首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of light on retinal dopamine (DA) synthesis and content in dark-adapted rats was assessed 15 h and 2, 4, 7 and 16 days after eye opening (13 to 14 days after birth). The accumulation of dihydroxyphenylalanine (DOPA) following inhibition of its decarboxylation was used to estimate DA synthesis. At 7 and 16 days, but not earlier, light significantly augmented DOPA formation. These increases were as dramatic as those reported for adult rats. DA in dark-adapted retinas ranged from 0 (undetectable) at 15 h to 83% of adult levels at 16 days, but were only 36% of that of adult retinas at 7 days. Light produced a significant decline in DA at 16 days but not at any other time point. These results indicate that the dopaminergic neurons synthesize transmitter and respond to light at a time when the neuronal pools of DA are not yet mature.  相似文献   

2.
We have earlier shown that d-lysergic acid diethylamide, LSD and its 2-bromo derivative, BOL like the dopamine (DA) antagonists haloperidol increased the rate of the in vivo tyrosine hydroxylation in the striatum measured as the accumulation of DOPA after decarboxylase inhibition.Now we have found that several agents structurally similar to LSD increase the in vivo tyrosine hydroxylation in the striatum. Psilocybin (50 mg/kg i.p.) and N,N-dimethyltryptamine (50 mg/kg i.p.) caused a short-lasting increase of DOPA accumulation, while mescaline (10 – 100 mg/kg i.p.) did not increase the DOPA accumulation. A marked increase of DOPA accumulation was observed after the 5-hydroxytryptamine (5-HT) antagonist cyproheptadine. The effects of LSD and structurally related drugs on the DOPA accumulation in the striatum appear to be mediated via DA antagonism at receptor level. However, these agents may control the DOPA accumulation via other receptors than DA receptors e.g. 5-HT receptors. A control of DOPA accumulation via receptors other than DA receptors appears to be predominant after treatment with N,N-dimethyltryptamine or psilocybin.  相似文献   

3.
The invivo of four psychomotor stimulants (d-amphetamine, β-phenylethylamine, cocaine and methylphenidate) were determined on: 1) the rate of dopamine (DA) synthesis, as measured by the accumulation of dihydroxyphenylalanine (DOPA) after aromatic L-amino acid decarboxylase inhibition, in the striatum (terminals of nigrostriatal neurons) and in the nucleus accumbens and olfactory tubercle (terminals of mesolimbic neurons) and 2) the efflux of the DA metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) into cerebroventricular perfusates of conscious, freely-moving rats. d-Amphetamine and β-phenylethylamine produced biphasic responses with lower doses of each drug increasing both the efflux of DOPAC and the rate of DA synthesis in the striatum. Higher doses of each drug either had no effect or actually decreased the efflux of DOPAC and also decreased the rate of DA synthesis in the striatum. Higher doses of each drug either had no effect only decreased the efflux of DOPAC and the rate of DA synthesis in the striatum. The effects of the drugs on the rate of DA synthesis in the nucleus accumbens and olfactory tubercle were similar to, but less pronounced than those seen in the striatum. These results are consistent with the following suggestions: 1) low doses of d-amphetamine and β-phenylethylamine facilitate the neuronal release of DA while higher doses of both drugs facilitate release and inhibit neuronal reuptake of the amine, and 2) cocaine and methylphenidate preferentially block the neuronal reuptake of DA.  相似文献   

4.
S A Persson 《Life sciences》1977,20(7):1199-1205
Administration of d-lysergic acid diethylamide (LSD) and its analogue 2-bromo lysergic acid diethylamide (BOL) resulted in a shortlasting increase of 3,4-dihydroxyphenylacetic acid (DOPAC) levels in the rat striatum. BOL was more potent than LSD in the dose range 0.5–4.0 mg/kg. Since there was a concomitant increase in the striatal invivo tyrosine hydroxylation as measured by DOPA accumulation after decarboxylase inhibition, our findings suggest that LSD and BOL increase the impulse flow in the nigro-neostriatal pathway probably by central dopamine (DA) receptor antagonism. However, 4 hrs after LSD the DOPAC level was decreased, while the DOPA accumulation was not. Thus the effect of LSD on the dopaminergic system appears not to be limited to a pure receptor antagonism. The possibility also exists that the effect of LSD on the nigro-neostriatal DA pathway is secondary to its effect on the central 5-hydroxytryptaminergic system.  相似文献   

5.
Dopamine (DA)-containing neurons of the rat retina are apparently activated transsynaptically by photic stimulation. Exposure of dark-adapted rats to light increases retinal DA biosynthesis and metabolism. Associated with the light-evoked increase of DA biosynthesis is a rapid activation of tyrosine hydroxylase (TH), the rate-limiting enzyme of catecholamine biosynthesis. The activation of TH is characterized by an increased affinity of the enzyme for the pteridine cofactor. Because TH in dark-adapted retinas is apparently not saturated with cofactor, the light-evoked increase of affinity is probably responsible for the observed stimulation of DA biosynthesis. Cyclic AMP (cAMP)-dependent protein phosphorylation in vitro activates TH extracted from dark-adapted retinas, and phosphorylation-induced TH activation is very similar and not additive with light-evoked activation of the enzyme. Incubation of viable cell suspensions of dissociated retinas with 8-bromo cAMP also activates TH, which indicates the availability of sufficient cAMP-dependent protein kinase in the proper subcellular compartment to regulate the enzyme in situ. The DA-containing neurons of the rat retina are tonically inhibited in darkness, and evidence is presented that this tonic inhibition involves direct synaptic input to the DA neurons from gamma-aminobutyric acid-containing amacrine cells. The DA-containing neurons are also subject to feedback inhibition through DA receptors, and to modulation by alpha 2-adrenergic receptors.  相似文献   

6.
Exposure of albino rats to continuous light of low intensity (350–700 lux) for 4 months produces massive degeneration of the photoreceptor segments and cell bodies of the outer nuclear layer of the retina. Only a few heterochromatic, receptor cell nuclei remain, and no photoreceptor segments are present. On the other hand, the inner layers of these retinas remain morphologically intact. The inner nuclear layer of the normal rat retina contains a group of amacrine cells which contain the putative neurotransmitter, dopamine (DA). Short term exposure to light (30 or 60 min) markedly stimulates the rate of DA turnover in these cells in normal, previously dark-adapted rats. Such enhancement of the rate of neurotransmitter turnover in the brain has been correlated with an increase in nerve impulse activity. The present study was undertaken to determine if the dopaminergic amacrine cells of the inner nuclear layer were still responsive to light in the retinas of rats whose photoreceptors were previously destroyed by long term exposure to continuous illumination. One week before sacrifice, the animals which had been housed in continuous light for 4 months were returned to normal 14 hr light: 10 hr dark lighting conditions. At the end of this time they and a group of control rats which had been housed in cyclic lighting conditions for the entire 4 months were dark adapted for approximately 15 hr. Then the rate of retinal DA turnover was estimated from the depletion of DA following inhibition of DA synthesis by α methyl para-tyrosine. The turnover of DA in the dark-adapted retinas of the control rats and of experimental rats with photoreceptor degeneration was dramatically enhanced 2–4 fold by short term exposure (up to 1 hr) to light. Since rats are nocturnal and avoid light, we tested the light aversion of another group of rats which had been exposed to light for 4 months and then returned to cyclic lighting conditions for one week. These rats and control animals which had been maintained in cyclic lighting conditions for 4 months both chose the dark side of a light-dark box over 80% of the time. This behavior of the rats with retinal degeneration was taken as a crude indication of their continued ability to detect light. The light-induced increase in DA activity in retinas with photoreceptor degeneration may play a role in the continued ability of these rats to perceive light.  相似文献   

7.
The activities of periventricular-hypophysial dopaminergic (DA) neurons were compared in male and female rats by measuring dopamine synthesis (accumulation of 3,4-dihydroxyphenylalanine [DOPA] after inhibition of L-aromatic amino acid decarboxylase) and metabolism (concentrations of 3,4-dihydroxyphenylacetic acid [DOPAC]) in terminals of these neurons in the intermediate lobe of the pituitary. For comparison, the synthesis and metabolism of dopamine in the neural lobe of the pituitary and median eminence were also determined. The concentrations of DOPAC and accumulation of DOPA were higher in females than in males in both the intermediate lobe and median eminence, revealing a sexual difference in the basal activity of periventricular-hypophysial and tuberoinfundibular DA neurons. In contrast, there were no differences between male and female rats in activity of DA neurons terminating in the neural lobe. One week following gonadectomy, DOPA accumulation in the median eminence was decreased in females and increased in males, but remained unchanged in the intermediate lobe. These results indicate that sexual differences in the activity of periventricular-hypophysial DA neurons terminating in the intermediate lobe are not dependent upon the presence of circulating gonadal steroids, and in this respect, these neurons differ from tuberoinfundibular DA neurons.  相似文献   

8.
Experiments were performed with intact chloroplasts and leaf cell protoplasts isolated from spinach. The light-dependent decrease in (H+) in the chloroplast stroma counteracts carbon reduction and is offset at low light intensities by a large decrease in NADP and a significant increase in [ATP][ADP] ratios. Excess accumulation of NADPH and/or ATP permits 3-phosphogly cerate reduction to occur. With increasing light intensity, NADP levels and [ATP][ADP] ratios increased. High rates of photosynthesis were observed at high and at low [ATP][ADP] ratios. Levels of dihydroxyacetone phosphate were dramatically increased in the light. In chloroplasts, this permitted conversion to ribulose bisphosphate which on carboxylation yields 3-phosphoglycerate. The light-dependent alkalization of the chloroplast stroma is known to be responsible for phosphogly cerate retention in the chloroplasts. A high chloroplast ratio of phosphogly cerate to dihydroxyacetone phosphate aids carbon reduction. Measured ratios of dihydroxyacetone phosphate to phosphogly cerate were averages between low chloroplast ratios and high cytosolic ratios. They were far higher, even under low-intensity illumination, than dark ratios. Since cytosolic NADH levels are known to increase much less in the light than cytosolic dihydroxyacetone phosphate levels, the large increase in the ratio of didydroxyacetone phosphate to phosphogly cerate must considerably increase cytosolic phosphorylation potentials even at very low light intensities. It is proposed that this increase is communicated to the mitochondrial adenylate system, and inhibits dark respiratory activity, giving rise to the Kok effect. The extent of stroma alkalization, the efficiency of metabolite shuttles across the chloroplast envelope, and rates of cytosolic ATP consumption are proposed to be factors determining whether and to what extent the Kok effect can be observed. Light activation of chloroplast enzymes was slow at low and fast at high light intensities. This contrasts to low NADP levels at low and usually higher levels at high light intensities. Maximum enzyme activation was observed far below light saturation of photosynthesis, and light activation of enzymes was often less pronounced at very high than at intermediate light intensities.  相似文献   

9.
Abstract: We have studied the effect of a dietary deprivation of n-3 fatty acids on the activity of the dopamine (DA)-de-pendent adenylate cyclase in the rat retina. Experiments were conducted in 6-month-old rats raised on semipurified diets containing either safflower oil (n-3 deficient diet) or soybean oil (control diet). The levels of docosahexaenoic acid [22:6 (n-3)] in retinal phospholipids were significantly decreased in n-3 deficient rats (35–42% of control levels). This was compensated by a rise in 22:5 (n-6), the total content of poly-unsaturated fatty acids (PUFA) remaining approximately constant. Adenylate cyclase activity was measured in retinal membrane preparations from dark-adapted or light-exposed rats. The enzyme activity was stimulated by DA and SKF 38393 in a light-dependent fashion. The activation was lower in rats exposed to light than in dark-adapted animals, suggesting a down-regulation of the DI DA receptors by light. The activation by guanine nucleotides and forskolin was also decreased in light-exposed rats. There was no significant effect of the dietary regimen on the various adenylate cyclase activities and their response to light. Furthermore, the guanine nucleotide- and DA-dependent adenylate cyclase activities of retinal membranes were found to be relatively resistant to changes in membrane fluidity induced in vitro by benzyl alcohol. The results indicate that in the absence of changes in total PUFA content, a decreased ratio of n-3 to n-6 fatty acids in membrane phospholipids does not significantly affect the properties of adenylate cyclase in the rat retina.  相似文献   

10.
Abstract: Light stimulates tyrosine hydroxylase activity and dopamine (DA) turnover in the dark-adapted rat retina in vivo . The DA neurons are located in the amacrine cell layer and form numerous connections with other cells in this layer. Conceivably, alterations in neurotransmission in these other cells could influence the light-responding parameters of the DA neurons. Evidence presented in this paper shows that in vivo pharmacologic manipulation of the GABA system modifies the light-induced change in DA turnover. The decline in DA content following inhibition of tyrosine hydroxylase by α-methyl-p-tyrosine (αMPT, 250 mg/kg, i.p.) was used to estimate DA turnover. The decline in DA content in retinas of the μMPT-treated rats was significantly enhanced by light exposure for 30 or 60 min. Two doses of the potent GABA agonist muscimol (13.2 or 26.4 μmol/kg, i.v., cumulative) significantly inhibited the light-induced increase in DA turnover (p <.001). This action was selective for GABA because the GABA antagonist picrotoxinin (1.88 mg/kg, i.v., cumulative) reversed the muscimol-mediated blockade of the light-induced stimulation. In fact, DA turnover in the presence of light, muscimol, and picrotoxinin was not different from DA turnover in light alone. These data suggest that there is either a direct or indirect GABAergic input to the DA system of the rat retina. Current studies are aimed at clarifying the physiological role, if any, that this input plays in the normal light response of the retinal DA system.  相似文献   

11.
Retinal cyclic light damage threshold for albino rats   总被引:2,自引:0,他引:2  
This study determined the minimum cyclic [12L:12D] light intensity which produces retinal damage in albino (Sprague-Dawley) rats raised from birth to 15 weeks of age under a cyclic light intensity of 6 lux. Four experimental light intensities were tested, including: 1345, 270, 130 and 65 lux. Control animals remained under 6 lux. For each of the intensities tested, the retinas of groups of six rats were evaluated after various durations of light exposure for physiological and morphological evidence of light damage. The indices of damage were (a) histological and morphometric changes in the retina and (b) changes in the amplitude of the b-wave of the electroretinogram. The data indicated that light intensities of 1345 or 270 lux severely damaged retinas of albino rats within 3-7 days of the initiation of light exposure. Exposure to 130 or 65 lux produced much less dramatic changes in the responsiveness and morphology of the retina which did not appear to be permanent. Based on these results, a reasonable estimate for the threshold cyclic light intensity which produces damage to retinas of albino rats raised under 6 lux lies between 130 and 270 lux, or approximately 1.3 log units above the light intensity under which the animals were raised.  相似文献   

12.
The effects of histamine on prolactin secretion and the activity of tuberoinfundibular dopaminergic (DA) neurons were examined in male rats. Tuberoinfundibular DA neuronal activity was estimated in situ by measuring the metabolism [concentration of 3,4-dihydroxyphenylacetic acid (DOPAC)] and synthesis [accumulation of 3,4-dihydroxyphenylalanine (DOPA) after administration of a decarboxylase inhibitor] of dopamine in the median eminence. Intracerebroventricular (icv) injection of histamine produced a dose- and time-dependent increase in plasma prolactin levels but had no effect on DOPA accumulation or DOPAC concentrations in the median eminence. These results indicate that the stimulation of prolactin secretion following icv histamine is not mediated by an inhibition of tuberoinfundibular DA neurons.  相似文献   

13.
The effects of 5-methoxy-N, N-dimethyltryptamine (5-MeO-DMT) and m-chlorophenylpiperazine (CPP), two 5-hydroxytryptamine (5-HT, serotonin) agonists, on the accumulation of 3,4-dihydroxyphenylalanine (DOPA] were studied in the striatum of rats treated with gamma-butyrolactone (GBL). Unlike 2 mg/kg i.p. apomorphine, neither 5 mg/kg i.p. 5-MeO-DMT nor 2.5 mg/kg i.p. CPP significantly reduced the GBL-induced increase in DOPA accumulation in the striatum. 5-MeO-DMT and CPP significantly reduced DOPA accumulation in animals that had received the aromatic amino acid decarboxylase inhibitor Ro 4-4602 but not GBL. 5-HT (10 micrograms in 0.5 microliter) injected in the substantia nigra, pars compacta, like GBL, significantly increased Ro 4-4602-induced accumulation of DOPA in the striatum. The data indicate that 5-HT agonists can reduce 3,4-dihydroxyphenylethylamine (DA, dopamine) synthesis in the striatum of rats only when the impulse flow of DA neurons is intact. An indirect effect through mechanisms controlling DA synthesis in the striatum, for instance cholinergic and GABA-ergic neurons, is suggested.  相似文献   

14.
Both invitro and invivo, increased exposure to visible light decreases the regenerability of the visual pigment. Isolated opsin irradiated with increasing periods of white light decreased in pigment formation yields on combination with 9- or 11-cis retinal. The yield of regeneration of the visual pigment extracted from albino rats depended on the amount of light to which the animal had been exposed. Animals exposed to normal room light demonstrated lower regeneration yields than dark-reared animals, but these yields increased on dark adaption. Opsin from animals exposed to sunlamps did not regenerate any pigment. On dark adaption, the pigment yields increased but the opsin level remained below that for the control group.  相似文献   

15.
Compared to (+)-pseudococaine, (?)-cocaine was 20 times more potent in inhibiting uptake of 3H-norepinephrine (3HNE) by cortical synaptosomes and 66 times more potent with respect to 3H-dopamine (3HDA) uptake by striatal synaptosomes. Although the tropacocaine isomers were equipotent as inhibitors of 3HNE uptake in the cortex, tropacocaine was 3.9 times more potent as an inhibitor of 3HDa uptake in the striatum than pseudotropococaine. A major known cocaine metabolite, benzoylecgonine failed to inhibit the accumulation of 3HNE and 3HDA by synaptosomes from the cortex and striatum, respectively. The implications of these findings in relation to the motor stimulation seen with (?)-cocaine, (+)-pseudococaine and benzoylecgonine in rats are discussed.  相似文献   

16.
Dopamine (DA) is a putative neurotransmitter in a population of interneurons in the mammalian retina that are activated by photic stimulation. Pharmacological studies were conducted to determine if alpha2-adrenergic receptors influence the activity of retinal tyrosine hydroxylase (TH), a biochemical indicator of changes in the activity of the DA-containing neurons. TH activity was low in dark-adapted retinas and high in light-exposed retinas. Systemic administration of the alpha2-adrenoceptor antagonists, yohimbine and piperoxane, to dark-adapted rats significantly stimulated TH activity. This effect was apparently mediated locally within the retina because the response could also be elicited by direct injection of yohimbine into the vitreous. The dose-response relationships for the effects of alpha2-adrenoceptor antagonists on retinal TH activity were similar to those for the effects on brain noradrenergic neurons, where alpha2-adrenoceptors have been shown to be involved in the autoregulation of neuronal activity. Clonidine, an alpha2-adrenoceptor agonist, had no effect when administered alone to dark-adapted rats, but it attenuated the stimulatory effect of yohimbine. In contrast, clonidine decreased TH activity of light-exposed retinas, an effect that was reversed by yohimbine. These observations suggest that alpha2-adrenoceptors influence the activity of retinal DA-containing neurons.  相似文献   

17.
The effects of opiates on dopamine (DA) release and synthesis were assessed in the mouse striatum in vivo by simultaneously measuring 3,4-dihydroxyphenylalanine (DOPA) and 3,4-dihydroxyphenylacetic acid (DOPAC) levels after inhibition of aromatic amino acid decarboxylase. This method was developed to assess stimulus-coupled changes in DA synthesis and release. Peripheral injections of morphine and intraventrcular injections of D-Ala2-Leu5-enkephalin elevated DOPAC levels, indicating that “opiates” stimulated DA release. Concomitantly, the rate of DA synthesis was increased. The effects were dose-dependent, saturable and antagonized by naloxone. When morphine and the enkephalin analog were given together in saturating doses, the effects of the two agents were not additive. Thus, the involvement of different receptors in the mediation of the effects of morphine and enkephalins could not be demonstrated.  相似文献   

18.
G Baggio  F Ferrari 《Life sciences》1981,28(13):1449-1456
The diuretic effect of dopamine (DA) was compared with that of other DA receptor stimulants in rats. While apomorphine (APO) and (±)N-n-propyl-norapomorphine (NPA) failed to increase urine excretion, (3, 4-dihydroxyphenylamino) -2-imidazoline (DPI), a supposed stimulant of DA inhibitory receptors, exerted a far greater diuretic effect than DA itself. The diuretic effect of DA and that of DPI were antagonized by a-adrenergic receptor antagonists such as phentolamine and yohimbine and by bulbocapnine. In contrast, DA receptor blockers such as haloperidol, pimozide, sulpiride and ergometrine were totally ineffective. It is concluded that the diuretic effect of DA and DPI are mediated by stimulation of a-adrenergic receptors.  相似文献   

19.
A newly designed Y-shaped box was previously reported by authors to be useful for a screening test of visual abnormality in rats because of easy numerization and statistical analysis of the results. In the present paper, the relationship between the intensity of illumination and the negative phototaxic response were examined. The total selection rate for the dark area (total time of selecting dark area/total trials) of non-treated rats under 30 lux illumination was 98% and identical wit the result of those under 1600 lux. The selecting rates of non-treated rats under the illumination of 15, 10, 7.5, 5 and 1.25 lux were 95, 93, 89, 82 and 67%, respectively. On the other hand those of dark-adapted rats one hour under 15, 7.5 and 5 lux showed 98, 95 and 92%, respectively. From these results, the critical intensities of illumination-unaffected selection rate for darkness in non-treated and dark-adapted rats were estimated at 30 and 15 lux, respectively. There was an obvious effect of dark-adaptation on the visual ability of rats. The selection rate of eyelid-sutured rats under 30 lux was 52%, an approximate theoretical value of true blindness, but it was 85% under 1600 lux. It is suggested that a more exact detection of visual abnormality would be possible under the critical intensity of illumination-unaffected selection rate for darkness.  相似文献   

20.
Neurotensin (NT) injected intracerebroventricularly in rat increases dopamine (DA) turnover in the corpus striatum and nucleus accumbens. Significant increases in 3,4-dihydroxyphenylacetic acid (DOPAC) levels occurred within 15 minutes after injection with peak levels at 60 minutes. The effect on NT on DOPAC and homovanillic acid (HVA) accumulation was dose-dependent at 3–100 μg. NT, like haloperidol, stimulated 3,4-dihydroxyphenylalanine (DOPA) accumulation in striatal neurons, in the presence of DOPA decarboxylase inhibitor, after injection of gamma-butyrolactone (GBL). NT had a similar stimulatory effect on DOPA levels in the accumbens while haloperidol (0.25 mg·kg?1) had no significant effect in this brain region. NT did not block the inhibitory effect of apomorphine on DOPA accumulation in both the striatum and accumbens, while haloperidol inhibited apomorphine effect in both regions. NT also failed to displace 3H-spiperone from DA receptors and the presence of NT in the binding assay did not alter the ability of DA to displace 3H-spiperone in either brain region. These experiments demonstrate that NT increases DA turnover in both the nigrostriatal and mesolimbic pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号