首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background

In plant organelles, specific messenger RNAs (mRNAs) are subjected to conversion editing, a process that often converts the first or second nucleotide of a codon and hence the encoded amino acid. No systematic patterns in converted sites were found on mRNAs, and the converted sites rarely encoded residues located at the active sites of proteins. The role and origin of RNA editing in plant organelles remain to be elucidated.

Results

Here we study the relationship between amino acid residues encoded by edited codons and the structural characteristics of these residues within proteins, e.g., in protein-protein interfaces, elements of secondary structure, or protein structural cores. We find that the residues encoded by edited codons are significantly biased toward involvement in helices and protein structural cores. RNA editing can convert codons for hydrophilic to hydrophobic amino acids. Hence, only the edited form of an mRNA can be translated into a polypeptide with helix-preferring and core-forming residues at the appropriate positions, which is often required for a protein to form a functional three-dimensional (3D) structure.

Conclusion

We have performed a novel analysis of the location of residues affected by RNA editing in proteins in plant organelles. This study documents that RNA editing sites are often found in positions important for 3D structure formation. Without RNA editing, protein folding will not occur properly, thus affecting gene expression. We suggest that RNA editing may have conferring evolutionary advantage by acting as a mechanism to reduce susceptibility to DNA damage by allowing the increase in GC content in DNA while maintaining RNA codons essential to encode residues required for protein folding and activity.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.

Background

ADAR proteins are among the most extensively studied RNA binding proteins. They bind to their target and deaminate specific adenosines to inosines. ADAR activity is essential, and the editing of a subset of their targets is critical for viability. Recently, a huge number of novel ADAR targets were detected by analyzing next generation sequencing data. Most of these novel editing sites are located in lineage-specific genomic repeats, probably a result of overactivity of editing enzymes, thus masking the functional sites. In this study we aim to identify the set of mammalian conserved ADAR targets.

Results

We used RNA sequencing data from human, mouse, rat, cow, opossum, and platypus to define the conserved mammalian set of ADAR targets. We found that the conserved mammalian editing sites are surprisingly small in number and have unique characteristics that distinguish them from non-conserved ones. The sites that constitute the set have a distinct genomic distribution, tend to be located in genes encoding neurotransmitter receptors or other synapse related proteins, and have higher editing and expression levels. We also found a high consistency of editing levels of this set within mice strains and between human and mouse. Tight regulation of editing in these sites across strains and species implies their functional importance.

Conclusions

Despite the discovery of numerous editing targets, only a small number of them are conserved within mammalian evolution. These sites are extremely highly conserved and exhibit unique features, such as tight regulation, and probably play a pivotal role in mammalian biology.  相似文献   

11.
12.
Adaptation and survival of Trypanosoma brucei requires editing of mitochondrial mRNA by uridylate (U) insertion and deletion. Hundreds of small guide RNAs (gRNAs) direct the mRNA editing at over 3,000 sites. RNA editing is controlled during the life cycle but the regulation of substrate and stage specificity remains unknown. Editing progresses in the 3’ to 5’ direction along the pre-mRNA in blocks, each targeted by a unique gRNA. A critical editing factor is the mitochondrial RNA binding complex 1 (MRB1) that binds gRNA and transiently interacts with the catalytic RNA editing core complex (RECC). MRB1 is a large and dynamic complex that appears to be comprised of distinct but related subcomplexes (termed here MRBs). MRBs seem to share a ‘core’ complex of proteins but differ in the composition of the ‘variable’ proteins. Since some proteins associate transiently the MRBs remain imprecisely defined. MRB1 controls editing by unknown mechanisms, and the functional relevance of the different MRBs is unclear. We previously identified two distinct MRBs, and showed that they carry mRNAs that undergo editing. We proposed that editing takes place in the MRBs because MRBs stably associate with mRNA and gRNA but only transiently interact with RECC, which is RNA free. Here, we identify the first specialized functions in MRBs: 1) 3010-MRB is a major scaffold for RNA editing, and 2) REH2-MRB contains a critical trans-acting RNA helicase (REH2) that affects multiple steps of editing function in 3010-MRB. These trans effects of the REH2 include loading of unedited mRNA and editing in the first block and in subsequent blocks as editing progresses. REH2 binds its own MRB via RNA, and conserved domains in REH2 were critical for REH2 to associate with the RNA and protein components of its MRB. Importantly, REH2 associates with a ~30 kDa RNA-binding protein in a novel ~15S subcomplex in RNA-depleted mitochondria. We use these new results to update our model of MRB function and organization.  相似文献   

13.
We have analyzed the nad3-rps12 locus for eight angiosperms in order to compare the utility of mitochondrial DNA and edited mRNA sequences in phylogenetic reconstruction. The two coding regions, containing from 25 to 35 editing sites in the various plants, have been concatenated in order to increase the significance of the analysis. Differing from the corresponding chloroplast sequences, unedited mitochondrial DNA sequences seem to evolve under a quasi-neutral substitution process which undifferentiates the nucleotide substitution rates for the three codon positions. By using complete gene sequences (all codon positions) we found that genomic sequences provide a classical angiosperm phylogenetic tree with a clear-cut grouping of monocotyledons and dicotyledons with Magnoliidae at the basal branch of the tree. Conversely, owing to their low nucleotide substitution rates, edited mRNA sequences were found not to be suitable for studying phylogenetic relationships among angiosperms. Received: 24 January 1996 / Accepted: 5 June 1996  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号