometry of CTR1 interactions with the ethylene receptors and the means by which its kinase activity is regulated are important for the elucidation of the mechanism of ethylene signal transduction. 相似文献
6.
7.
Chemokine receptors belong to the superfamily of G protein-coupled receptors, which regulate the trafficking and activation of leukocytes, and operate as coreceptors in the entry of HIV-1. To investigate the early steps in the signal transmission from the chemokine-binding site to the G protein-coupling region we engineered metal ion-binding sites at putative extracellular sites in the chemokine receptor CXCR1. We introduced histidines into sites located in the second and third putative extracellular loops of CXCR1, creating single, double, and triple mutant receptors: R199H, R203H, D265H, R199H/R203H, R199H/D265H, R203H/D265H, R203H/H207Q, and R199H/R203H/D265H. Cells expressing the double mutants R199H/D265H and R203H/D265H and the triple mutant R199H/R203H/D265H failed to trigger interleukin 8-dependent calcium responses. Interestingly, calcium responses mediated by the single mutant R203H and the double mutants R199H/R203H and R203H/H207Q were blocked by Zn(II), indicating the creation of a functional metal ion-binding site. On the other hand, cells expressing all single, double, or triple histidine-substituted CXCR1 demonstrated high affinity binding to interleukin 8 in the presence and absence of metal ions. These findings indicate that occupation of the engineered metal-binding site uncouples the chemokine-binding site from the activation mechanism in CXCR1. Most importantly, we identify for the first time elements of an early signal transduction switch of chemokine receptors before the activation of cytoplasmic G proteins. 相似文献
8.
Loss of Twist gene function arrests the growth of the limb bud shortly after its formation. In the Twist(-/-) forelimb bud, Fgf10 expression is reduced, Fgf4 is not expressed, and the domain of Fgf8 and Fgfr2 expression is altered. This is accompanied by disruption of the expression of genes (Shh, Gli1, Gli2, Gli3, and Ptch) associated with SHH signalling in the limb bud mesenchyme, the down-regulation of Bmp4 in the apical ectoderm, the absence of Alx3, Alx4, Pax1, and Pax3 activity in the mesenchyme, and a reduced potency of the limb bud tissues to differentiate into osteogenic and myogenic tissues. Development of the hindlimb buds in Twist(-/-) embryos is also retarded. The overall activity of genes involved in SHH signalling is reduced.Fgf4 and Fgf8 expression is lost or reduced in the apical ectoderm, but other genes (Fgf10, Fgfr2) involved with FGF signalling are expressed in normal patterns. Twist(+/-);Gli3(+/XtJ) mice display more severe polydactyly than that seen in either Twist(+/-) or Gli3(+/XtJ) mice, suggesting that there is genetic interaction between Twist and Gli3 activity. Twist activity is therefore essential for the growth and differentiation of the limb bud tissues as well as regulation of tissue patterning via the modulation of SHH and FGF signal transduction. 相似文献
9.
10.
Tyrosine 106 of CheY plays an important role in chemotaxis signal transduction in Escherichia coli. 总被引:5,自引:0,他引:5 下载免费PDF全文
CheY is the response regulator in the signal transduction pathway of bacterial chemotaxis. Position 106 of CheY is occupied by a conserved aromatic residue (tyrosine or phenylalanine) in the response regulator superfamily. A number of substitutions at position 106 have been made and characterized by both behavioral and biochemical studies. On the basis of the behavioral studies, the phenotypes of the mutants at position 106 can be divided into three categories: (i) hyperactivity, with a tyrosine-to-tryptophan mutation (Y106W) causing increased tumble signaling but impairing chemotaxis; (ii) low-level activity, with a tyrosine-to-phenylalanine change (Y106F) resulting in decreased tumble signaling and chemotaxis; and (iii) no activity, with substitutions such as Y106L, Y106I, Y106V, Y106G, and Y106C resulting in no chemotaxis and a smooth-swimming phenotype. All three types of mutants can be phosphorylated by CheA-phosphate in vitro to a level similar to that of wild-type CheY. Autodephosphorylation rates are similar for all categories of mutants. All mutant proteins displayed less than twofold increased rates compared with wild-type CheY. Binding of the mutant proteins to FliM was similar to that of the wild-type CheY in the CheY-FliM binding assays. The combined results from in vivo behavioral and in vitro biochemical studies suggest that the diverse phenotypes of the Y106 mutants are not due to a variation in phosphorylation or dephosphorylation ability nor in affinity for the switch. With reference to the structures of wild-type CheY and the T871 CheY mutant, our results suggest that rearrangements of the orientation of the tyrosine side chain at position 106 are involved in the signal transduction of CheY. These data also suggest that the binding of phosphoryl-CheY to the flagellar motor is a necessary, but not sufficient, event for signal transduction. 相似文献
11.
12.
TGF-beta1 induces cell cycle activation in mouse embryonic fibroblasts by down regulation of p27(Kip1) but it can also induce delay of EGF-induced cell cycle activation in these cells under similar conditions. In an attempt to determine the basis for these responses, the study of early TGF-beta1-induced signal transduction pathways in the presence and absence of EGF was undertaken. It is proposed that a likely target for the inhibition by TGF-beta1 of the early EGF-induced p42/p44 MAPK is at the c-Raf locus. The finding that the catalytic subunits of PKA are associated with Raf-1 within minutes following application of TGF-beta1 but not EGF in fibroblasts arrested in early G1 is suggestive of a role of PKA-Raf-1 interaction in TGF-beta1 induced delay of EGF-induced cell cycle kinetics. A model for TGF-beta1 induced translocation to the plasma membrane-associated Raf-1 is proposed. Reports that Rho-like GTPase activity is critical for the activation of TGF-beta1 downstream pathways raises the question as to whether Rho proteins are involved in these observed TGF-beta1-induced responses. Post-receptor signaling mechanisms for TGF-beta1 and cross-talk with PKA-mediated pathways are examined in an effort to explain the modulation by TGF-beta1 of mitogen-induced cell proliferation in mesenchymal cells. 相似文献
13.
Kim H Hwang H Hong JW Lee YN Ahn IP Yoon IS Yoo SD Lee S Lee SC Kim BG 《Journal of experimental botany》2012,63(2):1013-1024
Abscisic acid (ABA) is a phytohormone that positively regulates seed dormancy and stress tolerance. PYL/RCARs were identified an intracellular ABA receptors regulating ABA-dependent gene expression in Arabidopsis thaliana. However, their function in monocot species has not been characterized yet. Herein, it is demonstrated that PYL/RCAR orthologues in Oryza sativa function as a positive regulator of the ABA signal transduction pathway. Transgenic rice plants expressing OsPYL/RCAR5, a PYL/RCAR orthologue of rice, were found to be hypersensitive to ABA during seed germination and early seedling growth. A rice ABA signalling unit composed of OsPYL/RCAR5, OsPP2C30, SAPK2, and OREB1 for ABA-dependent gene regulation was further identified, via interaction assays and a transient gene expression assay. Thus, a core signalling unit for ABA-responsive gene expression modulating seed germination and early seedling growth in rice has been unravelled. This study provides substantial contributions toward understanding the ABA signal transduction pathway in rice. 相似文献
14.
选择性剪接在Toll样受体4信号转导通路中的作用 总被引:1,自引:0,他引:1
Toll样受体4(Toll-likereceptor4,TLR4)属于模式识别受体,可识别来自G-细菌细胞壁的脂多糖(lipopoly-saccharides,LPS),并通过MyD88依赖途径或MyD88非依赖途径进行信号转导,引发核因子-κB(NF-κB)和其他转录因子的表达,从而诱导细胞因子、化学趋化因子的产生,引起系统性炎症反应。选择性剪接是真核生物控制基因表达的一种重要机制,在TLR4通路中很多信号分子都存在着选择性剪接产生的异构体,且这些剪接异构体分子大都可负性调控TLR4信号转导通路。本文针对这方面的研究进展作一综述。 相似文献
15.
《Biochimica et Biophysica Acta (BBA)/Reviews on Biomembranes》1992,1113(3-4):271-276
Recent application of the technique of fluorescence photobleaching recovery to direct measurement of the lateral mobility of plasma membrane-localized hormone receptors has shed new light on the role of receptor lateral mobility in signal transduction. Receptor for insulin and EGF have been known for some time to be largely immobile at physiological temperatures. This presumably relates to their signal transduction mechanism, which appears to require intermolecular autophosphorylation (receptor aggregation) for activation. In contrast, G-protein coupled receptors must interact with other membrane components to bring about signal transduction and it is interesting in this regard that the adenylate cyclase (AC) activating vasopressiin V2-receptor is highly laterally mobile at 37°C. It has recently been possible to reversibly modulate the V2-receptor mobile fraction (F) to largely varuing extents and to demonstrate thereby a direct effect on the maximal rate of in vivo cAMP production at 37°C in response to vasopressin. A direct correlation between f and maximal cAMP production indicates that f may be a key parameter in hormone signal transduction in vivo, especially at sub-KD (physiological) hormone concentrations, with mobile receptors being required to effect G-protein activation. 相似文献
16.
Conservation of a receptor/signal transduction system 总被引:3,自引:0,他引:3
17.
18.
Chahrzad Montrose-Rafizadeh Huan Yang Yihong Wang Jesse Roth Marshall H. Montrose Lisa G. Adams 《Journal of cellular physiology》1997,172(3):275-283
Glucagon-like peptide-1 (7–36) amide (GLP-1), in addition to its well known effect of enhancing glucose-mediated insulin release, has been shown to have insulinomimetic effects and to enhance insulin-mediated glucose uptake and lipid synthesis in 3T3-L1 adipocytes. To elucidate the mechanisms of GLP-1 action in these cells, we studied the signal transduction and peptide specificity of the GLP-1 response. In 3T3-L1 adipocytes, GLP-1 caused a decrease in intracellular cAMP levels which is the opposite to the response observed in pancreatic beta cells in response to the same peptide. In 3T3-L1 adipocytes, free intracellular calcium was not modified by GLP-1. Peptide specificity was examined to help determine if a different GLP receptor isoform was expressed in 3T3-L1 adipocytes vs. beta cells. Peptides with partial homology to GLP-1 such as GLP-2, GLP-1 (1–36), and glucagon all lowered cAMP levels in 3T3-L1 adipocytes. In addition, an antagonist of pancreatic GLP-1 receptor, exendin-4 (9–39), acted as an agonist to decrease cAMP levels in 3T3-L1 adipocytes as did exendin-4 (1–39), a known agonist for the pancreatic GLP-1 receptor. Binding studies using 125I-GLP-1 also suggest that pancreatic GLP-1 receptor isoform is not responsible for the effect of GLP-1 and related peptides in 3T3-L1 adipocytes. Based on these results, we propose that the major form of the GLP receptor in 3T3-L1 adipocytes is functionally different from the pancreatic GLP-1 receptor. J. Cell. Physiol. 172:275–283, 1997. Published 1997 Wiley-Liss, Inc. 1 This article was prepared by a group of United States government employees and non-United States government employees, and as such is subject to 17 U.S.C. Sec. 105. 相似文献
19.
Summary Lateral diffusion of membrane-integral receptors within the plane of the membrane has been postulated to be mechanistically important for signal transduction. Direct measurement of polypeptide hormone receptor lateral mobility using fluorescence photobleaching recovery techniques indicates that tyrosine kinase receptors are largely immobile at physiological temperatures. This is presumably due to their signal transduction mechanism which requires intermolecular autophosphorylation through receptor dimerization and thus immobilization for activation. In contrast, G-protein coupled receptors must interact with other membrane components to effect signal transduction, and consistent with this, the phospholipase C-activating vasopressin V1- and adenylate cyclase activating V2-receptors are highly laterally mobile at 37°C. Modulation of the V2-receptor mobile fraction (f) has demonstrated a direct correlation between f and receptor-agonist-dependent maximal cAMP productionin vivo at 37°C. This indicates that f is a key parameter in hormone signal transduction especially at physiological hormone concentrations, consistent with mobile receptors being required to effect V2-agonist-dependent activation of G-proteins. Measurements using a V2-specific antagonist show that antagonist-occupied receptors are highly mobile at 37°C, indicating that receptor immobilization is not the basis of antagonism. In contrast to agonist-occupied receptor however, antagonistoccupied receptors are not immobilized prior to endocytosis and down-regulation. Receptors may thus be freely mobile in the absence of agonistic ligand; stimulation by hormone agonist results in receptor association with other proteins, probably including cytoskeletal components, and immobilization. Receptor immobilization may be one of the important steps of desensitization subsequent to agonistic stimulation, through terminating receptor lateral movement which is instrumental in generating and amplifying the initial stimulatory signal within the plane of the membrane.Abbreviations FBR
fluorescence photobleaching recovery
- EGF
epidermal growth factor
- AC
adenylate cyclase
- D
apparent lateral diffusion coefficient
- f
mobile fraction
- G-
GTP-binding protein
- Gs
stimulatory G-protein
- TKR
tyrosine kinase receptor
- PDGF
platelet-derived growth factor
- IL
interleukin 相似文献
20.
Rallabhandi P Nhu QM Toshchakov VY Piao W Medvedev AE Hollenberg MD Fasano A Vogel SN 《The Journal of biological chemistry》2008,283(36):24314-24325
Proteinase-activated receptor 2 (PAR(2)), a seven-transmembrane G protein-coupled receptor, is activated at inflammatory sites by proteolytic cleavage of its extracellular N terminus by trypsin-like enzymes, exposing a tethered, receptor-activating ligand. Synthetic agonist peptides (AP) that share the tethered ligand sequence also activate PAR(2), often measured by Ca(2+) release. PAR(2) contributes to inflammation through activation of NF-kappaB-regulated genes; however, the mechanism by which this occurs is unknown. Overexpression of human PAR(2) in HEK293T cells resulted in concentration-dependent, PAR(2) AP-inducible NF-kappaB reporter activation that was protein synthesis-independent, yet blocked by inhibitors that uncouple G(i) proteins or sequester intracellular Ca(2+). Because previous studies described synergistic PAR(2)- and TLR4-mediated cytokine production, we hypothesized that PAR(2) and TLR4 might interact at the level of signaling. In the absence of TLR4, PAR(2)-induced NF-kappaB activity was inhibited by dominant negative (DN)-TRIF or DN-TRAM constructs, but not by DN-MyD88, findings confirmed using cell-permeable, adapter-specific BB loop blocking peptides. Co-expression of TLR4/MD-2/CD14 with PAR(2) in HEK293T cells led to a synergistic increase in AP-induced NF-kappaB signaling that was MyD88-dependent and required a functional TLR4, despite the fact that AP exhibited no TLR4 agonist activity. Co-immunoprecipitation of PAR(2) and TLR4 revealed a physical association that was AP-dependent. The response to AP or lipopolysaccharide was significantly diminished in TLR4(-/-) and PAR (-/-)(2) macrophages, respectively, and SW620 colonic epithelial cells exhibited synergistic responses to co-stimulation with AP and lipopolysaccharide. Our data suggest a unique interaction between two distinct innate immune response receptors and support a novel paradigm of receptor cooperativity in inflammatory responses. 相似文献