首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Haque ME  McIntosh TJ  Lentz BR 《Biochemistry》2001,40(14):4340-4348
Poly(ethylene glycol) (PEG)-mediated fusion of phosphatidylcholine model membranes has been shown to mimic the protein-mediated biomembrane process [Lee, J., and Lentz, B. R. (1998) Proc. Natl. Acad. Sci. U.S.A. 95, 9274-9279]. Unlike the simple model membranes used in this earlier study, the lipid composition of fusogenic biomembranes is quite complex. The purpose of this paper was to examine PEG-mediated fusion of highly curved (SUV) and largely uncurved (LUV) membrane vesicles composed of different lipids in order to identify lipid compositions that produce highly fusogenic membranes. Starting with liposomes composed of five lipids with different physical properties, dioleoylphosphatidylcholine (DOPC), dioleoylphosphatidylethanolamine (DOPE), dioleoylphosphatidylserine (DOPS), bovine brain sphingomyelin (SM), and cholesterol (CH), we systematically varied the composition and tested for the extent of PEG-mediated fusion after 5 min of treatment. We found that a vesicle system composed of four lipids, DOPC/DOPE/SM/CH, fused optimally at a 35/30/15/20 molar ratio. Each lipid seemed to play a part in optimizing the membrane for fusion. PE disrupted outer leaflet packing as demonstrated with TMA-DPH lifetime, C(6)-NBD-PC partitioning, and DPH anisotropy measurements, and thus significantly enhanced fusion and rupture, without significantly altering interbilayer approach (X-ray diffraction). An optimal ratio of PC/PE (35/30) produced a balance between fusion and rupture. CH and SM, when present at an optimal ratio of 3/4 in vesicles containing the optimal PC/PE ratio, reduced rupture without significantly reducing fusion. This optimal CH/SM ratio also enhanced outer leaflet packing, suggesting that fusion is dependent not only on outer leaflet packing but also on the properties of the inner leaflet. Addition of CH without SM enhanced rupture relative to fusion, while SM alone reduced both rupture and fusion. The optimal lipid composition is very close to the natural synaptic vesicle composition, suggesting that the synaptic vesicle composition is optimized with respect to fusogenicity.  相似文献   

2.
Synchrotron radiation circular dichroism (SRCD) spectroscopy studies of the eukaryotic pore-forming protein equinatoxin II (EqtII) were carried out in solution and in the presence of micelles or small unilamellar vesicles (SUV) of different lipid composition. The SRCD structural data was correlated with calcein leakage from SUV and with partitioning of EqtII to liposomes, and micelles, according to haemolysis assays. The structure of EqtII in water and dodecylphosphocholine micelles as determined by SRCD was similar to the values calculated from crystal and solution structures of the protein, and no changes were observed with the addition of sphingomyelin (SM). SM is required to trigger pore formation in biological and model membranes, but our results suggest that SM alone is not sufficient to trigger dissociation of the N-terminal helix and further structural rearrangements required to produce a pore. Significant changes in conformation of EqtII were detected with unsaturated phospholipid (DOPC) vesicles when SM was added, but not with saturated phospholipids (DMPC), which suggests that not only is membrane curvature important, but also the fluidity of the bilayer. The SRCD data indicated that the EqtII structure in the presence of DOPC:SM SUV represents the 'bound' state and the 'free' state is represented by spectra for DOPC or DOPC:Chol vesicles, which correlates with the high lytic activity for SUV of DOPC:SM. The SRCD results provide insight into the lipid requirements for structural rearrangements associated with EqtII toxicity and lysis.  相似文献   

3.
Synchrotron radiation circular dichroism (SRCD) spectroscopy studies of the eukaryotic pore-forming protein equinatoxin II (EqtII) were carried out in solution and in the presence of micelles or small unilamellar vesicles (SUV) of different lipid composition. The SRCD structural data was correlated with calcein leakage from SUV and with partitioning of EqtII to liposomes, and micelles, according to haemolysis assays. The structure of EqtII in water and dodecylphosphocholine micelles as determined by SRCD was similar to the values calculated from crystal and solution structures of the protein, and no changes were observed with the addition of sphingomyelin (SM). SM is required to trigger pore formation in biological and model membranes, but our results suggest that SM alone is not sufficient to trigger dissociation of the N-terminal helix and further structural rearrangements required to produce a pore. Significant changes in conformation of EqtII were detected with unsaturated phospholipid (DOPC) vesicles when SM was added, but not with saturated phospholipids (DMPC), which suggests that not only is membrane curvature important, but also the fluidity of the bilayer. The SRCD data indicated that the EqtII structure in the presence of DOPC:SM SUV represents the ‘bound’ state and the ‘free’ state is represented by spectra for DOPC or DOPC:Chol vesicles, which correlates with the high lytic activity for SUV of DOPC:SM. The SRCD results provide insight into the lipid requirements for structural rearrangements associated with EqtII toxicity and lysis.  相似文献   

4.
The smooth muscle (SM) alpha-actin gene activated during the early stages of embryonic cardiovascular development is switched off in late stage heart tissue and replaced by cardiac and skeletal alpha-actins. SM alpha-actin also appears during vascular development, but becomes the single most abundant protein in adult vascular smooth muscle cells. Tissue-specific expression of SM alpha-actin is thought to be required for the principal force-generating capacity of the vascular smooth muscle cell. We wanted to determine whether SM alpha-actin gene expression actually relates to an actin isoform's function. Analysis of SM alpha-actin null mice indicated that SM alpha-actin is not required for the formation of the cardiovascular system. Also, SM alpha-actin null mice appeared to have no difficulty feeding or reproducing. Survival in the absence of SM alpha-actin may result from other actin isoforms partially substituting for this isoform. In fact, skeletal alpha-actin gene, an actin isoform not usually expressed in vascular smooth muscle, was activated in the aortas of these SM alpha-actin null mice. However, even with a modest increase in skeletal alpha-actin activity, highly compromised vascular contractility, tone, and blood flow were detected in SM alpha-actin-defective mice. This study supports the concept that SM alpha-actin has a central role in regulating vascular contractility and blood pressure homeostasis, but is not required for the formation of the cardiovascular system.  相似文献   

5.
Je HD  Sohn UD 《Molecules and cells》2007,23(2):175-181
The present study was undertaken to determine whether SM22alpha participates in the regulation of vascular smooth muscle contractility using SM22alpha knockout mice and, if so, to investigate the mechanisms involved. Aortic ring preparations were mounted and equilibrated in organ baths for 60 min before observing contractile responses to 50 mM KCl, and then exposed to contractile agents such as phenylephrine and phorbol ester. Measurement of isometric contractions using a computerized data acquisition system was combined with molecular or cellular experiments. Interestingly, the aortas from SM22alpha-deficient mice (SM22(-/-LacZ)) displayed an almost three-fold increase in the level of SM22beta protein compared to wild-type mice, but no change in the levels of caldesmon, actin, desmin or calponin. Ca2+-independent contraction in response to phenylephrine or phorbol ester was significantly decreased in the SM22alpha-deficient mice, whereas in the presence of Ca2+ neither contraction nor subcellular translocation of myosin light chain kinase (MLCK) in response to phenylephrine or 50 mM KCl was significantly affected. A decrease in phosphorylation of extracellular signal regulated kinase (ERK) 1/2 was observed in the SM22alpha-deficient mice and this may be related to the decreased vascular contractility. Taken together, this study provides evidence for a pivotal role of SM22alpha in the regulation of Ca2+-independent vascular contractility.  相似文献   

6.
An angiotensin (ANG) receptor homologous to the type 1 receptor (AT1) has been cloned in chickens (cAT1). We investigated whether cAT1 expression in various tissues shows maturation/age-dependent changes. cAT1 mRNA levels detected in renal glomeruli [in situ hybridization (ISH)] and kidney extract (RT-PCR) are significantly (P < 0.01) higher in 19-day embryos (EB) than in chicks (CH, 2-3 wk) and pullets/cockerels (PL/CK, 14-16 wk). The levels in adrenal glands (concentrated in subcapsular regions) are high in EB and further increased in CH and PL/CK. cAT1 mRNA is also detectable in smooth muscle (SM)/adventitia of EB and CH aorta and in the adventitia, but not SM, from PL/CK aortas. The endothelia from small arteries and arterioles, but not from aorta, express cAT1 mRNA (ISH). In all age groups, ANG II induces profound endothelium-dependent relaxation of abdominal aorta, partly (37-47%) inhibitable (P < 0.01) by Nomega-nitro-l-arginine methyl ester (l-NAME, 10(-4) M), suggesting the presence of ANG receptor in endothelium. l-NAME-resistant ANG II relaxation, examined in a limited number of EB or CH aortas, was reduced by 125 mM K+ or apamin plus charybdotoxin. The results suggest that 1) cAT1 is present in kidney, adrenal gland, and vascular endothelium (heterogeneity exists among arteries) of EB, CH, and PL/CK, and in aortic SM/adventitia of EB/CH but only in adventitia of PL/CK; 2) levels of cAT1 gene expression change during maturation in a tissue-specific manner; and 3) ANG II-induced relaxation may be partly attributable to nitric oxide and potassium channel activation.  相似文献   

7.
8.
We have characterized the molecular properties and membrane behavior of synthetically modified sphingomyelin analogues, modified on the oxygen connecting the phosphocholine group to the ceramide backbone. The oxygen was replaced with an S-atom (S-PSM), an NH-group (NH-PSM) or a CH(2)-group (CH(2)-PSM). Diphenylhexatriene and Laurdan anisotropy experiments showed that an S-linkage increased and NH- and CH(2)-linkages decreased the stability of PSM-analogue bilayer membranes as compared to PSM. When the polarity of the interface was probed using Laurdan, S-PSM appeared to have a lower polarity as compared to PSM whereas NH-PSM and CH(2)-PSM had higher polarities of their respective interfaces. Fluorescence quenching-studies with cholestatrienol showed that all compounds formed SM/cholesterol-rich domains. The S-PSM/cholesterol and PSM/cholesterol domains displayed a similar thermostability, whereas NH-PSM/cholesterol and CH(2)-PSM/cholesterol domains were less thermostable. DSC on vesicles containing the PSM-analogues showed a more complex melting behavior as compared to PSM, whereas equimolar mixtures of the PSM-analogues and PSM showed almost ideal mixing with PSM for NH- and S-PSM. Our data show that the properties of the bond linking the phosphocholine head group to the 1-hydroxyl on the ceramide molecule is important for the stability of SM/SM and SM/cholesterol interactions.  相似文献   

9.
Smac mimetics (SMs) comprise a class of small molecules that target members of the inhibitor of apoptosis family of pro-survival proteins, whose expression in cancer cells hinders the action of conventional chemotherapeutics. Herein, we describe the activity of SM83, a newly synthesised dimeric SM, in two cancer ascites models: athymic nude mice injected intraperitoneally with IGROV-1 human ovarian carcinoma cells and immunocompetent BALB/c mice injected with murine Meth A sarcoma cells. SM83 rapidly killed ascitic IGROV-1 and Meth A cells in vivo (prolonging mouse survival), but was ineffective against the same cells in vitro. IGROV-1 cells in nude mice were killed within the ascites by a non-apoptotic, tumour necrosis factor (TNF)-dependent mechanism. SM83 administration triggered a rapid inflammatory event characterised by host secretion of TNF, interleukin-1β and interferon-γ. This inflammatory response was associated with the reversion of the phenotype of tumour-associated macrophages from a pro-tumoural M2- to a pro-inflammatory M1-like state. SM83 treatment was also associated with a massive recruitment of neutrophils that, however, was not essential for the antitumoural activity of this compound. In BALB/c mice bearing Meth A ascites, SM83 treatment was in some cases curative, and these mice became resistant to a second injection of cancer cells, suggesting that they had developed an adaptive immune response. Altogether, these results indicate that, in vivo, SM83 modulates the immune system within the tumour microenvironment and, through its pro-inflammatory action, leads cancer cells to die by necrosis with the release of high-mobility group box-1. In conclusion, our work provides evidence that SMs could be more therapeutically active than expected by stimulating the immune system.  相似文献   

10.
Abstract

Long-circulating liposomes containing amphipathic polyethyleneglycol (PEG) or ganglioside GM1 (GM1) have been tested for their utility as enhanced delivery system of doxorubicin (DXR) in vivo. DXR was entrapped into liposomes by pH gradient method.

The long-circulating LUV (200 nm in size) composed of DSPC/CH (1:1, m/m) and either 6 mol% of DSPE-PEG1000 or GM1 entrapped DXR with >95% in trapping efficiency. DXR-long-circulating LUVs were administered to leukemic (LI210) mice via the tail vein at a dose of 5mg DXR/kg. The high blood concentration was kept for long time, and significantly increased survival time was observed as compared with free DXR and DXR-LUV. The data indicated that DXR was slowly released from long-circulating LUV during that stayed in bloodstream for long time. Administration of DXR-long-circulating SUV (100 nm) to the colon 26 bearing mice produced the increased DXR level in tumor compared with bear SUV or free drug did, respectively, and resulted in effective tumor growth retardation and increased survival time. DXR was delivered to tumor by accumulation of SUVs themselves.

Long-circulating thermosensitive liposomes (TSL) were prepared from DPPC /DSPC (9:1, m/m) and 3-6 mol% of PEG1000 or GM1. DXR was entrapped with >95% in trapping efficiency. Accumulation of DXR into tumor tissue by local hyperthermia after injection of DXR-long-circulating TSL to colon 26 bearing mice was significantly higher man that of DXR-bare TSL or free DXR, and resulted in effective tumor growth retardation and increased survival time. It was suggested that the entrapped DXR was efficiently released from long-circulating TSL by hyperthermia at the tumor site and entered the tumor tissue by simple diffusion.  相似文献   

11.
The distribution of liposomes within the intravascular space and the extent to which they escape into extravascular space strongly impact on the application of lipid vesicles as a carrier for pharmacologically active agents. The present study investigates how intact small unilamellar vesicles (SUV) may be taken up by different tissues after intravenous injection into mice, using various types of SUV with different entrapped markers, lipid composition, size, doses of liposomal lipids and stability in the blood. Our focus was specifically on sphingomyelin (or distearoyl phosphatidylcholine)/cholesterol (2:1, mol/mol) SUV, which are known to be stable in the blood circulation. Our results indicated that, in addition to the reticuloendothelial tissues, intact SUV were taken up in several other parts of the body, including intestine, skin, carcass and legs. It appears that the accumulation of SUV in the intestine and the skin increases with time post-injection. Furthermore, from the kinetic data, the process of uptake of SUV by the skin and intestine is compatible with a non-saturable pathway, which follows first-order kinetics. This suggests that the cells involved in the uptake of SUV in the intestine and skin are not phagocytic cells, which are normally saturable.  相似文献   

12.
《Biophysical journal》2021,120(15):3103-3111
Lipid rafts are discrete, heterogeneous domains of phospholipids, sphingolipids, and sterols that are present in the cell membrane. They are responsible for conducting cell signaling and maintaining lipid-protein functionality. Redox-stress-induced modifications to any of their components can severely alter the mechanics and dynamics of the membrane causing impairment to the lipid-protein functionality. Here, we report on the effect of sphingomyelin (SM) in controlling membrane permeability and its role as a regulatory lipid in the presence of nitric oxide (NO). Force spectroscopy and atomic force microscopy imaging of raft-like phases (referring here to the coexistence of “liquid-ordered” and “liquid-disordered” phases in model bilayer membranes) prepared from lipids: 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC):SM:cholesterol (CH) (at three ratios) showed that the adhesion forces to pull the tip out of the membrane increased with increasing SM concentration, indicating decreased membrane permeability. However, in the presence of NO radical (1 and 5 μM), the adhesion forces decreased depending on SM concentration. The membrane was found to be stable at the ratio POPC:SM:CH (2:1:1) even when exposed to 1 μM NO. We believe that this is a critical ratio needed by the raft-like phases to maintain homeostasis under stress conditions. The stability could be due to an interplay existing between SM and CH. However, at 5 μM NO, membrane deteriorations were detected. For POPC:SM:CH (2:2:1) ratio, NO displayed a pro-oxidant behavior and damaged the membrane at both radical concentrations. These changes were reflected by the differences in the height profiles of the raft-like phases observed by atomic force microscopy imaging. Malondialdehyde (a peroxidation product) detection suggests that lipids may have undergone lipid nitroxidation. The changes were instantaneous and independent of radical concentration and incubation time. Our study underlines the need for identifying appropriate ratios in the lipid rafts of the cell membranes to withstand redox imbalances caused by radicals such as NO.  相似文献   

13.
Rats were administered intravenously liposome-encapsulated or free cobalt, and the organ distribution of the metal was explored using Co57 tracer. Two hours after administration, the cobalt level in the heart was about 40% of the control when given in sphingomyelin (SM)/cholesterol (CH) (1:1 mole ratio) liposomes. These vesicles also tended to decrease the uptake of cobalt in the kidney and the carcass, and to increase it in the spleen and the bones. Liposomes prepared from soybean phosphatidylcholine (SPC)/CH (1:1) had no effect on the uptake of cobalt in the heart, whereas increased its level in the spleen, liver and lung. The time-course of cobalt deposition in the organs displayed substantial variation with the different preparations. Most importantly, no buildup of cobalt level was observed in the heart when the metal was administered in SM/CH vesicles. While confirming known effects of liposomes on the organ-distribution of entrapped drugs, our findings suggest that administration of cobalt in SM/CH liposome-encapsulated form may result in decreased cardiotoxicity and thus increased safety of cobalt-treatment in some anemias.  相似文献   

14.
SUV39H1, a human homologue of the Drosophila position effect variegation modifier Su(var)3-9 and of the Schizosaccharomyces pombe silencing factor clr4, encodes a novel heterochromatic protein that transiently accumulates at centromeric positions during mitosis. Using a detailed structure-function analysis of SUV39H1 mutant proteins in transfected cells, we now show that deregulated SUV39H1 interferes at multiple levels with mammalian higher-order chromatin organization. First, forced expression of full-length SUV39H1 (412 amino acids) redistributes endogenous M31 (HP1beta) and induces abundant associations with inter- and metaphase chromatin. These properties depend on the C-terminal SET domain, although the major portion of the SUV39H1 protein (amino acids 89 to 412) does not display affinity for nuclear chromatin. By contrast, the M31 interaction surface, which was mapped to the first 44 N-terminal amino acids, together with the immediately adjacent chromo domain, directs specific accumulation at heterochromatin. Second, cells overexpressing full-length SUV39H1 display severe defects in mitotic progression and chromosome segregation. Surprisingly, whereas localization of centromere proteins is unaltered, the focal, G(2)-specific distribution of phosphorylated histone H3 at serine 10 (phosH3) is dispersed in these cells. This phosH3 shift is not observed with C-terminally truncated mutant SUV39H1 proteins or with deregulated M31. Together, our data reveal a dominant role(s) for the SET domain of SUV39H1 in the distribution of prominent heterochromatic proteins and suggest a possible link between a chromosomal SU(VAR) protein and histone H3.  相似文献   

15.
Rupture of vulnerable atheroma often underlies acute coronary syndromes. Vulnerable plaques exhibit a paucity of vascular smooth muscle cells (VSMCs) in the cap. Therefore, decreased VSMC migration into the neointima may predispose to vulnerability. The balance between cell surface plasminogen activator activity and its inhibition [mediated primarily by plasminogen activator inhibitor type 1 (PAI-1)] modulates migration of diverse types of cells. We sought to determine whether increased expression of PAI-1 would decrease migration of VSMCs in vitro and neointimal cellularity in vivo in apolipoprotein E knockout (ApoE(-/-)) mice fed a high-fat diet. Increased vessel wall expression of PAI-1 in transgenic mice was induced with the SM22alpha promoter. VSMC migration through Matrigel in vitro was quantified with laser scanning cytometry. Expression of PAI-1 was increased threefold in the aortic wall of SM22-PAI transgene-positive mice. Neointimal cellularity of vascular lesions was decreased by 26% (p=0.01; n=5 each) in ApoE(-/-) mice with the SM22-PAI transgene compared with ApoE(-/-) mice. VSMCs explanted from transgene-positive mice exhibited twofold greater expression of PAI-1 and their migration was attenuated by 27% (p=0.03). Accordingly, increased expression of PAI-1 protein by VSMCs reduces their migration in vitro and their contribution to neointimal cellularity in vivo.  相似文献   

16.
17.
Patients with cystic fibrosis (CF) often suffer from gastrointestinal cramps and intestinal obstruction. The CF transmembrane conductance regulator (CFTR) channel has been shown to be expressed in vascular and airway smooth muscle (SM). We hypothesized that the absence of CFTR expression alters the gastrointestinal SM function and that these alterations may show strain-related differences in the mouse. The aim of this study was to measure the contractile properties of the ileal SM in two CF mouse models. CFTR(-/-) and CFTR(+/+) mice were studied on BALB/cJ and C57BL/6J backgrounds. Responsiveness of ileal strips to electrical field stimulation (EFS), methacholine (MCh), and isoproterenol was measured. The mass and the cell density of SM layers were measured morphometrically. Finally, the maximal velocity of shortening (Vmax) and the expression of the fast (+)insert myosin isoform were measured in the C57BL/6J ileum. Ileal hyperreactivity was observed in response to EFS and MCh in CFTR(-/-) compared with CFTR(+/+) mice in C57BL/6J background. This latter observation was not reproduced by acute inhibition of CFTR with CFTR(inh)172. BALB/cJ CFTR(-/-) mice exhibited a significant increase of SM mass with a lower density of cells compared with CFTR(+/+), whereas no difference was observed in the C57BL/6J background. In addition, in this latter strain, ileal strips from CFTR(-/-) exhibited a significant increase in Vmax compared with control and expressed a greater proportion of the fast (+)insert SM myosin isoform with respect to total myosin. BALB/cJ CFTR(-/-) ilium had a greater relaxation to isoproterenol than the CFTR(+/+) mice when precontracted with EFS, but no difference was observed in response to exogeneous MCh. In vivo, the lack of CFTR expression induces a different SM ileal phenotype in different mouse strains, supporting the importance of modifier genes in determining intestinal SM properties.  相似文献   

18.
The chromo and SET domains are conserved sequence motifs present in chromosomal proteins that function in epigenetic control of gene expression, presumably by modulating higher order chromatin. Based on sequence information from the SET domain, we have isolated human (SUV39H1) and mouse (Suv39h1) homologues of the dominant Drosophila modifier of position-effect-variegation (PEV) Su(var)3-9. Mammalian homologues contain, in addition to the SET domain, the characteristic chromo domain, a combination that is also preserved in the Schizosaccharyomyces pombe silencing factor clr4. Chromatin-dependent gene regulation is demonstrated by the potential of human SUV39H1 to increase repression of the pericentromeric white marker gene in transgenic flies. Immunodetection of endogenous Suv39h1/SUV39H1 proteins in a variety of mammalian cell lines reveals enriched distribution at heterochromatic foci during interphase and centromere-specific localization during metaphase. In addition, Suv39h1/SUV39H1 proteins associate with M31, currently the only other characterized mammalian SU(VAR) homologue. These data indicate the existence of a mammalian SU(VAR) complex and define Suv39h1/SUV39H1 as novel components of mammalian higher order chromatin.  相似文献   

19.
Adult rabbit smooth muscles contain two types of myosin heavy chain (MHC) isoforms, SM1 and SM2 which are generated through alternative RNA splicing from a single gene (Nagai, R., Kuro-o, M., Babij, P. & Periasamy, M. (1989) J. Biol. Chem. 264, 9734-9737). We previously reported that the expression of SM1 and SM2 during vascular development is differentially regulated at the level of RNA splicing, whereby SM1 is constitutively expressed from early development but SM2 appear after birth (Kuro-o, M., Nagai, R., Tsuchimochi, H., Katoh, H., Yazaki, Y., Ohkubo, A. & Takaku, F. (1989) J. Biol. Chem. 264, 18272-18275). We also demonstrated that embryonic vascular smooth muscles contain a third type of MHC isoform, referred to as SMemb in this report, which comigrates on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with SM2. In the present study we have isolated and characterized a cDNA clone (FSMHC34) for SMemb. FSMHC34 encodes the light meromyosin region including the carboxyl terminus and showed 70% amino acid sequence identity with SM1 or SM2. SMemb is a nonmuscle-type MHC and identical with brain MHC, but clearly distinct from 196-kDa nonmuscle MHC in cultured smooth muscle cells. The expression of SMemb was predominant in embryonic and perinatal aortas, but down-regulated with vascular development. Interestingly SMemb was reexpressed in proliferating smooth muscle cells of arteriosclerotic neointimas. These results suggest that smooth muscle proliferation is coupled to the expression of SMemb and that dedifferentiation of smooth muscles toward the embryonic phenotype is involved in the mechanisms underlying atherosclerosis.  相似文献   

20.
We reported that estrogen treatment of ovariectomized rats increased uterine smooth muscle contractility and the ratio of the COOH-terminal myosin heavy chain isoform SM1 (204 kDa) and SM2 [200 kDa; Hewett TE, Martin AF, Paul RJ. J Physiol (Lond) 460: 351-364, 1993]. We extended this model to study sex and estrogen effects on vascular contractility. Experimental groups included 10- to 14-wk-old male (M), female (F), ovariectomized female (OF), and OF treated with estrogen (OF&E) for 7 days with a subcutaneous pellet delivery system, resulting in 17beta-estradiol of 85 (OF&E) vs. 5 (OF or M) pg/ml. The SM1-to-SM2 ratio increased from 1.8 to 2.6 in thoracic aorta, similar to uterine muscle. Isometric force was measured in 5-mm segments of intact and endothelium-denuded (-endo) aorta. With KCl, the maximum forces were in the order OF approximately M > OF&E, and ED50 OF&E > OF approximately M. Differences in ED50 with estrogen persisted after endothelial denudation. The decreased force in -endo OF aorta was not seen in OF&E, suggesting that estrogen altered an endothelium-dependent effect. No differences in maximum forces were noted with norepinephrine: ED50 OF > OF&E > M. Estrogen treatment, in contrast to KCl, increased sensitivity. Endothelial denudation increased sensitivity but reduced the differences between groups. With ACh relaxation, males were more sensitive than females, and estrogen had no effect. In the abdominal aorta, there were no changes in SM1/SM2 with 17beta-estradiol, and differences in contractility were blunted. In summary, estrogen treatment decreased responses to KCl but increased sensitivity to norepinephrine; male rats always demonstrated the highest contractility. An increase in the COOH-terminal myosin heavy chain isoform SM1-to-SM2 ratio with 17beta-estradiol treatment may underlie the changes observed in contractility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号