首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Infusion of prostaglandin E1 (PGE1) into the renal artery of anesthetized dogs (1.03 μg/min) caused increases in urine flow rate (V), renal plasma flow (RPF) and renin secretion rate without any change in mean arterial blood pressure (MABP), whereas infusion of prostaglandin F2α (PGF), (1.03 μg/min) caused no consistent change in V, RPF, or renin secretion rate. Infusion of prostaglandin E2 (PGE2) (1.03 μg/min) into the renal artery of “non-filtering” kidneys caused renin secretion rate to rise from 567.7 ± 152.0 U/min(M ± SEM) during control periods to 1373.6 ± 358.5 U/min after 60 minutes of infusion of PGE2 (P < 0.01), without significant change in MABP (P > 0.1). The data suggest that PGE1 and PGE2 play a role in the control of renin secretion. The data further suggest that PGE may control renin secretion through a direct effect on renin-secreting granular cells.  相似文献   

2.
The rise in arterial blood pressure in response to angiotensin II was studied in the last third of pregnancy in rabbits. The response was compared with that of pregnant rabbits during infusion of prostaglandin E2 and F. Prostaglandin E2 significantly diminished the rise in diastolic pressure in response to angiotensin II. Prostaglandin F did not alter the response. Intravenous indomethacin elevated the blood pressure and caused an absolute increase in the pressor response. It did not mediate a change in the percentage rise in blood pressure in response to angiotensin II.  相似文献   

3.
Injection of leukotriene D4 (LTD4, 20 μg/kg, i.a.) to conscious spontaneous hypertensive (SHR) rats produces a short-lasting pressor and tachycardic response followed by prolonged hypotension and bradycardia. Plasma norepinephrine and epinephrine were elevated at the peak pressor/tachycardic phase as well as at the hypotensive phase. Injection of thyrotropin-releasing hormone (TRH, 2 or 5 mg/kg) at the peak of the LTD4-induced hypotension resulted in prompt reversal of the hypotension and bradycardia in a dose-related manner. Naloxone (5 mg/kg) had no effect on blood pressure and heart rate LTD4- treated SHR rats. Pretreatment with TRH (5 mg/kg) did not prevent the depressor effect of LTD4, but attenuated the bradycardic effect of this leukotriene. In addition, TRH had no effect on LTD4-induced hypotension in the pithed SHR rat. These results suggest that TRH might exert beneficial effects in hypotensive states mediated by leukotrienes or other mediators of anaphylactic reactions.  相似文献   

4.
H Kawasaki  K Takasaki 《Life sciences》1987,40(19):1929-1935
Effects of water deprivation on pressor responses to centrally and peripherally administered clonidine was investigated in freely moving, normotensive rats with chronic guide cannula and catheters implanted into the abdominal aorta via the femoral artery. In normal hydrated rats, intracerebroventricularly (i.c.v.) injected clonidine (10 and 20 micrograms) produced a dose-dependent and long-lasting rise in mean blood pressure (MBP) concomitant with a decrease in heart rate. However, a significant depressor response was not observed for up to 90 min. In 48 hr dehydrated rats, the pressor response to i.c.v. injected clonidine (10 and 20 micrograms) was significantly depressed and a depressor response appeared. Intravenously (i.v.) administered clonidine (25 micrograms/kg) in normal hydrated rats also produced a long-lasting pressor response following an initial rapid rise in MBP. The long-lasting pressor response to i.v. injected clonidine was abolished after water deprivation for 48 hr, whereas the initial rise in MBP was less affected. These results suggest that clonidine elicits centrally-mediated pressor response, which is influenced by body fluid volumes.  相似文献   

5.
The effect of prostaglandin analogues on the cycle AMP level in cultured chondrocytes were examined. Prostaglandin E1 at 0.4 to 30 μM, increased the intracellular concentration of cyclic AMP in chondrocytes. Its effect was rapid, being evident within 1 min and reaching a maximum in 10 to 20 min. The maximum level was sustained until 30 min after its addition and then decreased gradually. Prostaglandin D2 and E2 also increased the cyclic AMP level in chondrocytes, but they had less effect than prostaglandin E1. Prostaglandin A1 had no effect on the nucleotide level in chondrocytes, although they markedly increased the level in fibroblasts. The time course of stimulation of cyclic AMP accumulation in chondrocytes by prostaglandin E1, D2 or E2 was quite different from that by parathyroid hormone (PTH): the effect of prostaglandin was slower and more sustained than that of PTH. PTH potentiated the effect of prostaglandin E1, E2, or D2 on the cyclic AMP level in chondrocytes and that the combined effects of prostaglandin, PTH or both produced a synergistic effect on the accumulation of cyclic AMP in the chondrocytes. These findings suggest that prostaglandin E1, E2, and D2 increase the synthesis of cyclic AMP and that the combined effect of the prostaglandins and PTH on the cyclic AMP level in chondrocytes is partly attributed to the synergistic synthesis of cyclic AMP in the cells.  相似文献   

6.
Saline washed red blood cells of the toadfish convert [1-14C] arachidonic acid to products that cochromatograph with prostaglandin E2 and prostaglandin F. This synthesis is inhibited by indomethacin (10 μg/ml). Conversion of arachidonic acid to prostaglandin E2 was confirmed by mass spectrometry. When saline washed toadfish red blood cells were incubated with a mixture of [1-14C]-arachidonic acid and [5,6,8,9,11,12,14,15,-3H]-arachidonic acid, comparison of the isotope ratios of the radioactive products indicated that prostaglandin F was produced by reduction of prostaglandin E2. The capacity of toadfish red blood cells to reduce prostaglandin E2 to prostaglandin F was confirmed by incubation of the cells with [1-14C] prostaglandin E2.  相似文献   

7.
The onset of maternal behavior in pregnant hamsters was measured by presenting foster pups at 0900 and 2100 hr on Day 15 and at 0300, 0500, and 0700 hr on Day 16 and then at hourly intervals until parturition began. The occurrence of parturition was determined at each maternal test and at 0.5 hr intervals beginning at 0700 hr on Day 16. Nulliparous and primiparous animals became maternal at approximately the same time on Day 16, 2 and 6 hr prepartum, respectively, demonstrating that parturition is not essential for maternal behavior. The second experiment showed that nulliparous females injected with either 1 μg or 10 μgm estradiol-17β (E2), 0.1 mgm progesterone (P), 10 μgm E2 plus 0.1 mgm P, or oil at 1200 hr on Day 15 became maternal at the same time of day (0800–1000 hr) while parturition was delayed 8 hr in females receiving P. The results suggest a dissociation between the regulation of parturition and maternal care and are compared to previous research into the hormonal basis of maternal behavior in rats.  相似文献   

8.
The present study was carried out in order to assess the time course of action of progesterone (P) in the facilitation of complete feminine sexual behavior. Female rats (estrogen primed via 5% E2 Silastic capsules) were given 200 μg of P either intravenously (iv) or subcutaneously (sc), and tested for estrous behavior at 14, 12, 1, 2, and 4 hr after treatment. Among iv-treated animals, significant amounts of lordosis behavior were seen as early as 12 hr, and a dramatic rise in solicitation behavior was observed at 2 hr. Although sc-treated animals displayed significant amounts of lordosis and solicitation behavior at 2 hr, the behavior was not maximal until 4 hr. Intravenous administration of 400 μg P was equipotent to 200 μg P, whereas 50 μg of iv P was relatively ineffective. A dual mechanism hypothesis pertaining to progesterone's actions in the facilitation of both the receptive and preceptive components of feminine sexual behavior in rats is discussed.  相似文献   

9.
The in vitro action of thyrotropin-releasing hormone (TRH) on the cyclic AMP level and iodine metabolism in dog thyroid, has been studied. TRH inhibited cyclic AMP accumulation and subsequent secretion in slices stimulated by thyrotropic hormone (TSH), prostaglandin E1, cholera toxin and to a lesser extent forskolin. The effect of TRH was suppressed in a medium deprived of calcium or in the presence of isobutylmethylxanthine. TRH also stimulated iodide binding to proteins, but not cyclic GMP accumulation. Although all these characteristics of TRH action on dog thyroid fit those of prostaglandin F in this tissue, TRH effects were not relieved by indomethacine. The possibility of a TRH action through other known inhibitors of the cyclic AMP system in dog thyroid such as: acetylcholine, α-adrenergic agents, adenosine, iodide were checked and ruled out. The possible involvement of other neurotransmitters, such as ATP or vasoactive intestinal peptide were studied but could not be substantiated. Our data suggest the existence of a direct negative action of TRH on the thyroid itself besides its stimulatory role at the pituitary level. The great variability of the TRH effect was overcome by pretreatment of the dog by pyridostigmine, an acetylcholinesterase inhibitor.  相似文献   

10.
Blood pressure and heart rate effects of prostaglandin E2 and F were examines after administrating each agent into the left lateral brain ventricle of chloralose-anesthethized cats. Administration of prostaglandin E2 (1 μg) resulted in significant, prolonged increases in arterial pressure (25.7 ± 6.7 mm Hg) and heart rate (19.4 ± 7.7 beats/min). These responses were mimicked when the same dose of prostagland E2 was administered into the restricted to the lateral and third ventricles via cannulation of the cerebral aqueduct, whereas no significant cardiovascular occured with administration into the fourth ventricle. Intravenous injection of prostaglandin E2 resulted in a transient decrease in blood pressure but no change in heart rate. Administration of prostaglandin F (1 and 3 μg) into the CNS produced no significant cardiovascular responses. The same was true when prostaglandin F was administered by the intravenous route. These results indicate that pronounced cardiovascular effects can be produced by administering prostaglandin E2 but not F into the CNSm and that the central site of action of prostaglandin E2 is in the forebrain.  相似文献   

11.
Culture of preovulatory rat follicles with luteinizing hormone, folliclestimulating hormone or prostaglandin E2 for 24 h reduced the subsequent response of adenylate cyclase to the homologous hormone by 80, 50 and 90%, respectively; yet follicles refractory to luteinizing hormone fully responded to follicle-stimulating hormone or prostaglandin E2, those refractory to follicle-stimulating hormone responded to luteinizing hormone and prostaglandin E2, and those refractory to prostaglandin E2 could be stimulated by either gonadotropin. Desensitization of the adenylate cyclase system by luteinizing hormone was achieved by hormone concentrations of 0.8−2.0 μg/ml in the mediem; a lower dose of luteinizing hormone (0.4 μg/ml), though effective in stimulating adenylate cyclase, did not induce refractoriness. Prostaglandin E2 caused partial refractoriness at dose levels of 0.1–0.25 μg/ml; higher dose levels were more effective. These findings suggest that continued exposure of the preovulatory follicle to elevated levels of hormones may cause perturbations in either the interaction between the hormone and its specific receptor or in a subsequent step essential for activation of adenylate cyclase.  相似文献   

12.
PheMetArgPheNH2 (FMRFamide), injected at < μmol/kg intravenously in the anesthetized rat, produces sharp elevations of blood pressure and changes in respiration. The effects were dependent on the carboxyterminal ArgPhe (RF) configuration and were stereospecific for these two amino acids. A related peptide with RF carboxyterminus, γ1-melanotropic stimulating hormone, also had potent blood pressure stimulating activity. The mechanisms underlying the pressor effect of FMRFamide have not yet been established but this pressor action was not significantly attenuated by standard pharmacologic antagonists or prevented by removal of the adrenal or pituitary gland.  相似文献   

13.
《Journal of Physiology》1998,92(1):25-30
In the present experiments we investigated a possible involvement of imidazoline receptors of the paraventricular nucleus (PVN) of the hypothalamus on the pressor effects of the angiotensin II (ANG II) injected into the subfornical organ (SFO), in male Holtzman rats (250–300 g) with a cannula implanted into the third ventricle (3rdV), PVN and SFO. At first we tested the participation of α2 and imidazoline agonist and antagonist compounds on the pressor effect of ANG II injected into the 3rdV. Based on the results we may conclude that clonidine associated with rilmenidine was able to block the hypertensive response to ANG II. The ANG II (20 pmol) injected into SFO induced a robust increase in blood pressure (37 ± 2 mmHg). Isotonic saline (0.15 M) NaCl did not produce any change in blood pressure (5 ± 2 mmHg). The injection of rilmenidine (30 μg/kg/1 μL), an imidazoline agonist agent injected into PVN before ANG II injection into SFO, blocked the pressor effect of ANG II (5 ± 2 mmHg). Also, the injection of idazoxan (60 μg/kg/μL) before rilmenidine blocked the inhibitory effect of rilmenidine on blood pressure (39 ± 4 mmHg). The injection of clonidine (20 nmol/μL) prior to ANG II into the 3rdV produced a decreased in arterial blood pressure (37 ± 2 mmHg) to (15 ± 4 mmHg). The injection of yohimbine (80 nmol/μL) prior to clonidine blocked the effect of clonidine on the effect of ANG II (27 ± 2 mmHg). The injection of rilmenidine prior to ANG II also induced a decrease in arterial blood pressure (10 ± 3 mmHg). The injection of idazoxan prior to rilmenidine also blocked the inhibitory effect of rilmenidine (24 ± 3 mmHg). In summary, the present study demonstrated that rilmenidine decreases the hypertensive effect of ANG II, with more potency than clonidine, even when injected into 3rdV or PVN. This study established that the PVN interacts with SFO by imidazoline receptors in order to control the arterial blood pressure.  相似文献   

14.
Central α-adrenergic mechanisms of blood pressure regulation were investigated by injecting norepinephrine or bradykinin into the carotid input of the cross-circulated head preparations of normotensive Wistar Kyoto rats (WKY). Rats were divided into three groups: sham-operated (sham), carotid sinuses denervated (SD) and carotid sinuses and aortic nerves debuffered (SAD). Norepinephrine, 5 μg, produced vasodepression in all rats, accompanied by corresponding decreases in sympathetic nerve activity recorded in some rats. Magnitude of vasodepression was largest in SAD rats. In sham rats, bradykinin, 1 μg, produced a biphasic response:initial vasodepression followed by a sustained pressor phase. This was accompanied by corresponding changes in peripheral sympathetic nerve activity recorded in some rats. In both SAD and SD rats bradykinin-induced vasodepression was abolished, while the magnitude of the pressor phase became more prominent. The increase in the pressor phase was greater in SAD than in SD rats. In similar studies of spontaneously hypertensive rats (SHR), responses to both α-adrenergic agonist and bradykinin are augmented, suggesting a dysfunction of hypothalamic α-adrenergic mechanisms. Since in the present study it has been shown that sino-aortic denervation produces effects similar to those seen in SHR, dysfunction of buffer nerves may account for the deficient central α-adrenergic mechanisms in SHR.  相似文献   

15.
In isolated canine atrium, perfused with blood from a donor dog, the infusions of both prostaglandins (PG)I2 and E2 (0.1–1 μg/min) into the sinus node arterial cannula neither altered the sinus rate and developed tension nor the positive chronotropic and inotropic responses elicited by either electrical stimulation or by injected norepinephrine. Infusion of arachidonic acid (10–100 μg/min), a precursor of PGs, or indomethacin (15–20 μg/min), an inhibitor of PG synthesis, into the sinus node arterial cannula also failed to alter the increase in sinus rate or developed tension produced by either adrenergic stimulus in the isolated atria. When arachidonic acid, 100–300 μg/kg or PGI2, 1 μg/kg, were injected into the jugular vein of the donor dog, they produced a fall in systemic blood pressure; this effect of arachidonic acid but not of PGI2 was abolished by indomethacin, 1 mg/kg. During administration of either arachidonic acid or indomethacin to the donor dog, the positive chronotripic and inotropic responses to adrenergic stimuli in the isolated atria also remained unaltered. These data indicate that PGs do not modulate adrenergic transmission in the blood perfused canine atrium.  相似文献   

16.
The ability of prostaglandin E2 (PGE2) to initiate luteinization was demonstrated using a system of in vitro incubation of ovarian follicles followed by transplantation. Follicles from diestrous rats were incubated with 0.05 to 50 μg/ml PGE2, 10 μg/ml luteinizing hormone (LH), or alone in Krebs-Ringer bicarbonate buffer plus glucose for 2 hr. Then follicles were transplanted under the kidney capsules of hypophysectomized recipients, with follicles exposed to PGE2 on one side and those exposed to LH or buffer only on the other side. As determined at autopsy 4 days later and confirmed by histological examination, follicles exposed to PGE2 at concentrations of 0.5 μg/ml or greater, or to LH, transformed into corpora lutea, but control follicles regressed. Incubation of follicles with LH in the presence of indomethacin, an inhibitor of prostaglandin synthesis, significantly reduced the incidence of luteinization. Prostaglandin E2 (10 μg/ml) was able to override the inhibition of luteinization by indomethacin (150 μg/ml). The prostaglandin analogue 7-oxa-13-prostynoic acid (100 μg/ml) failed to prevent luteinization in response to either 5 μg/ml LH or 1 μg/ml PGE2. Results with PGE2 and with indomethacin suggest a role for prostaglandins in the luteinizing action of LH.We have reported previously that in vitro exposure of diestrous rat follicles to luteinizing hormone (LH) will result in transformation of the follicles to corpora lutea following transplantation under the kidney capsules of hypophysectomized rats. Dibutyryl cyclic AMP (DBC) mimics this effect of LH, and transplants produce progesterone in measurable amounts after both LH and DBC exposure when prolactin is administered in vivo to recipients.Kuehl et al. have suggested that prostaglandins may act as obligatory intermediates in the effect of LH on the ovary, acting between LH and adenylate cyclase. Preliminary results indicated that prostaglandin E2 (PGE2) could induce luteinization in our system. The extent of prostaglandin involvement in luteinization was further investigated in this work, using two reported antagonists of prostaglandin action, indomethacin and 7-oxa-13-prostynoic acid. Indomethacin has been found to inhibit synthesis of prostaglandins E2 and F; 7-oxa-13-prostynoic acid, which acts as a competitive antagonist of prostaglandins, prevented the effect of LH and prostaglandins E1 and E2 on cyclic AMP production in mouse ovaries.  相似文献   

17.
D.J. Bolt 《Theriogenology》1978,9(4):333-341
Estrogen-induced regression of corpora lutea (CL) was studied in two experiments using 190 cycling ewes. In an experiment with a 3 × 5 factorial design, the minimum amounts of estradiol-17β (E2), estrone (E1) and diethylstilbestrol (DES) required to induce CL regression by intramuscular injection were determined. Injections of either 0, 100, 250, 500 or 1,000 μg of each estrogen were administered on days 10 and 11 of the estrous cycle. Each dose level of estrogen significantly reduced CL weight by day 14, and the 250 μg and higher dosages significantly reduced CL progesterone content. The luteolytic potencies of the three estrogens did not differ significantly.In the second experiment, E2 was infused into the jugular vein of ewes on day 10 of the estrous cycle at a rate of 1.3 to 41.6 μg/hr for either 12, 24, or 48 hours. Infusion of E2 for 12 hr did not significantly reduce either the weight or progesterone content of CL, even when as much as 500 μg of E2 (41.6 μg/hr) was administered. In contrast, a total of 62 μg of E2 infused over a 24-hr period (2.6 μg/hr) significantly reduced CL weight and CL progesterone. Therefore, CL regression induced by infusion of E2 on day 10 of the cycle was dependent on the duration of the E2 treatment as well as on the amount of E2 infused.  相似文献   

18.
The changes in serum gonadotrophins in male hamsters following one injection of 15 μg luteinizing hormone releasing hormone (LHRH) (Group A) were compared with those following the last injection of LHRH in animals receiving an injection approximately every 12 hr for 4 days (Group B) or 12 days (Group C). Peak follicle stimulating hormone (FSH) levels (ng/ml) were 1776±218 (Group A), 2904±346 (Group B), and 4336±449 (Group C). Peak luteinizing hormone (LH) values (ng/ml) were 1352±80 (Group A), 410±12 (Group B), and 498±53 (Group C). Serum FSH:LH ratios, calculated from the concentrations measured 16 hr after the last LHRH injections, were higher in Groups B and C than in Group A. Similar injections of LHRH (100 ng or 15 μg/injection) for 6 days elevated the serum FSH:LH ratio in intact males. Five such LHRH injections (100 ng/injection) blunted the rise in serum LH in orchidectomized hamsters. Direct effects of LHRH on gonadotrophin secretory dynamics or altered brain-pituitary-testicular interactions may alter the ratio of FSH to LH in the hamster.  相似文献   

19.
We investigated some effects of prostaglandin E1 on the metabolism of rat parathyroid glands using a culture system containing basal Eagle's medium supplemented with 5–10% heat-inactivated rat serum. Rat parathyroid glands incorporate [3H]fucose and 14C-labeled amino acids into cellular glycoproteins and secrete some of these into the culture medium. Gel filtration chromatography separates these glycoproteins into three classes, the smallest of which (peak 3) is secreted with immunoreactive parathyroid hormone. In cultures of 48 h, prostaglandin E1 (1 μg/ml) specifically inhibits the secretion of peak 3 and of parathyroid hormone but has no effect on the incorporation of [3H]-fucose, 14C-labeled amino acids, or [3H]uridine into parathyroid glands. Cytochalasin B inhibits the secretion of parathyroid hormone and the incroporation of isotopic fucose and amino acids. Cortisol stimulates incorporation of [3H]fucose and the secretion of parathyroid hormone even in the presence of inhibitory doses of prostaglandin E1. It is concluded that, in organ culture, prostaglandin E1 inhibits the secretion of parathyroid hormone and of a specific glycoprotein the function of which may be related to the secretion of the hormone.  相似文献   

20.
Five clonal strains of mouse tumor cells (HSDM1) synthesize and secrete large quantities (0.70-2.0 μg/mg cell protein/24 hr) of prostaglandin E2. Five lines of control cells did not synthesize significant amounts of prostaglandins. HSDM1 cells produce prostaglandin E2 during both the logarithmic and stationary phases of the cell growth cycle. Prostaglandin production was inhibited by aspirin-like drugs; for example, 50% inhibition was obtained with as little as 3 × 10−9 M indomethacin. We conclude that the HSDM1 cell system will serve as a useful model system to study prostaglandin synthesis and secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号