首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
C Okuda  T Mizobe  M Miyazaki 《Life sciences》1987,40(13):1293-1299
Intracerebroventricular (i.c.v.) administration of thyrotropin-releasing hormone (TRH) in a range from 0.1 to 100 micrograms induced a dose-related increase in blood pressure in conscious rats, whereas TRH-free acid (TRH-OH) and histidyl-proline diketopiperazine (His-Pro-DKP), metabolites of TRH, did not. The blood pressure responses to intravenous (i.v.) injection of 5 mg/Kg TRH were similar to those induced by TRH (i.c.v.). Pretreatment with atropine (50 micrograms, i.c.v.) significantly reduced the pressor effect of TRH administered through either route. Hemicholinium-3 (50 micrograms, i.c.v.), an inhibitor of choline uptake, also prevented the increase in blood pressure induced by TRH (10 micrograms, i.c.v.). These results indicate that both centrally and peripherally administered TRH have pressor effects that are mediated by central cholinergic mechanisms, probably by activating cholinergic neurons.  相似文献   

2.
The role of cholinergic neurons in central cardiovascular regulation is not well understood, however, activation of brain cholinergic neurons in several species evokes a hypertensive response. As with central cholinergic stimulation, intracerebroventricular (i.c.v.) injection of substance P (sP) elicits a pressor response in unanesthetized rats. The purpose of this study was to determine whether the cardiovascular effects following i.c.v. injection of this neuropeptide are mediated by central cholinergic neurons. Therefore, the cardiovascular response to sP was examined in control rats, and in animals pretreated centrally with classical pre- and post-synaptic cholinergic antagonists. Drugs were administered directly into the lateral ventricle while rats were freely-moving in their home cages. I.c.v. injection of sP produced a dose - dependent increase in arterial pressure and heart rate. The hypertensive response was significantly reduced by pretreatment with hemicholinium-3. This dose (20 ug) of hemicholinium-3 is capable of producing a maximal depletion of brain acetylcholine levels. The increase in heart rate to substance P was not as sensitive to hemicholinium-3 pretreatment as was blood pressure. Central pretreatment with the nicotinic receptor antagonist, hexamethonium was more effective than the muscarinic antagonist, atropine in blocking the pressor response to sP. Hexamethonium did not significantly alter the tachycardic response to the peptide, but atropine produced a small, but significant reduction in the response. Therefore, the pressor response to central injection of sP may be mediated to a large extent through cholinergic pathways involving nicotinic receptors.  相似文献   

3.
Buyukcoskun NI  Gulec G  Ozluk K 《Peptides》2001,22(9):1415-1420
Participation of central cholinergic system in the effects of intracerebroventricular (i.c.v.) injection of angiotensin II (Ang II) on blood pressure and heart rate was studied in conscious, freely moving rats. Ang II dose-dependently increased blood pressure and decreased heart rate. Both atropine and mecamylamine (i.c.v.) pretreatments prevented the cardiovascular effects of Ang II. Pretreatment with a vasopressin V1 antagonist also prevented the cardiovascular responses to Ang II. Our data suggest that the central pressor effect of Ang II is mediated in part by central acetylcholine via both muscarinic and nicotinic receptors, and vasopressin participates in this effect through V1 receptors.  相似文献   

4.
We compared the relative abilities of atropine sulfate and methylatropine, injected i.v. and into the cerebral ventricles (icv), to block pharmacological responses mediated through central and peripheral muscarinic receptors. The hypotensive response to i.v. injection of acetylcholine (peripheral muscarinic receptors) was inhibited 50% by i.v. injection of 14.3 nmol (5.5 micrograms)/kg methylatropine and 147.8n molar equivalents (50 micrograms)/kg atropine sulfate. A similar degree of inhibition followed icv injection of 49.4 nmol/kg methylatropine and 384.2 nmol equivalents/kg atropine sulfate, indicating significant leakage out of the ventricular space. The pressor response to icv injection of neostigmine (central muscarinic receptors) also was inhibited more effectively by icv methylatropine than by atropine sulfate. Methylatropine was not effective in blocking central muscarinic receptors when injected i.v.  相似文献   

5.
We have previously reported that the anticholinergic properties of cocaine may be important in cocaine induced apneusis. We have studied the effects of the cholinergic muscarinic antagonist atropine (ATR) on cocaine induced apneusis at the caudal chemosensitive areas of the ventrolateral medulla oblongata (CVLM). Experiments were performed in urethane anesthetized and tracheotomized cats with the CVLM surgically exposed. Topical application of ATR (44 mM ) to the CVLM produced significant decrements in minute ventilation (V(E)) and mean arterial blood pressure (MABP) (P<0.05) but the effects on tidal volume (V(T)), respiratory frequency (f) and heart rate (HR) were not significant. Administration of cocaine (37 mM) to ATR pretreated animals increased the incidence of cocaine induced respiratory arrest to more than twofold greater than when cocaine was administered in the absence of pretreatment. The ATR pretreated animals that did not experience inspiratory arrest after cocaine were shown to exhibit significant decrements in f and V(E) as a consequence of prolonged inspiratory pauses. The reduction in MABP after cocaine in ATR pretreated animals was also significant. These results suggest that ATR enhances the central respiratory toxicity of cocaine by acting synergistically at CVLM chemosensitive sites.  相似文献   

6.
In the present study, we examined whether the vagus nerve is involved in mediating the stimulation of hypothalamic-pituitary-adrenal (HPA) axis by cholinergic muscarinic and nicotinic agonists, carbachol and nicotine. The site of HPA axis muscarinic stimulation was determined using peripheral (i.p.) and intracerebroventricular (i.c.v.) administration of carbachol, atropine sulphate (AtrS) and atropine hydrobromide (AtrBr). The i.p. carbachol-(0.5 mg/kg)-induced corticosterone response was significantly reduced by i.p. pretreatment with AtrBr (0.1 mg/kg), but was not diminished by i.c.v. AtrS (0.1 mug). The increase in corticosterone secretion induced by i.c.v. carbachol (2 microg) was totally abolished by i.c.v. pretreatment with AtrS (0.1 microg) but was not altered by i.p. AtrBr. Subdiaphragmatic vagotomy performed 2 weeks earlier substantially decreased the i.p. carbachol (0.2 mg/kg)-induced ACTH response and markedly augmented ACTH and corticosterone response to a higher dose of carbachol (0.5 mg/kg) in comparison with the responses in sham operated rats. Vagotomy abolished the stimulatory effect of i.p. nicotine in a low dose (1 mg/kg) on ACTH and corticosterone secretion; the ACTH response to higher dose (2.5 mg/kg) was considerably reduced, while corticosterone response remained unaffected. These results suggest that carbachol given i.c.v. evokes considerable corticosterone response by stimulation of central cholinergic muscarinic receptors. A major part of the i.p. carbachol-induced corticosterone secretion results from peripheral cholinergic muscarinic receptor stimulation. Subdiaphragmatic vagotomy moderately intensified the carbachol-induced ACTH and corticosterone secretion. Vagotomy significantly reduced the nicotine-induced ACTH secretion, possibly by the involvement of vagal afferents. The nicotine-induced corticosterone secretion is not exclusively regulated by circulating ACTH but by various intra-adrenal regulatory components.  相似文献   

7.
目的:分析谷氨酸兴奋下兵脑腹内侧核(NVM)引起升压反应的机制。方法:大鼠脑内或静脉注射不同药物,记录血压和心率的变化。结果:①L-谷氨酸(Glu)兴奋NVM、P物质(SP)注入背内侧核(NDM)室旁核(NPV)或延髓头端腹外侧区(RVL)均引起升压反应;②NVM升压反应可被双侧NDM、NPV或PVL内预先注射[D-Pro^2,D-Phe^7,D-Trp^9]-P物质(SP拮抗剂)衰减,但RVL内注射阿托品无此效应;③酚妥拉明(i.v.)也能使NVM升压反应减小,而心得安或甲基阿托品(i.v.)对该升压反应无影响。结论:兴奋NVM可通过NDM(SP受体),作用于NPV(SP受体)升压区和RVL(SP受体)-交感缩血管神经系统产生升压反应。心交感和心迷走神经不参与该反应。  相似文献   

8.
Physostigmine and an 1-hour immobilisation stress similarly affected functions of the sympatho-adrenal and cardiovascular systems activating the catecholamine secretion and increasing the blood pressure. Yohimbine potentiated the secretory effect but did not change the pressor effect. Intermediate administration of atropine completely eliminated both effects of physostigmine but, being administered prior to the immobilisation, it potentiated the secretory response without affecting the pressor response. The findings reveal a difference in central cholinergic mechanisms of neurohumoral and haemodynamic responses to physostigmine and stress.  相似文献   

9.
大鼠脑室内注射氨甲酰胆碱对肾钠,钾,水排出的影响   总被引:3,自引:0,他引:3  
姜春玲  林茂樟 《生理学报》1994,46(4):361-368
在麻醉大鼠侧脑室注射胆碱能激动剂氨甲酰胆碱(CBC)引起显著的促钠排泄、促钾排泄和利尿反应(P<0.05),其中促钠排泄反应与剂量之间呈量效关系(r=0.9997,P<0.05)。由脑室注射CBC(2.74×10-3μmol)引起的上述反应可以被胆碱能M受体阻断剂阿托品或N受体阻断剂六甲双胺预处理完全阻断(P<0.05)。同样,CBC的肾脏效应也可被肾上腺素能α受体阻断剂酚妥拉明预处理所部分阻断(P<0.05)。上述结果表明脑室注射CBC引起的促钠排泄、促钾排泄和利尿反应是刺激了脑胆碱能M或N受体,有部分效应可能继发刺激去甲肾上腺素能α受体。  相似文献   

10.
These experiments investigated in the awake rat the involvement of noradrenergic projections to the rostral hypothalamus in the drinking and pressor responses elicited by intracerebroventricular (i.c.v.) injections of 25 ng of angiotensin II. Phentolamine mesylate in doses of 2.5-125 micrograms injected into the rostral hypothalamus produced a dose-dependent depression of both the drinking and pressor responses elicited by i.c.v. administration of angiotensin II. A paradoxical increase in heart rate was associated with a decrease in pressor responses with increasing doses of phentolamine. This response was due to tissue injections, since pretreatment by injecting 12.5 micrograms of phentolamine into the ventricle did not block either the cardiovascular or drinking responses to i.c.v. injections of angiotensin II. Yohimbine (0.33-3.3 micrograms), DL-propranolol (25 micrograms), and atenolol (25 micrograms) did not, but prazosin (0.7 microgram) did significantly alter the pressor responses. Although yohimbine also was without effect on drinking, prazosin reduced the drinking responses. These results suggest that alpha 1-adrenergic receptors in the rostral hypothalamus are involved in the control of both the drinking and pressor responses elicited by i.c.v. injections of angiotensin II. In the case of propranolol and atenolol, beta-adrenergic receptors altered only the drinking response in a nonspecific manner by eliciting competing behaviors. Whether they are involved in modifying the drinking response only remains to be demonstrated.  相似文献   

11.
The components of the renin-angiotensin system exist in the brain but their physiological role is uncertain. The effects of two angiotensin converting enzyme (ACE) inhibitors, MK 421 (or its diacid) and captopril, on brain ACE activity, as measured by inhibition of the pressor response to intracerebroventricularly (i.c.v.) administered angiotensin I (AI), and the potential contribution of the central nervous system to their antihypertensive activity were evaluated in the present series of experiments. The diacid of MK 421 (1 and 10 ug) and captopril (3 and 10 ug) given i.c.v. to conscious normotensive rats reduced the pressor response to i.c.v. AI indicating that they can inhibit brain ACE. Responses to AII were unaffected. Oral administration of maximal antihypertensive doses of MK 421 (10 mg/kg) and of captopril (30 mg/kg) to normotensive rats did not attenuate pressor responses to i.c.v. AI indicating that brain ACE was not inhibited under these circumstances. Intracerebroventricular administration of MK 421 diacid, (10 and 30 ug) and captopril (30 and 100 ug) did not lower baseline blood pressure of spontaneously hypertensive rats. These experiments indicate that MK 421 and captopril can inhibit brain ACE but that the central renin-angiotensin system probably does not contribute to their antihypertensive activity.  相似文献   

12.
Experiments were designed using conscious Sprague-Dawley rats to determine the blood pressure (BP) and heart rate (HR) responses to intravenous doses of (1) the adrenal catecholamines noradrenaline (NA) and adrenaline (A), (2) adrenal pentapeptides methionine enkephalin (ME) and leucine enkephalin (LE), (3) combination (i.v.) injections of both ME or LE with NA or A that modulate the hemodynamic responses when the adrenal catecholamines were given alone, and (4) the possible receptor mechanisms mediating the resultant BP and HR response to i.v. pentapeptide administration. NA (0.48 and 2.4 nmol) and A (0.3 and 1.5 nmol) given i.v. evoked potent, dose-related pressor responses associated with reflex bradycardia. ME and LE (1.6 - 48 nmol) elicited transient (10-20 s) increases in mean arterial pressure (MAP), which was associated either with no change in mean heart rate (MHR), such as ME, or with slight bradycardia (i.e., LE). Combining ME or LE (16 nmol) with NA (2.4 nmol) or A (0.3 or 1.5 nmol) did not change MAP and MHR from when these respective doses of NA or A were given alone. However, 16 nmol of ME or LE with a low dose of NA (0.48 nmol) increased the pressor response compared with NA (0.48 nmol) given alone. Other experiments whereby specific receptor blockers (naloxone, diprenorphine, atropine, propranolol, phentolamine or guanethidine) were given i.v. 5 min before subsequent i.v. administration of LE or ME (16 nmol) indicated that only phentolamine or guanethidine could completely suppress the pressor responses of LE and ME. Naloxone and diprenorphine pretreatment attenuated the pressor response of LE but did not affect the BP response to ME.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The participation of central noradrenergic neurons in the pressor responses to intracerebroventricular (i.c.v.) administration of prostaglandin (PG) E2 was studied in anaesthetized rabbits. The hypertensive effect induced by i.c.v. injection of PGE2 was inhibited by i.c.v. pretreatment with 6-hydroxydopamine and phentolamine, but not propranolol. These findings suggest that the cerebral noradrenergic neurons may be involved in the development of hypertensive effect of PGE2 through the adrenergic alpha-receptors.  相似文献   

14.
Cardiovascular responses to the intravenous (i.v.) and the intracerebroventricular (i.c.v.) administration of cadmium acetate were evaluated in rats anaesthetized with urethane. Cadmium acetate (1 mg/kg i.v.) caused an initial fall followed by a persistent rise in blood pressure. Cadmium acetate (1 microgram i.c.v.) produced a more marked hypertensive effect. In the spinal-transected rat, the effect of intravenous cadmium was reduced but the effect of intraventricularly administered cadmium was completely abolished. It is, therefore, suggested that both central and peripheral mechanisms are involved in the pressor response to cadmium exposure.  相似文献   

15.
The participation of central noradrenergic neurons in the pressor responses to intracerebroventricular (i.c.v.) administration of prostaglandin (PG) E2 was studied in anaesthetized rabbits. The hypertensive effect induced by i.c.v. injection of PGE2 was inhibited by i.c.v. pretreatment with 6-hydroxydopamine and phentolamine, but not propranolol. These findings suggest that the cerebral noradrenergic neurons may be involved in the development of hypertensive effect of PGE2 through the adrenergic α-receptors.  相似文献   

16.
Cardiovascular effects of the essential oil of Croton zehntneri (EOCZ) were investigated in conscious rats. In these preparations, intravenous (i.v.) injections of EOCZ (1-20 mg kg(-1)) and its main constituents anethole and estragole (both at 1-10 mg kg(-1)) elicited brief and dose-dependent hypotension and bradycardia (phase I) that were followed by a significant pressor effect associated with a delayed bradycardia (phase II). The initial hypotension and bradycardia (phase I) of EOCZ were unchanged by atenolol (1.5 mg kg(-1), i.v.) or L-NAME (20 mg kg(-1), i.v.) pretreatment, but were respectively reversed into pressor and tachycardic effects by methylatropine (1 mg kg(-1), i.v.) pretreatment. The subsequent pressor effect and the delayed bradycardia (phase II) remained unaffected by atenolol, but were abolished by L-NAME and methylatropine pretreatment, respectively. In rat endothelium-containing aorta preparations, the vasoconstrictor responses to phenylephrine were enhanced and reduced, respectively, by the lower (1-30 microg mL(-1)) and higher (300-1000 microg mL(-1)) concentrations of EOCZ. Only the enhancement of phenylephrine-induced contraction was abolished by either the incubation with L-NAME (50 microM) or in the absence of the endothelium. These data show, for the first time, that i.v. administration EOCZ induces an initial hypotension followed by a pressor response, two effects that appear mainly attributed to the actions of anethole and estragole. The EOCZ-induced hypotension (phase I) is mediated by a cholinergic mechanism and seems to result mainly from the concomitant bradycardia. The pressor response of EOCZ (phase II) seems to be caused by an indirect vasoconstrictive action of EOCZ most likely through inhibition of endothelial nitric oxide production.  相似文献   

17.
Δ9-Tetrahydrocannabinol (THC), the primary psychoactive component of marihuana produces pronounced effects on the cardiovascular system including bradycardia and hypotension. A decrease in sympathetic activity may contribute to these actions. In chloralose urethane anesthetized cats, THC (2 mg/kg, i.v.) produced significant bradycardia, hypotension and attenuation of threshold pressor responses induced by hypothalamic stimulation. Evoked potentials recorded in the intermediolateral cell column (ILC) by stimulation of these hypothalamic pressor sites were significantly altered after THC. Hypotension induced by histamine administration (5 μg/kg, i.v.) altered ILC potentials before and after THC. These results support the hypothesis that THC reduces sympathetic outflow and reversibly resets the level of central cardiovascular homeostasis.  相似文献   

18.
The specificity, the potency, and the duration of action of [1-(beta-mercapto-beta, beta-cyclopentamethylenepropionic acid) 2-(O-methyl)tyrosine]arginine-vasopressin[d(CH2)5Tyr(Me)AVP] to antagonize pressor responses to arginine vasopressin (AVP) was examined in pentobarbital-anaesthetized rats. Injection of the compound (4 micrograms.kg-1 i.v.) prevented pressor responses to i.v. infusions of supramaximal doses of AVP, but not to i.v. infusions of another peptide, angiotensin II (Ag II). The antagonism of AVP persisted for at least 3 h. Since i.v. injection of the compound in the absence of exogenous administration of AVP did not cause any change in the arterial pressure of rats, it appears that the compound is devoid of agonistic pressor activity. The results show that d(CH2)5Tyr(Me)AVP is a potent and a specific antagonist of pressor responses to AVP.  相似文献   

19.
In rats the effect of inhibition of the brain cholinesterase activity on the pressor and heart rate responses to 5-hydroxytryptamine (5-HT), administered into the lateral cerebral ventricle (l.c.v.) was examined. After administration of physostigmine (twice in a small dose of 2.5 micrograms l.c.v., 20 and 15 min before the second injection of 5-HT), the pressor effect of 5-HT (5 micrograms) was strongly reduced or almost abolished, its pure tachycardia was reduced or reversed into a bradycardia and its pure bradycardia was diminished or reversed into a tachycardia. The type of the cardiovascular response to ACh (5 micrograms l.c.v., 20 min after the second administration of 5-HT) indicates that the modification of the cardiovascular response to 5-HT was accompanied by inhibition of the brain cholinesterase activity. Thus, it seems that a functionally competent cholinesterase in the brain is necessary for the generation of the 5-HT-induced pressor response. The present experiments provide further evidence that there is a cholinergic link in the pathway by which serotonergic mechanisms in the preoptic-anterior hypothalamic area rise blood pressure and support the idea that the same link exists in the pathway(s) mediating the heart rate responses to intracerebroventricular administration of 5-HT.  相似文献   

20.
Yu Y  Wang CL  Cui Y  Fan YZ  Liu J  Shao X  Liu HM  Wang R 《Peptides》2006,27(1):136-143
Endomorphin1-ol (Tyr-Pro-Trp-Phe-ol, EM1-ol) and endomorphin2-ol (Tyr-Pro-Phe-Phe-ol, EM2-ol), with C-terminal alcohol (-ol) containing, have been shown to exhibit higher affinity and lower intrinsic efficacy in vitro than endomorphins. In the present study, in order to investigate the alterations of systemic hemodynamic effects induced by C-terminal amide to alcohol conversion, responses to intravenous (i.v.) or intracerebroventricular (i.c.v.) injection of EM1-ol, EM2-ol and their parents were compared in the system arterial pressure (SAP) and heart rate (HR) of anesthetized rats. Both EM1-ol and EM2-ol induced dose-related decrease in SAP and HR when injected in doses of 3-100 nmol/kg, i.v. In terms of relative vasodepressor activity, it is interesting to note that EM2-ol was more potent than endomorphin2 [the dose of 25% decrease in SAP (DD25) = 6.01+/-3.19 and 13.99+/-1.56 nmol/kg, i.v., respectively] at a time when responses to EM1-ol were less potent than endomorphin1. Moreover, decreases in SAP in response to EM1-ol and EM2-ol were reduced by naloxone, atropine sulfate, L-NAME and bilateral vagotomy. It indicated that the vasodepressor responses were possibly mediated by a naloxone-sensitive, nitric oxide release, vagus-activated mechanism. It is noteworthy that i.c.v. injections of -ol derivatives produced dose-related decreases in SAP and HR, which were significantly less potent than endomorphins and were attenuated by naloxone and atropine sulfate. In summary, the results of the present study indicated that the C-terminal amide to alcohol conversion produced different effects on the vasodepressor activity of endomorphin1 and endomorphin2 and endowed EM2-ol distinctive hypotension characters in peripheral (i.v.) and central (i.c.v.) tissues. Moreover, these results provided indirect evidence that amidated C-terminus might play an important role in the regulation of the cardiovascular system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号