首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.

Background

MicroRNAs (miRNAs) regulate numerous crucial abiotic stress processes in plants. However, information is limited on their involvement in cadmium (Cd) stress response and tolerance mechanisms in plants, including ramie (Boehmeria nivea L.) that produces a number of economic valuable as an important natural fibre crop and an ideal crop for Cd pollution remediation.

Results

Four small RNA libraries of Cd-stressed and non-stressed leaves and roots of ramie were constructed. Using small RNA-sequencing, 73 novel miRNAs were identified. Genome-wide expression analysis revealed that a set of miRNAs was differentially regulated in response to Cd stress. In silico target prediction identified 426 potential miRNA targets that include several uptake or transport factors for heavy metal ions. The reliability of small RNA sequencing and the relationship between the expression levels of miRNAs and their target genes were confirmed by quantitative PCR (q-PCR). We showed that the expression patterns of miRNAs obtained by q-PCR were consistent with those obtained from small RNA sequencing. Moreover, we demonstrated that the expression of six randomly selected target genes was inversely related to that of their corresponding miRNAs, indicating that the miRNAs regulate Cd stress response in ramie.

Conclusions

This study enriches the number of Cd-responsive miRNAs and lays a foundation for the elucidation of the miRNA-mediated regulatory mechanism in ramie during Cd stress.
  相似文献   

4.

Background

Clinical statement alone is not enough to predict the progression of disease. Instead, the gene expression profiles have been widely used to forecast clinical outcomes. Many genes related to survival have been identified, and recently miRNA expression signatures predicting patient survival have been also investigated for several cancers. However, miRNAs and their target genes associated with clinical outcomes have remained largely unexplored.

Methods

Here, we demonstrate a survival analysis based on the regulatory relationships of miRNAs and their target genes. The patient survivals for the two major cancers, ovarian cancer and glioblastoma multiforme (GBM), are investigated through the integrated analysis of miRNA-mRNA interaction pairs.

Results

We found that there is a larger survival difference between two patient groups with an inversely correlated expression profile of miRNA and mRNA. It supports the idea that signatures of miRNAs and their targets related to cancer progression can be detected via this approach.

Conclusions

This integrated analysis can help to discover coordinated expression signatures of miRNAs and their target mRNAs that can be employed for therapeutics in human cancers.
  相似文献   

5.

Background

MicroRNAs (miRNAs) regulate many biological processes by post-translational gene silencing. Analysis of miRNA expression profiles is a reliable method for investigating particular biological processes due to the stability of miRNA and the development of advanced sequencing methods. However, this approach is limited by the broad specificity of miRNAs, which may target several mRNAs.

Result

In this study, we developed a method for comprehensive annotation of miRNA array or deep sequencing data for investigation of cellular biological effects. Using this method, the specific pathways and biological processes involved in Alzheimer’s disease were predicted with high correlation in four independent samples. Furthermore, this method was validated for evaluation of cadmium telluride (CdTe) nanomaterial cytotoxicity. As a result, apoptosis pathways were selected as the top pathways associated with CdTe nanoparticle exposure, which is consistent with previous studies.

Conclusions

Our findings contribute to the validation of miRNA microarray or deep sequencing results for early diagnosis of disease and evaluation of the biological safety of new materials and drugs.
  相似文献   

6.

Key message

High-throughput sequencing and subsequent analysis identified multiple miRNAs closely related to ovule, indicating that miRNAs are important in Ginkgo biloba ovule.

Abstract

MicroRNAs (miRNAs) are small, noncoding, regulatory RNAs that play crucial regulatory roles in the process of plant growth and development. However, limited information regarding their functions in gymnosperm reproduction is available. Here, we used high-throughput sequencing combined with computational analysis to identify and characterize miRNAs from ovules of G. biloba, and identified 34 conserved miRNA families and 99 novel miRNAs. The precursor sequences of several of the conserved and novel miRNAs were further validated by RT-PCR and sequencing. Furthermore, we found that some target genes, e.g. MYB, homeodomain-leucine zipper (HD-ZIPIII) and auxin response factor (ARF), may be involved in ovule development, and that the significantly enriched pathways of some miRNA targets were related to plant–pathogen interactions and the biosynthesis of secondary metabolites. Twenty-six conserved miRNA families were found to be expressed in both leaves and ovules, while miRNA156, miRNA164, miRNA167, miRNA169, miRNA172 and miRNA390 were up-regulated in ovules. Thus, multiple miRNAs closely related to G. biloba ovule development were identified, resulting in a greater understanding of the important regulatory functions of miRNAs in plant ovules.
  相似文献   

7.
8.
9.

Background

MicroRNAs (miRNAs) have been shown to play important roles in regulating gene expression. Since miRNAs are often evolutionarily conserved and their precursors can be folded into stem-loop hairpins, many miRNAs have been predicted. Yet experimental confirmation is difficult since miRNA expression is often specific to particular tissues and developmental stages.

Results

Analysis of 29 human and 230 mouse longSAGE libraries revealed the expression of 22 known and 10 predicted mammalian miRNAs. Most were detected in embryonic tissues. Four SAGE tags detected in human embryonic stem cells specifically match a cluster of four human miRNAs (mir-302a, b, c&d) known to be expressed in embryonic stem cells. LongSAGE data also suggest the existence of a mouse homolog of human and rat mir-493.

Conclusion

The observation that some orphan longSAGE tags uniquely match miRNA precursors provides information about the expression of some known and predicted miRNAs.
  相似文献   

10.

Background

A majority of autoimmune diseases, including systemic lupus erythematosus (SLE), occur predominantly in females. Recent studies have identified specific dysregulated microRNAs (miRNAs) in both human and murine lupus, implying an important contribution of these miRNAs to lupus pathogenesis. However, to date, there is no study that examined sex differences in miRNA expression in immune cells as a plausible basis for sex differences in autoimmune disease. This study addresses this aspect in NZB/WF1 mice, a classical murine lupus model with marked female bias, and further investigates estrogen regulation of lupus-associated miRNAs.

Methods

The Taqman miRNA assay system was used to quantify the miRNA expression in splenocytes from male and female NZB/WF1 mice at 17–18, 23, and 30 weeks (wks) of age. To evaluate potential estrogen's effect on lupus-associated miRNAs, 6-wk-old NZB/WF1 male mice were orchidectomized and surgically implanted with empty (placebo) or estrogen implants for 4 and 26 wks, respectively. To assess the lupus status in the NZB/WF1 mice, serum anti-dsDNA autoantibody levels, proteinuria, and renal histological changes were determined.

Results

The sex differences in the expression of lupus-associated miRNAs, including the miR-182-96-183 cluster, miR-155, miR-31, miR-148a, miR-127, and miR-379, were markedly evident after the onset of lupus, especially at 30 wks of age when female NZB/WF1 mice manifested moderate to severe lupus when compared to their male counterparts. Our limited data also suggested that estrogen treatment increased the expression of aforementioned lupus-associated miRNAs, with the exception of miR-155, in orchidectomized male NZB/WF1 mice to a similar level in age-matched intact female NZB/WF1 mice. It is noteworthy that orchiectomy, itself, did not affect the expression of lupus-associated miRNAs.

Conclusion

To our knowledge, this is the first study that demonstrated sex differences in the expression of lupus-associated miRNAs in splenocytes, especially in the context of autoimmunity. The increased expression of lupus-associated miRNA in female NZB/WF1 mice and conceivably in estrogen-treated orchidectomized male NZB/WF1 mice was associated with lupus manifestation. The notable increase of lupus-associated miRNAs in diseased, female NZB/WF1 mice may be a result of both lupus manifestation and the female gender.
  相似文献   

11.
12.

Background

The quality and yield of duck feathers are very important economic traits that might be controlled by miRNA regulation. The aim of the present study was to investigate the mechanism underlying the crosstalk between individual miRNAs and the activity of signaling pathways that control the growth of duck feathers during different periods. We therefore conducted a comprehensive investigation using Solexa sequencing technology on the Pekin duck microRNAome over six stages of feather development at days 11, 15, and 20 of embryonic development (during the hatching period), and at 1 day and 4 and 10 weeks posthatch.

Results

There were a total of 354 known miRNAs and 129 novel candidate miRNAs found based on comparisons with known miRNAs in the Gallus gallus miRBase. The series of miRNAs related to feather follicle formation as summarized in the present study showed two expression patterns, with primary follicle developed during embryonic stage and secondary follicle developed mainly at early post hatch stage. Analysis of miRNA expression profiles identified 18 highly expressed miRNAs, which might be directly responsible for regulation of feather development. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis suggested that in addition to Wnt and transforming growth factor (TGFβ) signaling pathways, which were widely reported in response to follicle formation, another group of signaling pathways that regulate lipid synthesis and metabolism, such as the phosphatidylinositol signaling system and glycerolipid metabolism and signaling, are also responsible for follicle formation.

Conclusion

The highly expressed miRNAs provide a valuable reference for further investigation into the functional miRNAs important for feather development. Lipid synthesis and metabolism related signaling pathways might be responsible for lipid formation on the surface of feather, and should be paid much more attention for their relation to feather quality.
  相似文献   

13.

Key message

miR319 was identified as a dwarf-inducing gene from Shiokari and its dwarf near isogenic line, and its transgenic rice showed a reduced plant height. This finding reveals the potential application of miR319 in future molecular breeding.

Abstract

It is well known that microRNAs (miRNAs) play important roles in plant physiology, especially in development and stress responses. However, little is known about the role of miRNAs in plant height. In this study, the rice cultivar Shiokari and its dwarf near isogenic line Shiokari-d6 were analysed to identify and characterize plant height-associated miRNAs. This anatomic and morphological investigation revealed that the major cause of the shorter height of Shiokari-d6 is the significantly dis-elongated internodes, particularly the second internode and those underneath it. The results of miRNA microarray profiling and real-time RT-PCR indicated that miR319 is expressed at a significantly higher level in Shiokari-d6 than in Shiokari. Transgenic rice overexpressing miR319 in Oryza sativa L. cv. Tainung 67 generated through Agrobacterium-mediated transformation had a stable dwarf phenotype regardless of whether the plants were from the T1 or T2 generation. We also found that the internodes of miR319-overexpressing rice are shortened, particularly the third internode and those underneath it. Furthermore, we identified three putative miR319 target genes that were previously uncharacterized with expression levels that were negatively correlated with the expression of miR319. In conclusion, miR319 is the first miRNA proposed to be involved in plant height regulation, and its function may influence the elongation of internodes, which leads to decreased plant height.
  相似文献   

14.

Key message

We identified and cloned the two precursors of miR158 and its target gene in Brassica campestris ssp. chinensis, which both had high relative expression in the inflorescences. Further study revealed that over-expression of miR158 caused reduced pollen varbility, which was caused by the degradation of pollen contents from the binucleate microspore stage. These results first suggest the role of miR158 in pollen development of Brassica campestris ssp. chinensis.

Abstract

MicroRNAs (miRNAs) play crucial roles in many important growth and development processes both in plants and animals by regulating the expression of their target genes via mRNA cleavage or translational repression. In this study, miR158, a Brassicaceae specific miRNA, was functionally characterized with regard to its role in pollen development of non-heading Chinese cabbage (Brassica campestris ssp. chinensis). Two family members of miR158 in B. campestris, namely bra-miR158a1 and bra-miR158a2, and their target gene bra027656, which encodes a pentatricopeptide repeat (PPR) containing protein, were identified. Then, qRT-PCR analysis and GUS-reporter system revealed that both bra-miR158 and its target gene had relatively high expression levels in the inflorescences. Further study revealed that over-expression of miR158 caused reduced pollen varbility and pollen germination ratio, and the degradation of pollen contents from the binucleate microspore stage was also found in those deformed pollen grains, which led to pollen shrinking and collapse in later pollen development stage. These results first shed light on the importance of miR158 in pollen development of Brassica campestris ssp. chinensis.
  相似文献   

15.
16.

Background

Maize seedlings are constantly exposed to inorganic phosphate (Pi)-limited environments. To understand how maize cope with low Pi (LP) and high Pi (HP) conditions, physiological and global proteomic analysis of QXN233 genotype were performed under the long-term Pi starvation and supplementation.

Methods

We investigated the physiological response of QXN233 genotype to LP and HP conditions and detected the changes in ion fluxes by non-invasive micro-test technology and gene expression by quantitative real-time polymerase chain reaction. QXN233 was further assessed using vermiculite assay, and then proteins were isolated and identified by nano-liquid chromatography-mass spectrometry.

Results

A negative relationship was observed between Na+ and Pi, and Na+ efflux was enhanced under HP condition. Furthermore, a total of 681 and 1374 were identified in the leaves and roots, respectively, which were mostly involved in metabolism, ion transport, and stress response. Importantly, several key Pi transporters were identified for breeding potential. Several ion transporters demonstrated an elaborate interplay between Pi and other ions, together contributing to the growth of QXN233 seedlings.

Conclusion

The results from this study provide insights into the response of maize seedlings to long-term Pi exposure.
  相似文献   

17.
18.

Background

TP53 mutations in cancer cells often evoke cell invasiveness, whereas fibroblasts show invasiveness in the presence of intact TP53. AMAP1 (also called DDEF1 or ASAP1) is a downstream effector of ARF6 and is essential for the ARF6-driven cell-invasive phenotype. We found that AMAP1 levels are under the control of p53 (TP53 gene product) in epithelial cells but not in fibroblasts, and here addressed that molecular basis of the epithelial-specific function of p53 in suppressing invasiveness via targeting AMAP1.

Methods

Using MDA-MB-231 cells expressing wild-type and p53 mutants, we identified miRNAs in which their expression is controlled by normal-p53. Among them, we identified miRNAs that target AMAP1 mRNA, and analyzed their expression levels and epigenetic statuses in epithelial cells and nonepithelial cells.

Results

We found that normal-p53 suppresses AMAP1 mRNA in cancer cells and normal epithelial cells, and that more than 30 miRNAs are induced by normal-p53. Among them, miR-96 and miR-182 were found to target the 3′-untranslated region of AMAP1 mRNA. Fibroblasts did not express these miRNAs at detectable levels. The ENCODE dataset demonstrated that the promoter region of the miR-183-96-182 cistron is enriched with H3K27 acetylation in epithelial cells, whereas this locus is enriched with H3K27 trimethylation in fibroblasts and other non-epithelial cells. miRNAs, such as miR-423, which are under the control of p53 but not associated with AMAP1 mRNA, demonstrated similar histone modifications at their gene loci in epithelial cells and fibroblasts, and were expressed in these cells.

Conclusion

Histone modifications of certain miRNA loci, such as the miR-183-96-182 cistron, are different between epithelial cells and non-epithelial cells. Such epithelial-specific miRNA regulation appears to provide the molecular basis for the epithelial-specific function of p53 in suppressing ARF6-driven invasiveness.
  相似文献   

19.

Introduction

Oxygen is essential for metabolic processes and in the absence thereof alternative metabolic pathways are required for energy production, as seen in marine invertebrates like abalone. Even though hypoxia has been responsible for significant losses to the aquaculture industry, the overall metabolic adaptations of abalone in response to environmental hypoxia are as yet, not fully elucidated.

Objective

To use a multiplatform metabolomics approach to characterize the metabolic changes associated with energy production in abalone (Haliotis midae) when exposed to environmental hypoxia.

Methods

Metabolomics analysis of abalone adductor and foot muscle, left and right gill, hemolymph, and epipodial tissue samples were conducted using a multiplatform approach, which included untargeted NMR spectroscopy, untargeted and targeted LC–MS spectrometry, and untargeted and semi-targeted GC-MS spectrometric analyses.

Results

Increased levels of anaerobic end-products specific to marine animals were found which include alanopine, strombine, tauropine and octopine. These were accompanied by elevated lactate, succinate and arginine, of which the latter is a product of phosphoarginine breakdown in abalone. Primarily amino acid metabolism was affected, with carbohydrate and lipid metabolism assisting with anaerobic energy production to a lesser extent. Different tissues showed varied metabolic responses to hypoxia, with the largest metabolic changes in the adductor muscle.

Conclusions

From this investigation, it becomes evident that abalone have well-developed (yet understudied) metabolic mechanisms for surviving hypoxic periods. Furthermore, metabolomics serves as a powerful tool for investigating the altered metabolic processes in abalone.
  相似文献   

20.

Introduction

Essential oils are known to possess antimicrobial activity; thus, their use has played an important role over the years in medicine and for food preservation purposes.

Objective

The effect of clove oil and its major constituents as bactericidal agents on the global metabolic profiling of E. coli bacteria was assessed by means of metabolic alterations, using solid phase microextraction (SPME) as a sample preparation method coupled to complementary analytical platforms.

Method

E. Coli cultures treated with clove oil and its major individual components were sampled by HS-SPME-GCxGC-ToF/MS and SPME-UPLC–MS. Full factorial design was applied in order to estimate the most effective antibacterial agent towards E. coli. Central composite design and factorial design were applied to investigate parameters influencing metabolite coverage and efficiency by SPME.

Results

The metabolic profile, including 500 metabolites identified by LC–MS and 789 components detected by GCxGC-ToF/MS, 125 of which were identified as dysregulated metabolites, revealed changes in the metabolome provoked by the antibacterial activity of clove oil, and in particular its major constituent eugenol. Analyses of individual components selected using orthogonal projections to latent structures discriminant analysis showed a neat differentiation between control samples in comparison to treated samples in various sets of metabolic pathways.

Conclusions

The combination of a sample preparation method capable of providing cleaner extracts coupled to different analytical platforms was successful in uncovering changes in metabolic pathways associated with lipids biodegradation, changes in the TCA cycle, amino acids, and enzyme inhibitors in response to antibacterial treatment.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号