首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hemodynamic and anti-ischemic effects of nitroglycerin (GTN) are rapidly blunted as a result of the development of nitrate tolerance. Long-term nitrate treatment also is associated with decreased vascular responsiveness caused by changes in intrinsic mechanisms of the tolerant vasculature itself. According to the oxidative stress concept, increased vascular superoxide and peroxynitrite production as well as an increased sensitivity to vasoconstrictors secondary to activation of protein kinase C as well as vascular NADPH oxidases contribute to the development of tolerance. Recent experimental work has defined new tolerance mechanisms, including inhibition of the enzyme that bioactivates GTN (e.g. mitochondrial aldehyde dehydrogenase [ALDH-2]) and mitochondria as potential sources of reactive oxygen species (ROS). GTN-induced ROS inhibit the bioactivation of GTN by ALDH-2. Both mechanisms impair GTN bioactivation, and now converge at the level of ALDH-2 to support a new theory for GTN tolerance and GTN-induced endothelial dysfunction. The consequences of these processes for GTN downstream targets (e.g. soluble guanylyl cyclase, cyclic guanosine monophosphate-dependent protein kinase) and toxic effects contributing to endothelial dysfunction (e.g. prostacyclin synthase inhibition and NO synthase uncoupling) are discussed. Tolerance and endothelial dysfunction are distinct processes which rely on different sources of ROS and there is good evidence for a crosstalk between these distinct processes. Finally, we will address the question whether ALDH-2 inactivation by nitroglycerin could be a useful marker for clinical nitrate tolerance and discuss the redox-regulation of this enzyme by oxidative stress and dihydrolipoic acid.  相似文献   

2.
The onset of metastasis is a critical event in the natural history of cancer, and is generally associated with a poor clinical outcome. Mechanistically, the metastatic process is made of several steps that are biologically distinct and now rather well characterized. Several explanatory models have been proposed: selective models (clonal selection), adaptive models (initial oncogenesis), involvement of tumor "stem" cells, epithelial-mesenchymal transition… The next progresses are expected to come from the characterization of circulating and disseminated tumor cells, which are two recently opened windows on the metastatic process in patients.  相似文献   

3.
Abstract

Geometries and interaction energies of unusual UU and AA base pairs with one standard hydrogen bond (H-bond) and additional C-H…O or C-H…N contacts have been determined by quantum-chemical methods taking into account electron correlation. Whereas the C-H bond length in the UU C-H…O contact increases upon complex formation (H-bond pattern), the C-H bond of the AA C-H….N interaction is shortened (anti-H-bond pattern). The same properties are found for model complexes between U or A and formaldehyde that have intermolecular C-H…acceptor contacts but no standard H-bonds. Both the C-H…acceptor H-bond and anti-H-bond interactions are attractive. A possible influence of the donor CH group charge distribution on the interaction pattern is discussed.  相似文献   

4.
Acute hemodynamic effects of beraprost sodium were tested in a canine vasoconstrictive pulmonary hypertension model induced by the continuous infusion of U-46619, a thromboxane A(2)mimetic. The effects of beraprost were compared with those of prostaglandin E(1), nitroglycerin and nifedipine. Beraprost and nitroglycerin decreased pulmonary arterial pressure. On the other hand, prostaglandin E(1)and nifedipine increased pulmonary arterial pressure. All drugs except nitroglycerin increased cardiac output and decreased pulmonary vascular resistance. Beraprost was selective to pulmonary circulation, while nitroglycerin, prostaglandin E(1), and nifedipine showed poor selectivity for the pulmonary vasculature. These results suggest that the vasodilative effect of beraprost is the most selective for the pulmonary circulation among these four vasodilators.  相似文献   

5.
Zhou ZH  Deng HW  Li YJ 《Life sciences》2001,69(11):1313-1320
Previous investigations have suggested that vasodilator responses to nitroglycerin involve in stimulation of calcitonin gene-related peptide (CGRP) release. Therefore, we tested whether depressor effect of nitroglycerin is mediated by CGRP. A catheter was inserted into the left femoral artery to record blood pressure and drugs were administered through cannulae inserted into the right femoral vein. Nitroglycerin (15, 30, 60, 120 and 150 microg/kg) caused depressor effects in a dose-dependent manner. Nitroglycerin (30 or 150 microg/kg) caused a depressor effect with an increase in plasma concentrations of CGRP. The effects of nitroglycerin were significantly attenuated by methylene blue, an inhibitor of guanylate cyclase, or by pretreatment with capsaicin (50 mg x kg(-1), s.c.), which depletes neurotransmitters in sensory nerves. The present study suggests that the depressor effect of nitroglycerin is related to stimulation of CGRP release in the rat.  相似文献   

6.
The aim of this study was to investigate whether the rapid improvement of the clinical condition of patients after administration of nitroglycerin can be documented objectively using the apexcardiogram. The study was performed on 28 male patients with coronary heart disease whose clinical condition allowed us to perform the initial polygraphic examination during an attack of angina pectoris. The heart rate and three apexcardiographic indexes were determined from non-invasive polygraphic tracings. The first index was the a/H (ratio: amplitude of apexcardiographic "a" wave to total amplitude of apexcardiogram). The second and third were the velocity of the anterior left ventricular wall motion during both isovolumic contraction (VwmC) and isovolumic relaxation (VwmR) of the left ventricle. The mean differences from initial values were calculated after 2, 4, 6 and 10 min following administration of nitroglycerin. Significant changes already occurred during the second minute after administration of nitroglycerin. All parameters remained significantly changed up to the 10th minute after this treatment. According to our results, the cardiovascular response to sublingual administration of nitroglycerin can be objectively evaluated by apexcardiography.  相似文献   

7.
Methylene blue selectively inhibits pulmonary vasodilator responses in cats   总被引:5,自引:0,他引:5  
The effects of methylene blue on vascular tone and the responses to pressor and depressor substances were investigated in the constricted feline pulmonary vascular bed under conditions of controlled blood flow and constant left atrial pressure. When tone was elevated with U46619, intralobar injections of acetylcholine, bradykinin, nitroglycerin, isoproterenol, epinephrine, and 8-bromoguanosine-3',5'-cyclic monophosphate (8-bromo-cGMP) dilated the pulmonary vascular bed. Intralobar infusions of methylene blue elevated lobar arterial pressure without altering base-line left atrial or aortic pressure, heart rate, or cardiac output. When methylene blue was infused in concentrations that raised lobar arterial pressure to values similar to those attained during U46619 infusion, the pulmonary vasodilator responses to acetylcholine, bradykinin, and nitroglycerin were reduced significantly, whereas vasodilator responses to isoproterenol, epinephrine, and 8-bromo-cGMP were not altered. Moreover, the pressor responses to angiotensin II and BAY K 8644 during U46619 infusion and during methylene blue infusion were similar. The enhancing effects of methylene blue on vascular tone and inhibiting effects of this agent on responses to acetylcholine, bradykinin, and nitroglycerin were reversible. These responses returned to control value when tone was again increased with U46619, 30-45 min after the methylene blue infusion was terminated. The present data are consistent with the hypothesis that cGMP may play a role in the regulation of tone in the feline pulmonary vascular bed and in the mediation of vasodilator responses to the endothelium-dependent vasodilators, acetylcholine and bradykinin, and to nitrogen oxide-containing vasodilators such as nitroglycerin.  相似文献   

8.
A metric on binary trees is defined to give the similarity of two dendrograms. One of the major desirable properties of the proposed tree similarity measure is to clarify the decision ordering nature of biological trees. This metric is applied to evolutionary tree reconstructions and comparative embryogenesis. The mathematical properties of this metric are discussed, and an algorithm is proposed to compute the metric.“ …. our essential task lies in the comparison of related forms rather than in the precise definition of each; and the deformation of a complicated figure may be a phenomenon easy of comprehension, though the figure itself have to be left unanalysed ….”  相似文献   

9.
The effect of sodium nitrite, amyl nitrite and nitroglycerin (glyceryl trinitrate) on the hemoglobin of adult erythrocytes was examined in vitro. Both amyl nitrite and nitroglycerin reacted immediately with oxyhemoglobin to effect oxidation into methemoglobin while sodium nitrite required an inductionary period (lag phase) prior to the reaction. Kinetic studies of the biomolecular rate law for each of the preceding reaction's reactionary periods (log phases) allowed rate constant calculations to be made. The values are 1.14 x 10(4) M-1 min-1, 7.45 x 10(4) M-1 min-1, and 3.50 x 10(1) M-1 min-1 for sodium nitrite, amyl nitrite and nitroglycerin, respectively. A comparison of the amyl nitrite and nitroglycerin rate constants reveals that amyl nitrite is approximately 2000-fold more toxic to oxyhemoglobin than nitroglycerin. These oxidant's effect on in vitro hemoglobin solutions are comparable since both reactions approximate to rectangular hyperbolae. Sodium nitrite reacts about 300-fold faster with oxyhemoglobin than does nitroglycerin. However, the sodium nitrite reaction proceeds in a sigmoidal fashion which makes a strict comparison between these compounds relative toxicities less clear cut.  相似文献   

10.
目的:探讨地尔硫卓治疗不稳定型心绞痛的临床疗效,以供医生参考使用。方法:将我院2010年1月~2011年5月收治的120例不稳定型心绞痛的患者随机分为两组,对照组患者给予硝酸甘油,实验组患者给予地尔硫卓,比较两组患者的治疗效果。结果:实验组患者的总有效率为93.33%(56/60),对照组患者总有效率为78.33%(47/60),实验组明显优于对照组患者,P<0.05。结论:地尔硫卓治疗不稳定型心绞痛具有较好的疗效,值得在临床应用。  相似文献   

11.
Nutritional interventions may favourably regulate dyslipoproteinemia and, hence, decrease cardiovascular disease risk. Lipoprotein kinetic studies afford a powerful approach to understanding and defining the mechanisms by which such interventions modulate lipoprotein metabolism. Stable isotope tracers and compartment models are now commonly employed for such studies. We review the recent application of tracer methodologies to the study of dyslipoproteinemia in the metabolic syndrome. We also focus on the effects of nutritional intervention studies that have addressed the effects of weight loss, n-3 fatty acids, plant sterols and alcohol on very low density lipoprotein, LDL and HDL metabolism. The potential for statin treatment as an adjunct to dietary modification is also discussed. New tracer methodologies are discussed, specifically those referring to reverse cholesterol transport. The nutritional interventions discussed in this review are readily transferable into clinical preventive practice. The potential benefits to be gained by weight loss and fish oil supplementation in the metabolic syndrome extend beyond their specific and positive effects on lipoprotein metabolism. Furthermore, recent developments in tracer methodologies afford new tools for probing the in-vivo pathways of lipoprotein metabolism in future studies.  相似文献   

12.
The effects of nitrates on Ca2+ increase and cyclic nucleotide content in human platelets were studied. Nitroglycerin, isosorbide dinitrate and sodium nitroprusside were found to inhibit the intracellular Ca2+ increase induced by the platelet activating factor, ADP and a stable thromboxane A2 analog--U46619. The inhibiting effect of sodium nitroprusside manifested itself at lower concentrations than those of nitroglycerin and isosorbide dinitrate. Nitroglycerin suppressed the Mn2+ entry into the cells and caused a 2-fold increase of the cGMP content which correlates with the calcium blocking activity. Methylene blue, a guanylate cyclase and glutathione reductase inhibitor, decreased the calcium blocking effect of nitroglycerin and its influence on the cyclic nucleotide content but failed to suppress the inhibitory effect of sodium nitroprusside. The data obtained suggest that the effects of nitrates on platelets are mediated by their influence on guanylate cyclase which leads to a cyclic nucleotide content increase and to a calcium blocking effect.  相似文献   

13.
Gupta M  Chauhan VS 《Biopolymers》2011,95(3):161-173
The de novo design of peptides and proteins has emerged as an approach for investigating protein structure and function. The success relies heavily on the ability to design relatively short peptides that can adopt stable secondary structures. To this end, substitution with α,β-dehydroamino acids, especially α,β-didehydrophenylalanine (ΔPhe or ΔF) has blossomed in manifold directions, providing a rich diversity of well-defined structural motifs. Introduction of α,β-didehydrophenylalanine induces β-bends in small and 3(10)-helices in longer peptide sequences. Most favorable conformation of ΔF residues are (φ,ψ) ~(60°, 30°), (-60°, -30°), (-60°, 150°), and (60°, -150°). These features have been exploited in designing helix-turn-helix, helical bundle arrangements, and glycine zipper type super secondary structural motifs. The unusual capability of α,β-didehydrophenylalanine ring to form a variety of multicentered interactions (N-H…O, C-H…O, C-H…π, and N-H…π) suggests its possible exploitation for future de novo design of supramolecular structures. This work has now been extended to the de novo design of peptides with antibiotic, antifibrillization activity, etc. More recently, self-assembling properties of small dehydropeptides have been explored. This review focuses primarily on the structural and functional behavior of α,β-didehydrophenylalanine containing peptides.  相似文献   

14.
The long-term benefits of nitroglycerin therapy are limited by tolerance development. Understanding the precise nature of mechanisms underlying nitroglycerin-induced endothelial cell dysfunction may provide new strategies to prevent tolerance development. In this line, we tested interventions to prevent endothelial dysfunction in the setting of nitrate tolerance. When bovine aortic endothelial cells (BAECs) were continuously treated with nitric oxide (NO) donors, including nitroglycerin, over 2-3 days, basal production of nitrite and nitrate (NO(x)) was diminished. The diminished basal NO(x) levels were mitigated by intermittent treatment allowing an 8-h daily nitrate-free interval during the 2- to 3-day treatment period. Addition of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor apocynin restored the basal levels of NO(x) that were decreased by continuous nitroglycerin treatment of BAECs. Apocynin caused significant improvement of increased mRNA and protein levels of endothelial nitric oxide synthase (eNOS) in BAECs given nitroglycerin continuously over the treatment period. Apocynin also reduced endothelial production of reactive oxygen species (ROS) after continuous nitroglycerin treatment. These results showed an essential similarity to the effects of a nitrate-free interval. Application of the NOS inhibitor N(omega)-nitro- l-arginine methyl ester caused a recovery effect on basal NO(x) and eNOS expression but was without effect on ROS levels in continuously NO donor-treated BAECs. In conclusion, the present study characterized abnormal features and functions of endothelial cells following continuous NO donor application. We suggest that inhibition of NADPH oxidase, by preventing NO donor-induced endothelial dysfunction, may represent a potential therapeutic strategy that confers protection from nitrate tolerance development.  相似文献   

15.
Clinical studies have suggested that long-term nitrate treatment does not improve and may even worsen cardiovascular mortality, and the possible role of nitrate tolerance has been suspected. Nitrate tolerance has been recently shown to increase vascular superoxide and peroxynitrite production leading to vascular dysfunction. Nevertheless, nitrates exert direct cardiac effects independent from their vascular actions. Therefore, we investigated whether in vivo nitroglycerin treatment leading to vascular nitrate tolerance increases cardiac formation of nitric oxide (NO), reactive oxygen species, and peroxynitrite, thereby leading to cardiac dysfunction. Nitrate tolerance increased bioavailability of NO in the heart without increasing formation of reactive oxygen species. Despite elevated myocardial NO, neither cardiac markers of peroxynitrite formation nor cardiac mechanical function were affected by nitroglycerin treatment. However, serum free nitrotyrosine, a marker for systemic peroxynitrite formation, was significantly elevated in nitroglycerin-treated animals. This is the first demonstration that, although the systemic effects of nitroglycerin may be deleterious due to enhancement of extracardiac peroxynitrite formation, nitroglycerin does not result in oxidative damage in the heart.  相似文献   

16.
Histidinium perchlorate having protecting groups at the α-amino and α-carboxylate group is studied by IR spectroscopy as function of the addition of protected histidine molecules. An intense continuous absorption arises, indicating that the N+H…N ? N…H+N formed are easily polarizable hydrogen bonds. From the integral absorbance of a band the concentration of the histidine-histidinium complex, i.e. the concentration of the easily polarizable hydrogen bonds is determined. It is shown that the absorbance of the continuum increases in proportion to the concentration of the easily polarizable N+H…N ? N…H+N bonds. Finally, it is discussed that via such an easily polarizable histidine-histidinium hydrogen bond a proton translocation in the active center of ribonuclease A may occur.  相似文献   

17.
Yang N  Ray DW  Matthews LC 《Steroids》2012,77(11):1041-1049
Glucocorticoids (GCs) are the most potent anti-inflammatory agents known. A major factor limiting their clinical use is the wide variation in responsiveness to therapy. The high doses of GC required for less responsive patients means a high risk of developing very serious side effects. Variation in sensitivity between individuals can be due to a number of factors. Congenital, generalized GC resistance is very rare, and is due to mutations in the glucocorticoid receptor (GR) gene, the receptor that mediates the cellular effects of GC. A more common problem is acquired GC resistance. This localized, disease-associated GC resistance is a serious therapeutic concern and limits therapeutic response in patients with chronic inflammatory disease. It is now believed that localized resistance can be attributed to changes in the cellular microenvironment, as a consequence of chronic inflammation. Multiple factors have been identified, including alterations in both GR-dependent and -independent signaling downstream of cytokine action, oxidative stress, hypoxia and serum derived factors. The underlying mechanisms are now being elucidated, and are discussed here. Attempts to augment tissue GC sensitivity are predicted to permit safe and effective use of low-dose GC therapy in inflammatory disease.  相似文献   

18.
The CB1 and CB2 cannabinoid receptors have been described as two prime sites of action for endocannabinoids. Both the localization and pharmacology of these two G-protein-coupled receptors are well-described, and numerous selective ligands have been characterized. The physiological effects of Cannabis sativa (cannabis) and a throughout study of the endocannabinoid system allowed for the identification of several pathophysiological conditions--including obesity, dyslipidemia, addictions, inflammation, and allergies--in which blocking the cannabinoid receptors might be beneficial. Many CB1 receptor antagonists are now in clinical trials, and the results of several studies involving the CB1 antagonist lead compound rimonabant (SR141716A) are now available. This review describes the pharmacological tools that are currently available and the animal studies supporting the therapeutic use of cannabinoid receptor antagonists and inverse agonists. The data available from the clinical trials are also discussed.  相似文献   

19.
Tensin 1 was originally described as a focal adhesion adaptor protein, playing a role in extracellular matrix and cytoskeletal interactions. Three other Tensin proteins were subsequently discovered, and the family was grouped as Tensin. It is now recognized that these proteins interact with multiple cell signalling cascades that are implicated in tumorigenesis. To understand the role of Tensin 1–3 in neoplasia, current molecular evidence is categorized by the hallmarks of cancer model. Additionally, clinical data involving Tensin 1–3 are reviewed to investigate the correlation between cellular effects and clinical phenotype. Tensin proteins commonly interact with the tumour suppressor, DLC1. The ability of Tensin to promote tumour progression is directly correlated with DLC1 expression. Members of the Tensin family appear to have tumour subtype-dependent effects on oncogenesis; despite numerous data evidencing a tumour suppressor role for Tensin 2, association of Tensins 1–3 with an oncogenic role notably in colorectal carcinoma and pancreatic ductal adenocarcinoma is of potential clinical relevance. The complex interplay between these focal adhesion adaptor proteins and signalling pathways are discussed to provide an up to date review of their role in cancer biology.  相似文献   

20.
The mechanism whereby nitroglycerin relaxes vascular smooth muscle remains uncertain. A current hypothesis suggests that nitroglycerin reacts with critical cellular sulfhydryl groups to form an intermediate, which activates guanylate cyclase, resulting in cGMP accumulation and relaxation. This study investigated further the potential involvement of sulfhydryls in nitroglycerin-induced vascular smooth muscle relaxation by evaluating effects of a variety of sulfhydryl alkylating and reducing agents on responses to nitroglycerin and other relaxants in bovine coronary arterial strips submaximally contracted using 30 mM K. Whereas 10(-4) M 5,5'-dithiobis-(2-nitrobenzoic acid), 10(-5) MN-ethylmaleimide, and 10(-4) MN-naphthylmaleimide did not affect nitroglycerin-induced relaxation, 10(-4) MN-ethylmaleimide and 10(-4) M ethacrynic acid significantly inhibited relaxation induced by nitroglycerin. Both ethacrynic acid and N-ethylmaleimide at 10(-4) M also inhibited relaxation induced by sodium nitroprusside. N-ethylmaleimide, but not ethacrynic acid, inhibited relaxation induced by isoproterenol and forskolin. Ethacrynic acid significantly reduced both relaxation and cGMP elevation induced by both 10(-7) M nitroglycerin and 10(-7) M sodium nitroprusside. Ethacrynic acid, but not N-ethylmaleimide, significantly reduced relaxation induced by 8-Br-cGMP. Pretreatment with the sulfhydryl-containing agents N-acetylcysteine, 2-mercaptoethanol, or dithiothreitol, at 10(-3) M did not affect nitroglycerin-induced relaxation in nontolerant arteries. Similarly, N-acetylcysteine and dithiothreitol did not alter the depressed responses to nitroglycerin in arteries in which tolerance to nitroglycerin was induced in vitro. A slight but statistically significant reversal of nitroglycerin-tolerance occurred after treatment of tolerant arteries with 2-mercaptoethanol.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号