首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Positron Emission Tomography (PET) was used to analyse in vivo antagonist binding to human myocardial muscarinic cholinergic receptor. The methiodide salt of the muscarinic antagonist, quinuclidinyl benzilate (MQNB), was labeled with the positron emitter, Carbon-11, and injected intravenously to 8 normal subjects. 11C-MONB concentration was determined in vivo in the ventricular septum from 40 cross-sectional images acquired at the same transverse level over a period of 70 minutes. In 4 subjects, various amounts of unlabeled atropine were rapidly injected at 20 minutes to study whether atropine competitively inhibited MQNB.The kinetics of binding of 11C-MQNB were not the same in vivo and in vitro. The apparent dissociation rate of 11C-MQNB in vivo was much slower (by 1 to 2 orders of magnitude) than that observed in vitro with 3H-QNB. After atropine injection, 11C-MNQB dissociated from its binding sites at a rate that apparently depended on the amount of atropine present. 11C-MQNB kinetics were analysed with a mathematical model which assumes the existence of a boundary layer containing free ligand in the vicinity of the binding sites. The dissociation rate of the radioligand depends on the probability of its rebinding to a free receptor site.  相似文献   

2.
Atropine sulfate elicited a dose-dependent decrease in blood pressure in normotensive rats at doses higher than needed to cause muscarinic blockade. This hypotensive effect was not altered by pretreatment with ganglionic or β-adrenergic blockers, but was fully abolished by α-adrenergic blockers. In addition, atropine inhibited the pressor response to α-agonists in a dose-dependent manner. The time course for hypotension and α-blockade were the same (onset < 1 minute; duration < 20 minutes). In vitro, atropine was found to be 200 times more potent in displacing the α1-adrenergic receptor ligand ([3H] WB-4101) than the α2-ligand ([3H] clonidine). Thus the observed hypotensive effect is apparently due to α-blockade as demonstrated in vivo and in vitro.  相似文献   

3.
Trimethyltin (TMT) induced a dose-dependent antinociceptive and hypothermic effect in mice. Antinociception was not attenuated by naloxone but was reversed by atropine. TMT, however, was ineffective in displacing (3H)-QNB binding in vitro and did not affect (3H)-QNB binding or acetylcholinesterase activity after in vivo administration. The ethyl ester of nipecotic acid, a specific inhibitor of synaptosomal GABA uptake, exerted a similar antinociceptive effect that could be blocked by atropine. The GABA receptor antagonist bicuculline attenuated antinociception induced by TMT and nipecotic acid ethyl ester but not by morphine or oxotremorine. γ-Vinyl GABA, an irreversible inhibitor of GABA metabolism, prolonged TMT but not morphine-induced antinociception. In contrast, neither the dose-response nor the time course of TMT-induced hypothermia were affected by any of the drugs tested. The findings suggest that the GABAergic system may be involved in TMT induced antinociception; however, the mechanism responsible for the hypothermic effect of TMT is not apparent.  相似文献   

4.
V R Spiehler  L Paalzow 《Life sciences》1979,24(23):2125-2132
Phenoxybenzamine was antinociceptive in the mouse tail electrical stimulation assay (ED50, 36.8 mg/kg) with a peak effect at 2 12 hours after subcutaneous injection. Naloxone antagonized this antinociception action of phenoxybenzamine in a dose-related manner. Dose-ratio analysis of naloxone's antagonism of phenoxybenzamine antinociception gave a pA2 value of 6.15, similar to that found for the benzomorphinan mixed agonist-antagonists. This is in agreement with the sodium response ratio found for phenoxybenzamine, 4.3, in in vitro assays of phenoxybenzamine inhibition of 3H-naloxone binding to mouse brain homogenate (5). These findings suggest that phenoxybenzamine binds to the opiate receptor both in vivo as well as in vitro in a manner similar to the mixed agonist-antagonists.  相似文献   

5.
T T Chau  W L Dewey 《Life sciences》1981,29(21):2149-2156
The antinociceptive effects of intraventricularly administered acetylcholine (ACh) and its congeners have been demonstrated by previous investigators. The opiate receptor binding concept was used in this study to investigate possible correlations between ACh antinociception and its effects on opiate stereospecific binding. ACh in vitro decreased the stereospecific binding of 3H-dihydromorphine in mouse brain homogenates. Such decrease was also observed in the brain homogenates of mice which had been treated with ACh intracerebroventricularly (i.v.t.). The decrease in the stereospecific binding of 3H-dihydromorphine induced by (i.v.t.) acetylcholine was inhibited by naloxone, atropine, cyclazocine and pentazocine. The d-isomers of cyclazocine and pentazocine were more potent than the l-isomers in antagonizing the inhibitory effects of i.v.t. acetylcholine upon the stereospecific binding of 3H-dihydromorphine to mouse brain homogenates. The same stereospecificity of these two narcotic analgesics in blocking acetylcholine had been previously observed in the tail-flick test. It is suggested that the antinociceptive effects of acetylcholine are related to the inhibition of opiate stereospecific binding, the mechanism of which is yet to be understood.  相似文献   

6.
Identification of opiate receptor binding in intact animals.   总被引:1,自引:0,他引:1  
C B Pert  S H Snyder 《Life sciences》1975,16(10):1623-1634
After intravenous administration of 3H-naloxone to rats, particulate bound radioactivity accumulated in the brain is selectively associated with opiate receptor binding sites, providing a means of labeling the opiate receptor in vivo. The regional distribution of 3H-naloxone bound in vivo closely parallels regional differences in opiate receptor binding in vitro with highest levels in the corpus striatum, negligible receptor-associated binding in the cerebellum and intermediate levels in other regions. 3H-Naloxone binding in vivo is saturable with the same total number of binding sites determined in vivo as by in vitro procedures. Nalorphine is markedly more potent than morphine in inhibiting 3H-naloxone binding in vivo and non-opiates are ineffective. The half-life for dissociation of 3H-naloxone bound to particles in vivo is the same as its dissociation rate after binding occurs in vitro, and sodium stabilizes 3H-naloxone bound in vivo from initial rapid dissociation as predicted from the known properties of the opiate receptor in vitro.  相似文献   

7.
Using 3H-dioxane, the distribution of dioxane among a number of tissues and various subcellular fractions of rat liver was studied. At various times after i.p. injection, dioxane was found to distribute more or less uniformly among various tissues (liver, kidney, spleen, lung, colon and skeletal muscle), consistent with its polar/nonpolar nature. Studies of the nature of dioxane binding, however, revealed that the extent of “covalent” binding (as measured by incorporation into lipid-free, acid-insoluble tissue residues) was significantly higher in the liver (the main carcinogenesis target tissue), spleen and colon than that in other tissues. Investigations of the subcellular distribution in liver indicated that most of the radioactivity was in the cytosol, followed by the microsomal, mitochondrial and nuclear fractions. The binding of dioxane to the macromolecules in the cytosol was mainly noncovalent. The percent covalent binding was highest in the nuclear fraction, followed by mitochondrial and microsomal fractions and the whole homogenate. Pretreatment of rats with inducers of microsomal mixed-function oxidases had no significant effect on the covalent binding of dioxane to the various subcellular fractions of the liver. There was no microsome-catalyzed invitro binding of 3H- or 14C-dioxane to DNA under conditions which brought about substantial binding of 3H-benzo[a]pyrene.  相似文献   

8.
[3H]Flunitrazepam was used to characterize benzodiazepine binding sites in human brain. The benzodiazepine binding sites exhibited high affinity, pharmacological specificity and saturability in their binding of [3H]flunitrazepam. The dissociation constant (KD) of [3H]flunitrazepam binding was determined by three different methods and found to be in the range of 2–3 nM. The potency of several benzodiazepine analogs to inhibit specific [3H]-flunitrazepam binding invitro correlated well with their potency in several invivo human and animal tests. The density of [3H]-flunitrazepam binding sites was highest in the cerebrocortical and rhinencephalic areas, intermediate in the cerebellum, and lowest in the brain stem and commissural tracts.  相似文献   

9.
Some opiates with morphinan- and benzomorphan-structures possess affinities for neuroleptic receptors as revealed by their abilities to compete with 3H-spiroperidol for common binding sites in rat striatum in vitro (IC50 in the range between 10?6 and 10?5M). The binding of these opiates to neuroleptic receptors appears to be of pharmacological significance, since in vivo studies in mice revealed a small but significant displacement of spiroperidol by high doses of the opiate antagonist levallorphan from specific binding sites in the striatum. In addition, there exists some correlation between the ability of opiates to bind to neuroleptic receptor sites in vitro and their potency to evoke “bizarre behavior” in rats in vivo. In contrast, a wide variety of other opiates having morphine-, morphinone- or oripavine-structure showed no affinity for neuroleptic binding sites in vitro (IC50 greater than 10?4 M). Of the opioid peptides (methionine-enkephalin, leucine-enkephalin and β-endorphin) none has an affinity for neuroleptic binding sites. A variety of other peptides were also investigated but did not interfere with spiroperidol binding. Only ACTH showed a moderate affinity for neuroleptic binding sites.  相似文献   

10.
(3H) 3-Methylcholanthrene binds in vivo to a macromolecule in addition to the previously reported binding to ligandin in liver cytosol. The properties of this second molecule are identical to those of the glucocorticosteroid receptor (Binder II) through 400 fold purification over the cytosol proteins (elution position from DEAE-Sephadex A-50 columns, molecular weight by gel filtration and pI value by isoelectrofocusing). The carcinogen, probably a metabolite, binds very strongly or covalently to the macromolecule in vivo, but non-covalently in vitro in the absence of microsomes. Large amounts of unlabeled carcinogen administered in vivo do not compete significantly with subsequent (3H) dexamethasone binding to the hormone receptor fraction in vitro. Methylcholanthrene and dexamethasone do not compete for binding sites in vitro on isolated unlabeled Binder II leading to the conclusion that the glucocorticosteroid receptor and the methylcholanthrene binding protein are distinct entities.  相似文献   

11.
Muscarinic receptors in the smooth muscle of the cat pylorus (pyloric sphincter) were identified by binding of the ligand (±) [3H]-quinuclidinyl benzilate ([3H]-QNB). Receptor related binding of [3H]-QNB reached steady-state in thirty minutes at 37°C, was saturable, showed pharmacologic specificity and was stereoselective. An apparent equilibrium dissociation constant, KD, of 1.9 ± 0.3 nM and maximum receptor concentration of 122 ± 13 femtomoles per mg of protein (means ± S.E.M.) were determined from Scatchard plots of [3H]-QNB binding. Hill coefficients of 0.99 and 1.01 indicated the absence of cooperative interactions. The muscarinic antagonists atropine and propantheline inhibited binding with IC50 values in the nanomolar range, whereas bethanechol was over four orders of magnitude less potent. Noncholinergic agents had little or no effect on [3H]-QNB binding. The levo isomer of QNB was about seventy times more effective at inhibiting binding than its dextro isomer while dextro benzetimide was greater than two thousand fold more active than levo benzetimide. The isomers of another anticholinergic compound, tropicamide, also competed for [3H]-QNB binding sites in a stereoselective manner, the levo isomer being eighty-five times more potent than the dextro isomer.  相似文献   

12.
Acute caffeine injection (100 mg/kg) elevates brain levels of tryptophan (TRP), serotonin (5HT), and 5-hydroxyindoleacetic acid (5HIAA). Experiments were performed to determine if the increases in 5HT and 5HIAA result from a stimulation of the rate of 5HT synthesis. Both the rate of 5-hydroxytryptophan (5HTP) accumulation following NSD-1015 injection, and the rate of 3H-5-hydroxyindole synthesis from 3H-tryptophan were measured in vivo following caffeine administration and found to be normal. Tryptophan hydroxylase activity, as measured in vitro in brain homogenates, was also unaffected by caffeine. The results suggest that the elevations in brain 5HT and 5HIAA levels produced by caffeine do not reflect enhanced 5HT synthesis, despite significant elevations in brain TRP level. Some other mechanism(s) must therefore be responsible for these elevations in brain 5-hydroxyindole levels.  相似文献   

13.
An exogenous supply of N6,O2′-dibutyryl cyclic adenosine 3′,5′-monophosphate (DBcAMP) in vivo produces regression of one type of Walker 256 mammary carcinoma cell population (DBcAMP-responsive); a second type of cell population continues to grow despite DBcAMP treatment (DBcAMP-unresponsive). A correlation was found between altered cAMP-binding of the tumor cytosol and DBcAMP-unresponsiveness. It was found that there was: a) a higher apparent dissociation constant (Kd) for cAMP-binding in unresponsive tumor cytosol in vitro, and b) unsaturability of cAMP-binding by unresponsive tumor cytosol in response to elevated cAMP levels in vivo. Cycloheximide abolished the saturation of cAMP binding in vivo as well as tumor regression produced by DBcAMP.  相似文献   

14.
C Y Chiou 《Life sciences》1975,17(6):907-913
The pharmacology of a possible false cholinergic transmitter, (2-hydroxyethyl) methyldiethylammonium (diethylcholine, DEC) was studied with various preparations. It was found to inhibit the neuromuscular transmission of frog sciatic nerve-gastrocnemius muscle invitro with ED50 of 1.93 (0.66 - 5.79) × 10−4 M. DEC was also found to inhibit dog chorda tympani-Wharton's duct (postganglionic parasympathetic neuro-effector junction) and cat superior cervical ganglionnictitating membrane (sympathetic ganglion) preparations invivo with ED50's of 6.2 (1.8 – 21.1) mg/kg and 12.0 (5.7 - 25.2) mg/kg, respectively. After blockade of these preparations with DEC, the former was still responsive to intravenous injection of pilocarpine (1 mg/kg) and choline (10 mg/kg) and the latter to close arterial injection of acetylcholine (100 μg/injection) and choline (3 mg/min infusion). These results support the idea that DEC paralyzes cholinergic neurons possibly through false cholinergic transmission without blocking the cholinergic receptor at the post-junctional membrane.  相似文献   

15.
Rat liver cytosol binds 3H-cAMP and 3H-DBcAMP in vitro. Fractionation of bound radioactivity by DEAE-Sephadex chromatography shows that 3H-cAMP is associated with a different cytosolic protein than is 3H-DBcAMP. The pI's of the cAMP-protein and the 3H-DBcAMP-protein complexes are 6.7 and 3.9, respectively. Competition studies between 3H-cAMP and its structural analogues have shown the following order of effectiveness in competing for binding sites in rat liver cytosol: cAMP > N6-MBcAMP > O2′-MBcAMP. No inhibition of 3H-cAMP binding was observed with 5′-AMP, adenosine, cGMP or DBcAMP. In vitro binding experiments with rat serum has shown that only 3H-DBcAMP binds to any significant extent.  相似文献   

16.
A cholinergic proteolipid fraction (i.e. a hydrophobic lipoprotein) was separated from the n. caudatus of the cow, using affinity chromatography with the lipophilic gel Sephadex LH-20 and p-phenyltrimethylamonium as the active group. High affinity binding studies showed that only the specific fraction, desorbed after an acetylcholine (or acid) pulse, and corresponding to 0,72% of the proteolipids, is the one that binds the cholinergic ligands. The binding of (3H)atropine and (14C)d-tubocurarine demonstrated that there are 814 picomoles/g fresh tissue of muscarinic sites and only 76 picomoles/g of nicotinic sites. The specific radioactivity for (3H)atropine is 10,000 nmoles/g protein, suggesting a high degree of purification of the specific cholinergic proteolipid.  相似文献   

17.
Up to now the only drugs known to be able to inhibit the binding of benzodiazepines to rodent brain receptors are members of this chemical family.Zopiclone (RP 27 267), a new drug with a pharmacological profile similar to that of chlordiazepoxide and nitrazepam but entirely different chemically from benzodiazepines, has been tested for its ability to inhibit benzodiazepine binding. In vitro and in vivo studies have shown that zopiclone is able to inhibit the binding of [3H] diazepam and [3H] flunitrazepam to brain receptors. The potency of zopiclone is quite comparable to that of diazepam and nitrazepam in vitro and to that of chlordiazepoxide in vivo.These results confirm the pharmacological similarities existing between zopiclone and the benzodiazepines.  相似文献   

18.
Studies of the ontogeny of dopamine and neuroleptic receptors in the central nervous system of the rat were carried out in vivo using 3H-spiperone as ligand. It was demonstrated that intraperitoneal injections can be successfully used to label these receptors in rat pups up to at least 30 days of age. The time course and characteristics of 3H-spiperone binding in the brain of 5, 15 and 30 day old rat pups were determined and found to include appropriate regional distribution, saturability and appropriate pharmacology. The developmental pattern of 3H-spiperone binding paralleled what has been seen using in vitro techniques. In addition preliminary autoradiographic studies describe the neuroanatomical pattern of dopamine receptor ontogeny in the striatum.  相似文献   

19.
The invitro binding of [3H]serotonin ([3H]5-HT) to cerebral cortex from young and old adult humans was studied. With cortex from human males 23–29 years old, the binding of [3H]5-HT was a saturable process, and bound [3H]5-HT could be displaced by unlabeled 5-HT or by lysergic acid diethylamide (LSD). Two separate binding sites were discernible by Scatchard analysis. The dissociation constants were 7 nM (Kd1) and 52 nM (Kd2), and the total number of binding sites were 0.65 (n1) and 2.06 (n2) pmoles/mg protein, respectively. In cerebral cortex from aged humans (61–70 years old), the dissociation constant for [3H]5-HT binding was 198 nM, and the total number of binding sites were 4.78 pmoles/mg protein. The alteration of serotonin binding sites may be related to cerebral malfunction in old people, particularly to mental depression and sleep disturbances that commonly occur.  相似文献   

20.
A photoaffinity probe for the vitamin D-dependent chick intestinal calcium binding protein (CaBP) has been prepared by conjugation of methyl-4-azidobenzoimidate (MABI) to lactoperoxidase-125I-iodinated CaBP to yield 125I-CaBP-MABI: [3 moles MABI per mole CaBP]. After incubation invitro of 125I-CaBP-MABI (28,000 daltons) in model systems with bovine intestinal alkaline phosphatase (AP) (67,000 daltons), a UV light-dependent crosslinking occurred to yield a conjugate with a molecular weight of 95,000 (by SDS-gel electrophoresis); no crosslinking occurred with E.coli alkaline phosphatase. The formation of the 125I-CaBP-MABI-AP was found to occur only in the presence of calcium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号