首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background

Pinellia ternata is a Chinese traditional medicinal herb, used to cure diseases including insomnia, eclampsia and cervical carcinoma, for hundreds of years. Non-self-recognition in multicellular organisms can initiate the innate immunity to avoid the invasion of pathogens. A design for pathogen independent, heterosis based, fresh resistance can be generated in F1 hybrid was proposed.

Results

By library functional screening, we found that P. ternata genes, named as ptHR375 and ptHR941, were identified with the potential to trigger a hypersensitive response in Nicotiana benthamiana. Significant induction of ROS and Callose deposition in N. benthamiana leaves along with activation of pathogenesis-related genes viz.; PR-1a, PR-5, PDF1.2, NPR1, PAL, RBOHB and ERF1 and antioxidant enzymes was observed. After transformation into N. benthamiana, expression of pathogenesis related genes was significantly up-regulated to generate high level of resistance against Phytophthora capsici without affecting the normal seed germination and morphological characters of the transformed N. benthamiana. UPLC-QTOF-MS analysis of ptHR375 transformed N. benthamiana revealed the induction of Oxytetracycline, Cuelure, Allantoin, Diethylstilbestrol and 1,2-Benzisothiazol-3(2H)-one as bioactive compounds. Here we also proved that F1 hybrids, produced by crossing of the ptHR375 and ptHR941 transformed and non-transformed N. benthamiana, show significant high levels of PR-gene expressions and pathogen resistance.

Conclusions

Heterologous plant genes can activate disease resistance in another plant species and furthermore, by generating F1 hybrids, fresh pathogen independent plant immunity can be obtained. It is also concluded that ptHR375 and ptHR941 play their role in SA and JA/ET defense pathways to activate the resistance against invading pathogens.
  相似文献   

3.

Objectives

To evaluate transient expression of RNA interference (RNAi) effectors in Nicotiana benthamiana plants by using recombinant virus vectors and also oral delivery of the effectors for silencing of Mythimna separata endogenous gene expression.

Results

Mythimna separata is a serious pest of corn production in China. To evaluate RNAi approaches to target specific RNAs in M. separate, we cloned fragments of the M. separata chitinase sequences into a virus vector in order to produce RNAi effectors during virus infection and replication in plants. When the infected plants were fed to M. separata, expression levels of target MseChi1 and MseChi2 genes were down-regulated by 76 and 45 %, respectively, and sequence-specific siRNAs were detected in recipient insects. RNAi-based silencing of chitinase genes also led to body weight decreases by 43 %.

Conclusion

Our research demonstrates target mRNA knockdown and suggests a promising application for controlling of M. separata by in planta expression of RNAi effectors using a recombinant plant virus.
  相似文献   

4.
5.

Background

Rift Valley fever virus (RVFV), the causative agent of Rift Valley fever, is an enveloped single-stranded negative-sense RNA virus in the genus Phlebovirus, family Bunyaviridae. The virus is spread by infected mosquitoes and affects ruminants and humans, causing abortion storms in pregnant ruminants, high neonatal mortality in animals, and morbidity and occasional fatalities in humans. The disease is endemic in parts of Africa and the Arabian Peninsula, but is described as emerging due to the wide range of mosquitoes that could spread the disease into non-endemic regions.There are different tests for determining whether animals are infected with or have been exposed to RVFV. The most common serological test is antibody ELISA, which detects host immunoglobulins M or G produced specifically in response to infection with RVFV. The presence of antibodies to RVFV nucleocapsid protein (N-protein) is among the best indicators of RVFV exposure in animals. This work describes an investigation of the feasibility of producing a recombinant N-protein in Nicotiana benthamiana and using it in an ELISA.

Results

The human-codon optimised RVFV N-protein was successfully expressed in N. benthamiana via Agrobacterium-mediated infiltration of leaves. The recombinant protein was detected as monomers and dimers with maximum protein yields calculated to be 500–558?mg/kg of fresh plant leaves. The identity of the protein was confirmed by liquid chromatography-mass spectrometry (LC-MS) resulting in 87.35% coverage, with 264 unique peptides. Transmission electron microscopy revealed that the protein forms ring structures of ~?10?nm in diameter. Preliminary data revealed that the protein could successfully differentiate between sera of RVFV-infected sheep and from sera of those not infected with the virus.

Conclusions

To the best of our knowledge this is the first study demonstrating the successful production of RVFV N-protein as a diagnostic reagent by Agrobacterium-mediated transient heterologous expression in N. benthamiana. Preliminary testing of the antigen showed its ability to distinguish RVFV-positive animal sera from RVFV negative animal sera when used in an enzyme linked immunosorbent assay (ELISA). The cost-effective, scalable and simple production method has great potential for use in developing countries where rapid diagnosis of RVFV is necessary.
  相似文献   

6.

Key message

Expression of the bacterial nitroreductase gene, nfsI, in tobacco plastids conferred the ability to detoxify TNT.

Abstract

The toxic pollutant 2,4,6-trinitrotoluene (TNT) is recalcitrant to degradation in the environment. Phytoremediation is a potentially low cost remediation technique that could be applied to soil contaminated with TNT; however, progress is hindered by the phytotoxicity of this compound. Previous studies have demonstrated that plants transformed with the bacterial nitroreductase gene, nfsI have increased ability to tolerate and detoxify TNT. It has been proposed that plants engineered to express nfsI could be used to remediate TNT on military ranges, but this could require steps to mitigate transgene flow to wild populations. To address this, we have developed nfsI transplastomic tobacco (Nicotiana tabacum L.) to reduce pollen-borne transgene flow. Here we have shown that when grown on solid or liquid media, the transplastomic tobacco expressing nfsI were significantly more tolerant to TNT, produced increased biomass and removed more TNT from the media than untransformed plants. Additionally, transplastomic plants expressing nfsI regenerated with high efficiency when grown on medium containing TNT, suggesting that nfsI and TNT could together be used to provide a selectable screen for plastid transformation.
  相似文献   

7.
8.

Objectives

To characterize the ent-kaurene oxidase (KO) involved in maize (Zea mays) gibberellin (GA) biosynthesis.

Results

Two putative KO genes were identified in maize based on the homologous alignment. Biochemical characterization indicated that one of them encoded a cytochrome P450 monooxygenase (P450) CYP701A26, which reacted with ent-kaurene to form ent-kaurenoic acid, the key intermediate of GA biosynthesis. CYP701A26 showed constitutive expression in active growing tissues and no inducible expression, which led to putative designation of CYP701A26 as the ZmKO. CYP701A26 exhibited substrate promiscuity to catalyze oxidation of other labdane related diterpenes. Another maize KO homologue, CYP701A43 did not show any catalytic activities on ent-kaurene or other tested diterpenes. It exhibited inducible gene expression and might accept unknown substrates to play roles in specialized metabolism for stress response.

Conclusions

CYP701A26 was characterized to exhibit ent-kaurene oxidase activity with substrate promiscuity and might be involved in maize GA biosynthesis, and its homologue CYP701A43 did not show such function and might play roles in stress response.
  相似文献   

9.

Objectives

To investigate the ability of the proteases, subtilisin and α-chymotrypsin (aCT), to inhibit the adhesion of Candida albicans biofilm to a polypropylene surface.

Results

The proteases were immobilized on plasma-treated polypropylene by covalently linking them with either glutaraldehyde (GA) or N′-diisopropylcarbodiimide (DIC) and N-hydroxysuccinimide (NHS). The immobilization did not negatively affect the enzyme activity and in the case of subtilisin, the activity was up to 640% higher than that of the free enzyme when using N-acetyl phenylalanine ethyl ester as the substrate. The efficacies against biofilm dispersal for the GA-linked SubC and aCT coatings were 41 and 55% higher than the control (polypropylene coated with only GA), respectively, whereas no effect was observed with enzymes immobilized with DIC and NHS. The higher dispersion efficacy observed for the proteases immobilized with GA could be both steric (proper orientation of the active site) and dynamic (higher protein mobility/flexibility).

Conclusions

Proteases immobilized on a polypropylene surface reduced the adhesion of C. albicans biofilms and therefore may be useful in developing anti-biofilm surfaces based on non-toxic molecules and sustainable strategies.
  相似文献   

10.

Objective

Through heterologous expression of the tetrahydrocannabinolic acid synthase (THCAS) coding sequence from Cannabis sativa L. in Nicotiana benthamiana, we evaluated a transient plant-based expression system for the production of enzymes involved in cannabinoid biosynthesis.

Results

Thcas was modularized according to the GoldenBraid grammar and its expression tested upon alternative subcellular localization of the encoded catalyst with and without fusion to a fluorescent protein. THCAS was detected only when ER targeting was used; cytosolic and plastidal localization resulted in no detectable protein. Moreover, THCAS seems to be glycosylated in N. benthamiana, suggesting that this modification might have an influence on the stability of the protein. Activity assays with cannabigerolic acid as a substrate showed that the recombinant enzyme produced not only THCA (123 ± 12 fkat g FW ?1 activity towards THCA production) but also cannabichromenic acid (CBCA; 31 ± 2.6 fkat g FW ?1 activity towards CBCA production).

Conclusion

Nicotiana benthamiana is a suitable host for the generation of cannabinoid producing enzymes. To attain whole pathway integration, careful analysis of subcellular localization is necessary.
  相似文献   

11.
12.
13.
14.

Objectives

To achieve biosynthesis of caffeoylmalic acid from glucose in engineered Escherichia coli.

Results

We constructed the biosynthetic pathway of caffeoylmalic acid in E. coli by co-expression of heterologous genes RgTAL, HpaBC, At4CL2 and HCT2. To enhance the production of caffeoylmalic acid, we optimized the tyrosine metabolic pathway of E. coli to increase the supply of the substrate caffeic acid. Consequently, an E. coliE. coli co-culture system was used for the efficient production of caffeoylmalic acid. The final titer of caffeoylmalic acid reached 570.1 mg/L.

Conclusions

Microbial production of caffeoylmalic acid using glucose has application potential. In addition, microbial co-culture is an efficient tool for producing caffeic acid esters.
  相似文献   

15.
16.

Objectives

To develop a versatile Trichoderma reesei (teleomorph Hypocrea jecorina) expression system for the high-purity production of heterologous proteins.

Results

The versatile T. reesei expression system is based on xyn1 and xyn2 promoters, A824V transition in XYRI, and a bicomponent carbon source strategy. Red fluorescent protein gene rfp and alkaline endoglucanase EGV gene egv3 from Humicola insolens were used as reporter genes to test our versatile expression system

Conclusions

The versatile T. reesei expression system can be applied to produce heterologous proteins with high purity and high yield.
  相似文献   

17.

Background

Emerging tospoviruses cause significant yield losses and quality reduction in vegetables, ornamentals, and legumes throughout the world. So far, eight tospoviruses were reported in China. Tomato fruits displaying necrotic and concentric ringspot symptoms were found in Guizhou province of southwest China.

Finding

ELISA experiments showed that crude saps of the diseased tomato fruit samples reacted with antiserum against Tomato zonate spot virus (TZSV). Electron microscopy detected presence of quasi-spherical, enveloped particles of 80–100 nm in such saps. The putative virus isolate was designated 2009-GZT. Mechanical back-inoculation showed that 2009-GZT could infect systemically some solanaceous crop and non-crop plants including Capiscum annuum, Datura stramonium, Nicotiana benthamiana, N. rustica, N. tabacum and Solanum lycopersicum. The 3012 nt full-length sequence of 2009-GZT S RNA shared 68.2% nt identity with that of Calla lily chlorotic spot virus (CCSV), the highest among all compared viruses. This RNA was predicted to encode a non-structural protein (NSs) (459 aa, 51.7 kDa) and a nucleocapsid protein (N) (278 aa, 30.3 kDa). The N protein shared 85.8% amino acid identity with that of CCSV. The NSs protein shared 82.7% amino acid identity with that of Tomato zonate spot virus(TZSV).

Conclusion

Our results indicate that the isolate 2009-GZT is a new species of Tospovirus, which is named Tomato necrotic spot virus (TNSV). This finding suggests that a detailed survey in China is warranted to further understand the occurrence and distribution of tospoviruses.
  相似文献   

18.
19.

Aims

The plant-beneficial bacterium Pseudomonas fluorescens F113 harbours an acdS gene, which enables deamination of 1-aminocyclopropane-1-carboxylate. The impact of abiotic and biotic factors on the expression of this gene was assessed, as well as the plant-beneficial properties of F113 under different soil moistures.

Methods

An acdS-egfp biosensor was constructed in F113, validated in vitro and used to analyse, by microscopy, its expression on roots of Zea mays comparatively to Beta vulgaris. An acdS mutant was constructed and compared with the wild-type to characterize plant-beneficial effects of F113 on maize lines EP1 and FV2, under well-watered and water deficit conditions.

Results

Different patterns of root colonization and acdS expression were observed according to plant genotype. acdS rhizoplane expression was higher on Beta vulgaris, and on maize line FV2 and hybrid PR37Y15 than on maize line EP1 and teosinte. Strain F113 but not its acdS mutant promoted root growth of EP1 under well-watered conditions and germination of FV2 under water deficit conditions.

Conclusions

Maize lines differed in their ability to induce acdS expression and to respond to P. fluorescens F113. The maize line leading to higher acdS expression, FV2, was the one benefiting from inoculation under water deficit.
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号