首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 49 毫秒
1.
2.
3.
Nearly 2 billion people worldwide are suffering from iron (Fe) deficiency anemia and zinc (Zn) deficiency. The available elite bread wheat cultivars have inherently low grain micronutrient content. Biofortification for grain Fe and Zn content is one of the most feasible and cost-effective approach for combating widespread deficiency of the micronutrients. QTL controlling high grain Fe and Zn have been mapped on groups 2 and 7 chromosomes of Triticeae. The present study was initiated for precise transfers of genes for high grain Fe and Zn on group 2 and 7 chromosomes of wheat-Aegilops substitution lines to wheat cultivars using pollen radiation hybridization. The pollen radiation hybrids (PRH1) derived from 1.75 krad irradiated spikes showed the presence of univalents and multivalents in meiotic metaphase-I indicating the effectiveness of radiation dose. In the advanced generation PRH5, the plants selected with stable chromosome number and high grain Fe and Zn content were analyzed with wheat groups 2 and 7 chromosome specific intron targeted amplified polymorphism (ITAP) markers of the metal homeostasis genes to monitor the transfers of alien genes from the substituted Aegilops chromosomes. The group 2 chromosome derivatives showed the presence of NAS2, FRO2, VIT1, and ZIP2 Aegilops genes whereas the group 7 derivatives had YSL15, NAM, NRAMP5, IRO3, and IRT2 Aegilops genes. The pollen radiation hybrids of both the groups 2 and 7 chromosomes showed more than 30% increase in grain Fe and Zn content with improved yield than the elite wheat cultivar PBW343 LrP indicating small and compensating transfers of metal homeostasis genes of Aegilops into wheat.  相似文献   

4.
5.
6.
The yeast Pichia guilliermondii is capable of riboflavin overproduction under iron deficiency. The rib80, hit1, and red6 mutants of this species, which exhibit impaired riboflavin regulation, are also distinguished by increased iron concentrations in the cells and mitochondria, morphological changes in the mitochondria, as well as decreased growth rates (except for red6) and respiratory activity. With sufficient iron supply, the rib80 and red6 mutations cause a 1.5–1.8-fold decrease in the activity of such Fe-S cluster proteins as aconitase and flavocytochrome b 2, whereas the hit1 mutation causes a six-fold decrease. Under iron deficiency, the activity of these enzymes was equally low in all of the studied strains.  相似文献   

7.
At least two billion people around the world suffer from micronutrient deficiency, or hidden hunger, which is characterized by iron-deficiency anemia, vitamin A and zinc deficiency. As a key staple food crop, wheat provides 20% of the world’s dietary energy and protein, therefore wheat is an ideal vehicle for biofortification. Developing biofortified wheat varieties with genetically enhanced levels of grain zinc (Zn) and iron (Fe) concentrations, and protein content provides a cost-effective and sustainable solution to the resource-poor wheat consumers. Large genetic variation for Fe and Zn were found in the primitive and wild relatives of wheat, the potential high Zn and Fe containing genetic resources were used as progenitors to breed high-yielding biofortified wheat varieties with 30–40% higher Zn content. Grain protein content (GPC) determines processing and end-use quality of wheat for making diverse food products. The GPC-B1 allele from Triticum turgidum L. var. dicoccoides have been well characterized for the increase in GPC and the associated pleiotropic effect on grain Zn and Fe concentrations in wheat. In this study effect of GPC-B1 allele on grain Zn and Fe concentrations in wheat were measured in different genetic backgrounds and two different agronomic management practices (with- and without foliar Zn fertilization). Six pairs of near-isogenic lines differing for GPC-B1 gene evaluated at CIMMYT, Mexico showed that GPC-B1 influenced marginal increase for grain Zn, Fe concentrations, grain protein content and slight reduction in kernel weight and grain yield. However, the magnitude of GPC and grain Zn and Fe reductions varied depending on the genetic background. Introgression of GPC-B1 functional allele in combination with normal or delayed maturity alleles in the CIMMYT elite wheat germplasm has the potential to improve GPC and grain Zn and Fe concentrations without the negative effect on grain yield due to early senescence and accelerated maturity.  相似文献   

8.
Iron deficiency ends up into several unavoidable consequences including damaging oxidative stress in cyanobacteria. NtcA is a global nitrogen regulator controls wide range of metabolisms in addition to regulation of nitrogen metabolism. In present communication, NtcA based regulation of iron homeostasis, ROS production and cellular phenotype under iron deficiency in Anabaena 7120 has been investigated. NtcA regulates the concentration dependent iron uptake by controlling the expression of furA gene. NtcA also regulated pigment synthesis and phenotypic alterations in Anabaena 7120. A significant increase in ROS production and corresponding reduction in the activities of antioxidative enzymes (SOD, CAT, APX and GR) in CSE2 mutant strain in contrast to wild type Anabaena 7120 also suggested the possible involvement of NtcA in protection against oxidative stress in iron deficiency. NtcA has no impact on the expression of furB and furC in spite of presence of consensus NtcA binding site (NBS) and ?10 boxes in their promoter. NtcA also regulates the thylakoid arrangement as well as related photosynthetic and respiration rates under iron deficiency in Anabaena 7120. Overall results suggested that NtcA regulates iron acquisition and in turn protect Anabaena cells from the damaging effects of oxidative stress induced under iron deficiency.  相似文献   

9.
10.
11.
12.
Deladenus (=?Beddingia) siricidicola (Tylenchida: Neotylenchidae) is the most effective biocontrol agent used against the invasive wood wasp, Sirex noctilio (Fabricius) (Hymenoptera: Siricidae). The nematodes feed and reproduce on the wood-inhabiting fungus, Amylostereum areolatum (Chaillet ex Fr.) Boidin (Russulales: Amylostereaceae) and parasitise larvae of S. noctilio. In the nematode biocontrol program, the nematodes are inoculated into herbicide-weakened ‘trap trees’. Recent declines in nematode parasitism of S. noctilio in Australia have coincided with an increased incidence of an exotic bark beetle, Ips grandicollis (Eichhoff) (Coleoptera: Curculionidae), attacking trap trees and vectoring a wood-inhabiting fungus, Ophiostoma ips (Rumbold) Nannfelt (Ophiostomatales: Ophiostomataceae), which may inhibit migration of the nematode within the tree to the detriment of S. noctilio biocontrol. Several in vitro and in vivo experiments were conducted to investigate the effect of fungal interactions on the ability of D. siricidicola to locate and reproduce on A. areolatum. Deladenus siricidicola showed preference to A. areolatum in the presence and absence of O. ips, but the presence of O. ips negatively affected the choice response and the number of eggs laid by the nematodes. Deladenus siricidicola was unable to survive and reproduce on O. ips. Results give a clearer understanding of the choice response of D. siricidicola in I. grandicollis infested trees, explaining the disruptive impact of bark beetles on biocontrol of S. noctilio, an effect that could extend from Australia to other important pine growing countries.  相似文献   

13.
14.
The ZRT, IRT-like protein (ZIP) family plays an important role in the transport of zinc (Zn) and iron (Fe) across the cell membrane in many different species. However, studies on ZIP family are mainly limited in herbaceous species; hence, we investigated functional divergence of ZIP family in Populus trichocarpa. We identified 21 ZIP genes in P. trichocarpa and classified them into four groups based on phylogenetic analysis. Structural analyses revealed that most of the PtrZIP transporters have eight transmembrane domains (TMDs). PtrZIP members were unequally positioned in 19 P. trichocarpa linkage groups (LGs), with six tandem duplications and four segmental duplications. The promoter regions of PtrZIP genes contain Zn, Fe, copper (Cu), and other metal stress-related cis-elements. Additionally, tissue-specific expression of PtrZIP genes showed that most of them had relatively high expression levels in the root. Quantitative real-time RT-PCR (qRT-PCR) analysis revealed that the expression of PtrZIP genes were induced not only under deficiency or excess condition of Zn, Fe, Cu and manganese (Mn) but also under excess condition of cadmium (Cd) and lead (Pb) stress. These findings indicated that PtrZIP genes may have played potential roles in metal transporters. Genome-wide analysis of PtrZIP genes in P. trichocarpa provided more comprehensive insights on the structure and function of this gene family.  相似文献   

15.

Background

Pinellia ternata is a Chinese traditional medicinal herb, used to cure diseases including insomnia, eclampsia and cervical carcinoma, for hundreds of years. Non-self-recognition in multicellular organisms can initiate the innate immunity to avoid the invasion of pathogens. A design for pathogen independent, heterosis based, fresh resistance can be generated in F1 hybrid was proposed.

Results

By library functional screening, we found that P. ternata genes, named as ptHR375 and ptHR941, were identified with the potential to trigger a hypersensitive response in Nicotiana benthamiana. Significant induction of ROS and Callose deposition in N. benthamiana leaves along with activation of pathogenesis-related genes viz.; PR-1a, PR-5, PDF1.2, NPR1, PAL, RBOHB and ERF1 and antioxidant enzymes was observed. After transformation into N. benthamiana, expression of pathogenesis related genes was significantly up-regulated to generate high level of resistance against Phytophthora capsici without affecting the normal seed germination and morphological characters of the transformed N. benthamiana. UPLC-QTOF-MS analysis of ptHR375 transformed N. benthamiana revealed the induction of Oxytetracycline, Cuelure, Allantoin, Diethylstilbestrol and 1,2-Benzisothiazol-3(2H)-one as bioactive compounds. Here we also proved that F1 hybrids, produced by crossing of the ptHR375 and ptHR941 transformed and non-transformed N. benthamiana, show significant high levels of PR-gene expressions and pathogen resistance.

Conclusions

Heterologous plant genes can activate disease resistance in another plant species and furthermore, by generating F1 hybrids, fresh pathogen independent plant immunity can be obtained. It is also concluded that ptHR375 and ptHR941 play their role in SA and JA/ET defense pathways to activate the resistance against invading pathogens.
  相似文献   

16.
17.

Key message

Rice OsYSL9 is a novel transporter for Fe(II)-nicotianamine and Fe(III)-deoxymugineic acid that is responsible for internal iron transport, especially from endosperm to embryo in developing seeds.

Abstract

Metal chelators are essential for safe and efficient metal translocation in plants. Graminaceous plants utilize specific ferric iron chelators, mugineic acid family phytosiderophores, to take up sparingly soluble iron from the soil. Yellow Stripe 1-Like (YSL) family transporters are responsible for transport of metal-phytosiderophores and structurally similar metal-nicotianamine complexes. Among the rice YSL family members (OsYSL) whose functions have not yet been clarified, OsYSL9 belongs to an uncharacterized subgroup containing highly conserved homologs in graminaceous species. In the present report, we showed that OsYSL9 localizes mainly to the plasma membrane and transports both iron(II)-nicotianamine and iron(III)-deoxymugineic acid into the cell. Expression of OsYSL9 was induced in the roots but repressed in the nonjuvenile leaves in response to iron deficiency. In iron-deficient roots, OsYSL9 was induced in the vascular cylinder but not in epidermal cells. Although OsYSL9-knockdown plants did not show a growth defect under iron-sufficient conditions, these plants were more sensitive to iron deficiency in the nonjuvenile stage compared with non-transgenic plants. At the grain-filling stage, OsYSL9 expression was strongly and transiently induced in the scutellum of the embryo and in endosperm cells surrounding the embryo. The iron concentration was decreased in embryos of OsYSL9-knockdown plants but was increased in residual parts of brown seeds. These results suggested that OsYSL9 is involved in iron translocation within plant parts and particularly iron translocation from endosperm to embryo in developing seeds.
  相似文献   

18.
Trace elements such as Zinc and Iron are essential components of metalloproteins and serve as cofactors or structural elements for enzymes involved in several important biological processes in almost all organisms. Because either excess or insufficient levels of Zn and Fe can be harmful for the cells, the homeostatic levels of these trace minerals must be tightly regulated. The Zinc regulated transporter, Iron regulated transporter-like Proteins (ZIP) comprise a diverse family, with several paralogues in diverse organisms and are considered essential for the Zn and Fe uptake and homeostasis. Zn and Fe has been shown to regulate expression of proteins involved in metabolism and pathogenicity mechanisms in the protozoan pathogen Trichomonas vaginalis, in contrast high concentrations of these elements were also found to be toxic for T. vaginalis trophozoites. Nevertheless, Zn and Fe uptake and homeostasis mechanisms is not yet clear in this parasite. We performed a genome-wide analysis and localized the 8 members of the ZIP gene family in T. vaginalis (TvZIP1-8). The bioinformatic programs predicted that the TvZIP proteins are highly conserved and show similar properties to the reported in other ZIP orthologues. The expression patterns of TvZIP1, 3, 5 and 7 were diminished in presence of Zinc, while the rest of the TvZIP genes showed an unchanged profile in this condition. In addition, TvZIP2 and TvZIP4 showed a differential expression pattern in trophozoites growth under different Iron conditions. These results suggest that TvZIP genes encode membrane transporters that may be responsible for the Zn and Fe acquisition in T. vaginalis.  相似文献   

19.
20.
Flatiron (ffe) mice display features of “ferroportin disease” or Type IV hereditary hemochromatosis. While it is known that both Fe and Mn metabolism are impaired in flatiron mice, the effects of ferroportin (Fpn) deficiency on physiological distribution of these and other biometals is unknown. We hypothesized that Fe, Mn, Zn and/or Cu distribution would be altered in ffe/+ compared to wild-type (+/+) mice. ICP-MS analysis showed that Mn, Zn and Cu levels were significantly reduced in femurs from ffe/+ mice. Bone deposits reflect metal accumulation, therefore these data indicate that Mn, Zn and Cu metabolism are affected by Fpn deficiency. The observations that muscle Cu, lung Mn, and kidney Cu and Zn levels were reduced in ffe/+ mice support the idea that metal metabolism is impaired. While all four biometals appeared to accumulate in brains of flatiron mice, significant gender effects were observed for Mn and Zn levels in male ffe/+ mice. Metals were higher in olfactory bulbs of ffe/+ mice regardless of gender. To further study brain metal distribution, 54MnCl2 was administered by intravenous injection and total brain 54Mn was measured over time. At 72 h, 54Mn was significantly greater in brains of ffe/+ mice compared to +/+ mice while blood 54Mn was cleared to the same levels by 24 h. Taken together, these results indicate that Fpn deficiency decreases Mn trafficking out of the brain, alters body Fe, Mn, Zn and Cu levels, and promotes metal accumulation in olfactory bulbs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号