首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Elastolytic protease in blood platelets   总被引:1,自引:0,他引:1  
  相似文献   

2.
3.
4.
5.
6.
Adenosine is an important regulatory metabolite and an inhibitor of platelet activation. Adenosine released from different cells or generated through the activity of cell-surface ectoenzymes exerts its effects through the binding of four different G-protein-coupled adenosine receptors. In platelets, binding of A2 subtypes (A2A or A2B) leads to consequent elevation of intracellular cyclic adenosine monophosphate, an inhibitor of platelet activation. The significance of this ligand and its receptors for platelet activation is addressed in this review, including how adenosine metabolism and its A2 subtype receptors impact the expression and activity of adenosine diphosphate receptors. The expression of A2 adenosine receptors is induced by conditions such as oxidative stress, a hallmark of aging. The effect of adenosine receptors on platelet activation during aging is also discussed, as well as potential therapeutic applications.  相似文献   

7.
The effects of Met-enkephalin on the spontaneous and electrically evoked activity were investigated in longitudinal and circular strips isolated from different regions of the large intestine, i.e., proximal colon, distal colon and rectum. Met-enkephalin induced dose-dependent contractile responses which were reversibly blocked by naloxone (10(-6) M). In all longitudinal strips and in the circular strips of the rectum, the effects of Met-enkephalin were prevented by TTX (10(-7) M), demonstrating their neurogenic nature. In the circular strips from the colon, Met-enkephalin induced contractile responses after TTX, proving the existence of smooth muscle opioid receptors. The comparison between the EC50 values of Met-enkephalin showed that the opioid receptors in the different regions have different sensitivity to Met-enkephalin, while the opioid receptors in the longitudinal and circular layers of the same region have equal affinity. Atropine (10(-6) M) and guanethidine (10(-6) M) did not alter significantly the EC50 values, showing that the neurogenic effects of Met-enkephalin on the spontaneous activity involve mainly nonadrenergic, noncholinergic (NANC) neurotransmitter mechanisms. When the preparations were stimulated electrically, Met-enkephalin (10(-9) M) suppressed the cholinergic components of the responses. Met-enkephalin-containing nerve fibers were found in the myenteric plexus of the three intestinal regions. In the colon, where direct smooth muscle effects were observed, fibers containing Met-enkephalin-like immunoreactivity were found to go deep into the circular layer, suggesting that they could supply Met-enkephalin input to the smooth muscle cells.  相似文献   

8.
9.
The purpose of these studies was to determine if two endogenous opioids, leucine (Leu) and methionine (Met) -enkephalin, alter blood pressure and, if so, by what mechanisms. Studies from our laboratory show that intravenous administration of Leu-enkephalin in doses of 0.032–320 μg/kg induced a biphasic response in pentobarbital-anesthetized cats. A transient rise in mean arterial pressure was followed by a more prolonged decline. Administration of Met-enkephalin caused only a decline in mean arterial pressure. Neither agent significantly altered heart rate, venous pressure or the EKG. Having determined that both enkephalins altered blood pressure and observed that the responses were qualitatively different, selected pharmacological antagonists were employed to see if the alterations in blood pressure could be blocked. Naloxone blocked the hypertensive responses and antagonized the hypotensive effects seen with the administration of Leu-enkephalin. Naloxone also shifted the dose-effect curve of Met-enkephalin to the right. Diphenhydramine attenuated both the hypertensive and hypotensive responses of Leu-enkephalin. However, diphenhydramine pretreatment did not alter the decline in blood pressure seen with the higher doses of Met-enkephalin. Propranolol exerted some antagonistic activity in association with the rise in blood pressure seen with Leu-enkephalin, but propranolol did not alter the drop in pressure observed with the administration of either enkephalin. These results show that intravenous administration of the enkephalins can alter blood pressure and these effects are not alike for each enkephalin. Additionally, the enkephalins are not blocked in the same fashion by antagonists, giving support to the hypothesis that the two enkephalins interact with different receptors.  相似文献   

10.
11.
12.
13.
14.
Summary Blood platelets react rapidly in their hemostatic function. Determination of the reaction or activation time of individual platelets is difficult because it requires that physical and/or chemical effectors of activation are nonlimiting. Analysis of experimental conditions shows that the best estimate of mean activation time comes fromin vivo measurements. Thus, the constancy of height-to-length ratio of a growing thrombus, and its change with flow rate, provide additional evidence for the activation time hypothesis.Dedicated with admiration and affection to the memory of Walther Wilbrandt, a very dear friend.  相似文献   

15.
16.
17.
18.
19.
3H-spiroperidol binding sites in blood platelets   总被引:1,自引:0,他引:1  
3H-spiroperidol, an antagonist of dopamine receptors in brain (striatum), was found to bind to human and rat platelet membrane preparations. The binding was rapid, reversible, saturable and specific. Unlabelled haloperidol displaced the specifically bound 3H-spiroperidol. Binding equilibrium was attained in 15 min at pH 7.4 and 37 degrees C. Scatchard analysis of 3H-spiroperidol binding revealed a single population of binding site with Kd of 7.6 nM in rat platelet membrane and Kd of 15 nM in human platelet membrane. Unlabelled 5-hydroxytryptamine produced no significant effect on 3H-spiroperidol binding to rat or human blood platelet membranes in the presence or absence of haloperidol. Some dopaminergic agents, known to inhibit spiroperidol binding in corpus striatum, also inhibited the same in rat and human blood platelet membranes under in vitro conditions. This study suggests the presence of specific 3H-spiroperidol binding sites in blood platelets.  相似文献   

20.
Adaptor proteins play a pivotal role in the regulation of signal transduction events elicited after the engagement of cell surface receptors. Platelets exhibit a number of integral membrane receptors capable of initiating a cellular response. These include collagen receptors, von Willebrand factor receptors, the fibrinogen receptor, and a number of G-protein coupled receptors, such as those for thrombin and ADP. The primary function of platelet receptors is the translation of externally applied signals into appropriate responses leading to platelet activation being a prerequisite for normal hemostasis. Multitude of signalling pathways described in platelets is based on the interaction of compounds of many different categories, such as transmembrane receptors, protein kinases, protein phoshatases, G-proteins, transmembrane and cytosolic adaptor proteins, phosphoinositides, cyclic AMP or GMP. Adaptor proteins lack intrinsic effector function, but contain distinct molecular domains, which mediate protein-protein and protein-lipid interactions. These molecules thus serve as a scaffolding, around which effectors and their substrates are assembled into three-dimensional signaling complexes. Adaptor proteins integrate receptor-mediated signals at intracellular levels and couple signaling receptors to cytosolic signaling pathways. While the function of adaptor proteins is well established in immune cells, the knowledge about their role in platelet activation is still at the onset Over the last decade numerous adaptor proteins have been identified in platelets and shown to be involved in accurate assembly of intracellular signaling complexes. Collagen-induced platelet intracellular signaling through GPVI resembles the functional response of B- and T-cell antigen receptors and is the best described in the literature. This review focuses on the structure and functional role of the most extensively studied adaptor proteins during platelet activation induced by physiological agonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号