首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adrenergic receptor involved in the action of epinephrine changed dramatically during the process of active proliferation which follows partial hepatectomy. In control or sham-operated animals, the stimulation of glycogenolysis, gluconeogenesis and ureogenesis by epinephrine was mediated through alpha1-adrenergic receptors. In contrast, in hepatocytes obtained from animals partially hepatectomized 3 days before experimentation, the receptor involved in the stimulation of these metabolic pathways by epinephrine was of the beta-adrenergic type. Interestingly, the adrenergic receptor involved in the metabolic actions of epinephrine, in hepatocytes from rats partially hepatectomized 7 days before experimentation was again of the α1-subtype. Thus, it appears that during the process of liver regeneration which follows partial hepatectomy there is a transition in the type of adrenergic receptor involved in the hepatic actions of catecholamines from β in the initial stages to later α1. A similar transition seems to occur as the animal ages. Cyclic AMP accumulation in response to β-adrenergic stimulation was significantly enhanced in hepatocytes obtained from rats partially hepatectomized 3 days before the experiment, as compared to control hepatocytes or cells obtained from animals operated 7 days before experimentation. This enhanced β-adrenergic sensitivity is probably related to the increased number of β-adrenergic receptors observed at this stage. However, a clear dissociation between cyclic AMP levels and metabolic effects was evidenced when the different conditions were compared. The number and affinity (for epinephrine or prazosin) of α1-adrenergic receptors did not change at any stage of the process, which indicates that the markedly diminished α1-adrenergic sensitivity observed in hepatocytes obtained from rats partially hepatectomized 3 days before experimentation is probably due to defective generation or intracellular processing of the α1-adrenergic signal, rather than to changes at the receptor level.  相似文献   

2.
3.
Adrenergic regulation of glycogen phosphorylase and synthase was studied with adult rat hepatocytes either immediately after isolation (fresh hepatocytes) or after 24-h maintenance in culture (cultured hepatocytes). In fresh hepatocytes, an α-adrenergic agonist caused stronger activation of phosphorylase than a β agonist, and the effect of epinephrine to activate phosphorylase and to inactivate synthase was suppressed by an α antagonist more efficiently than by a β antagonist. In cultured hepatocytes, however, the relative activities of α- and β adrenergic agents were reversed; a β agonist was much more effective than an α-agonist in activating phosphorylase, and the action of epinephrine on phosphorylase, synthase, and cyclic AMP generation was almost totally blocked by a β antagonist but not by an α antagonist. Such a reciprocal change in hepatic α- and β-adrenergic responses occurred progressively during culture; the change was interfered with by cycloheximide, an inhibitor of protein synthesis, added to the culture medium. Thus, β-adrenergic functions became predominant over α functions when hepatocytes were maintained in primary culture. Physiological significance of this phenomenon is discussed.  相似文献   

4.
Atractyloside inhibited gluconeogenesis from dihydroxyacetone in hepatocytes from fasted rats and increased lactate synthesis. In the presence of atractyloside, lactate/pyruvate and beta-hydroxybutyrate/aceto-acetate ratios were increased and the accumulation of Fru-2,6-P2 was prevented. In the absence of atractyloside, gluconeogenesis from dihydroxyacetone was stimulated by dibutyryl-cAMP and, to a much lesser extent, by norepinephrine and vasopressin. Omission of Ca2+ increased the stimulation by norepinephrine but prevented that by vasopressin. High concentrations (greater than or equal to 40 microM) of atractyloside abolished the stimulation of gluconeogenesis by dibutyryl-cAMP but not that by norepinephrine or vasopressin. Exogenous Ca2+ was not required for hormonal stimulation in the presence of atractyloside. The stimulation by norepinephrine was inhibited by ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N-tetraacetic acid or prazosin but not by propranolol. Atractyloside caused decreases of all glycolytic intermediates and an activation of pyruvate kinase. Norepinephrine partially reversed these effects. The mitochondrial and cytosolic ATP/ADP ratios were determined by digitonin fractionation of hepatocytes. Norepinephrine or vasopressin increased the cytosolic ATP/ADP in the presence of atractyloside. We suggest that the increased availability of cytosolic ATP could be responsible for the stimulation of gluconeogenesis by these hormones.  相似文献   

5.
Somatostatin: a metabolic regulator   总被引:1,自引:0,他引:1  
K N Dileepan  S R Wagle 《Life sciences》1985,37(25):2335-2343
Somatostatin, the hypothalamic release-inhibiting factor, has been found to stimulate gluconeogenesis in rat kidney cortical slices. Stimulation by somatostatin was linear and dose-dependent. Other bioactive peptides such as cholecystokinin, gastrointestinal peptide, secretin, neurotensin, vasoactive intestinal peptide, pancreatic polypeptide, beta endorphin and substance P did not affect the renal gluconeogenic activity. Somatostatin-induced gluconeogenesis was blocked by phentolamine (alpha adrenergic antagonist) and prazosin (alpha1 adrenergic antagonist) but not by propranolol (beta adrenergic antagonist) and yohimbine (alpha2 adrenergic antagonist) suggesting that the effect is via alpha1 adrenergic stimuli. Studies on the involvement of Ca2+ revealed that tissue depletion and omission of Ca2+ from the reaction mixture would abolish the stimulatory effect of somatostatin. Furthermore, somatostatin enhanced the uptake of 45calcium in renal cortical slices which could be blocked by lanthanum, an inhibitor of Ca2+ influx. It is proposed that the stimulatory effect of somatostatin on renal gluconeogenesis is mediated by alpha1 adrenergic receptors, or those which functionally resemble alpha1 receptors and that the increased influx of Ca2+ may be the causative factor for carrying out the stimulus.  相似文献   

6.
1. Gluconeogenesis from various substrates has been demonstrated in hepatocytes from 48 h fasted rabbits. Maximum rates of gluconeogenesis (expressed as mumol glucose formed/30 min per 10(8) cells) are: D-fructose, 9.86; dihydroxyacetone, 5.28; L-lactate, 5.26; L-lactate/pyruvate, 3.83; pyruvate, 3.32; glycerol, 2.92; L-alanine, 2.24. 2. Gluconeogenesis from L-lactate is enhanced 1.3--1.5-fold over control values by glucagon, L-epinephrine, L-norepinephrine, dibutyryl cyclic AMP, L-phenylephrine and L-isoproterenol. Glucogenesis from both dihydroxyacetone and D-fructose is stimulated 1.7--2.0-fold of control values by glucagon, epinephrine and dibutyryl cyclic AMP. 3. Gluconeogenesis from lactate is enhanced by both alpha- and beta-adrenergic stimulations based on findings with alpha- and beta-agonists and antagonists. 4. Enhancement of gluconeogenesis by epinephrine and norepinephrine is apparently due to both alpha- and beta-adrenergic effects, as either propranolol or phentolamine partially inhibits such enhancement. The consistently more pronounced inhibition produced by propranolol implies that stimulation of glucose formation by catecholamines is more strongly beta-adrenergic related. Epinephrine-induced glycogenolysis in rabbit hepatocytes is severely inhibited by propranolol but insensitive to phentolamine, suggesting that glycogen breakdown is solely beta-adrenergic related. These observations contrast with those of others that stimulation of both gluconeogenesis and glycogenolysis by catecholamines while sensitive to both alpha- and beta-adrenergic stimulation in rats, at least young rats, is primarily alpha-adrenergic mediated, especially in adult rats.  相似文献   

7.
The adrenergic receptor involved in the action of epinephrine changed dramatically during the process of active proliferation which follows partial hepatectomy. In control or sham-operated animals, the stimulation of glycogenolysis, gluconeogenesis and ureogenesis by epinephrine was mediated through alpha 1-adrenergic receptors. In contrast, in hepatocytes obtained from animals partially hepatectomized 3 days before experimentation, the receptor involved in the stimulation of these metabolic pathways by epinephrine was of the beta-adrenergic type. Interestingly, the adrenergic receptor involved in the metabolic actions of epinephrine, in hepatocytes from rats partially hepatectomized 7 days before experimentation was again of the alpha 1-subtype. Thus, it appears that during the process of liver regeneration which follows partial hepatectomy there is a transition in the type of adrenergic receptor involved in the hepatic actions of catecholamines from beta in the initial stages to later alpha 1. A similar transition seems to occur as the animal ages. Cyclic AMP accumulation in response to beta-adrenergic stimulation was significantly enhanced in hepatocytes obtained from rats partially hepatectomized 3 days before the experiment, as compared to control hepatocytes or cells obtained from animals operated 7 days before experimentation. This enhanced beta-adrenergic sensitivity is probably related to the increased number of beta-adrenergic receptors observed at this stage. However, a clear dissociation between cyclic AMP levels and metabolic effects was evidenced when the different conditions were compared. The number and affinity (for epinephrine or prazosin) of alpha 1-adrenergic receptors did not change at any stage of the process, which indicates that the markedly diminished alpha 1-adrenergic sensitivity observed in hepatocytes obtained from rats partially hepatectomized 3 days before experimentation is probably due to defective generation or intracellular processing of the alpha 1-adrenergic signal, rather than to changes at the receptor level.  相似文献   

8.
Rat hepatocytes were maintained in primary monolayer culture for 24 h in the presence of serum. Treatment of hepatocytes with 1 microM 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA) for 5-15 min increased membrane-associated protein kinase C activity and concomitantly decreased soluble activity. Membrane protein kinase C activity returned to basal values within 1 h then decreased by more than 50% within 2 h. Prolonged (2-18 h) incubation with PMA did not further decrease protein kinase C activity. Pretreatment of hepatocytes with PMA for 5-15 min had little effect on the subsequent actions of 100 nM vasopressin but abolished the stimulation of inositol phosphate accumulation by 3 nM vasopressin and 20 microM norepinephrine. Long-term exposure (2-18 h) of hepatocytes to 1 microM PMA actually enhanced the effects of vasopressin and 20 microM norepinephrine. The stimulation by norepinephrine (20 microM) of inositol phosphate accumulation was abolished by the alpha 1-adrenergic antagonist prazosin (1 microM), whereas the beta-adrenergic antagonist propranolol (30 microM) had little effect. Addition of 8Br-cAMP (100 microM) or glucagon (10 nM) for 5 min or 8 h had no significant effect alone, but enhanced the subsequent vasopressin stimulation of inositol phosphate accumulation. There was no effect of 8Br-cAMP or glucagon on norepinephrine stimulation of phosphoinositide breakdown. These data indicate that the stimulation of phospholipase C activity in rat hepatocytes by 3 nM vasopressin is enhanced by cyclic AMP-dependent kinase but inhibited by protein kinase C. In contrast, down regulation of protein kinase C markedly enhanced the maximal phosphoinositide response due to both vasopressin and norepinephrine.  相似文献   

9.
10.
Hepatocytes obtained from rats partially hepatectomized 72 h before experimentation are insensitive to alpha1-adrenergic amines, vasopressin, angiotensin II and ionophore A23187. However, if inositol is administered to the rats 24 and 48 h after surgery, the above-mentioned hormones stimulate glycogenolysis, gluconeogenesis and ureogenesis in the newly formed hepatocytes. Furthermore, ionophore A23187 is able to stimulate glycogenolysis in these cells, the mechanism through which inositol produces this effect being unknown. A rôle for phosphatidylinositol is suggested.  相似文献   

11.
We examined epinephrine- and isoproterenol-stimulated DNA synthesis in primary cultured hepatocytes from 6-, 12-, and 24-month-old rats. Epinephrine-stimulated DNA synthesis in 6-month-old rat hepatocytes began after 20 h and reached a maximum at 50 h. Similarly, isoproterenol-stimulated DNA synthesis in 6-month-old rat hepatocytes began after 10 h and reached a maximum at 45 h. In contrast, both epinephrine- and isoproterenol-stimulated DNA synthesis in 12- and 24-month-old rat hepatocytes were reduced approximately 40–60% and 80%, respectively, as compared to that at 6 months. Both epinephrine- and isoproterenol-stimulated DNA synthesis were strongly inhibited by the betaadrenergic antagonist, propranolol, but not by the alpha1-adrenergic antagonist, prazosin, or the alpha2-adrenergic antagonist, yohimbine. However, in the presence of EGF, epinephrine-stimulated DNA synthesis activity was inhibited by prazosin but not by propranolol. These results indicate that stimulated DNA synthesis in rat hepatocytes declines with age and that there are two different pathways for epinephrine-stimulated DNA synthesis in the presence or absence of EGF. © 1994 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the Public domain in the United States of America.
  •   相似文献   

    12.
    The effects of the alpha-adrenergic agonist phenylephrine on the levels of adenosine 3':5'-monophosphate (cAMP) and the activity of the cAMP-dependent protein kinase in isolated rat liver parenchymal cells were studied. Cyclic AMP was very slightly (5 to 13%) increased in cells incubated with phenylephrine at a concentration (10(-5) M) which was maximally effective on glycogenolysis and gluconeogenesis. However, the increase was significant only at 5 min. Cyclic AMP levels with 10(-5) M phenylephrine measured at this time were reduced by the beta-adrenergic antagonist propranolol, but were unaffected by the alpha-blocker phenoxybenzamine, indicating that the elevation was due to weak beta activity of the agonist. When doses of glucagon, epinephrine, and phenylephrine which produced the same stimulation of glycogenolysis or gluconeogenesis were added to the same batches of cells, there were marked rises in cAMP with glucagon, minimal increases with epinephrine, and little or no changes with phenylephrine, indicating that the two catecholamine stimulated these processes largely by mechanisms not involving cAMP accumulation. DEAE-cellulose chromatography of homogenates of liver cells revealed two major peaks of cAMP-dependent protein kinase activity. These eluted at similar salt concentrations as the type I and II isozymes from rat heart. Optimal conditions for preservation of hormone effects on the activity of the enzyme in the cells were determined. High concentrations of phenylephrine (10(-5) M and 10(-4) M) produced a small increase (10 tp 16%) in the activity ratio (-cAMP/+cAMP) of the enzyme. This was abolished by propranolol, but not by phenoxybenzamine, indicating that it was due to weak beta activity of the agonist. The increase in the activity ratio of the kinase with 10(-5) M phenylephrine was much smaller than that produced by a glycogenolytically equivalent dose of glucagon. The changes in protein kinase induced by phenylephrine and the blockers and by glucagon were thus consistent with those in cAMP. Theophylline and 1-methyl-3-isobutylxanthine, which inhibit cAMP phosphodiesterase, potentiated the effects of phenylephrine on glycogenolysis and gluconeogenesis. The potentiations were blocked by phenoxybenzamine, but not by propranolol. Methylisobutylxanthine increased the levels of cAMP and enhanced the activation of protein kinase in cells incubated with phenylephrine. These effects were diminished or abolished by propanolol, but were unaffected by phenoxybenzamine. It is concluded from these data that alpha-adrenergic activation of glycogenolysis and gluconeogenesis in isolated rat liver parenchymal cells occurs by mechanisms not involving an increase in total cellular cAMP or activation of the cAMP-dependent protein kinase. The results also show that phosphodiesterase inhibitors potentiate alpha-adrenergic actions in hepatocytes mainly by a mechanism(s) not involving a rise in cAMP.  相似文献   

    13.
    Vasopressin, angiotensin II, glucagon and epinephrine (through a cAMP-independent, alpha1adrenergic mechanism), stimulate ureogenesis in isolated rat hepatocytes. Mitochondria, isolated from hepatocytes which were previously treated with these hormones, displayed an enhanced rate of citrulline synthesis in the presence of NH4Cl as the nitrogen source. When mitochondria were incubated with glutamine as the nitrogen source, only those mitochondria isolated from hepatocytes previously treated with epinephrine or glucagon displayed an enhanced capacity to synthesize citrulline.When cells were incubated in the absence of extracellular calcium, the effects of vasopressin and angiotensin II on urea synthesis were abolished, whereas those of epinephrine and glucagon were only diminished. Mitochondria isolated from cells incubated under these conditions, showed that the effect of all these hormones on citrulline synthesis could still be observed. However, the effects of glucagon and epinephrine plus propranolol were larger than those of angiotensin II or vasopressin.Phosphatidylinositol labeling was significantly increased by epinephrine, vasopressin and angiotensin II both in the absence or presence of calcium. Cyclic AMP levels were significantly increased by glucagon or epinephrine but not by vasopressin or angiotensin II. The effect of epinephrine on cyclic AMP levels was blocked by propranolol both in the absence or presence of calcium.  相似文献   

    14.
    Chicken hepatocytes synthesize glucose and fatty acids at rates which are faster than rat hepatocytes. The former also consume exogenous lactate and pyruvate at a much faster rate and, in contrast to rat hepatocytes, do not accumulate large quantities of lactate and pyruvate by aerobic glycolysis. α-Cyano-4-hydroxycinnamate, an inhibitor of pyruvate transport, causes lactate and pyruvate accumulation by chicken hepatocytes. Glucagon and N6,O2′-dibutyryl adenosine 3′,5′-monophosphate (dibutyryl cyclic AMP) convert pyruvate kinase (EC 2.7.1.40) of rat hepatocytes to a less active form. This effect explains, in part, inhibition of glycolysis, inhibition of lipogenesis, stimulation of gluconeogenesis, and inhibition of the transfer of reducing equivalents from the mitochondrial compartment to the cytoplasmic compartment by these compounds. In contrast, pyruvate kinase of chicken hepatocytes is refractory to inhibition by glucagon or dibutyryl cyclic AMP. Rat liver is known to have predominantly the type L isozyme of pyruvate kinase and chicken liver predominantly the type K. Thus, only the type L isozyme appears subject to interconversion between active and inactive forms by a cyclic AMP-dependent, phosphorylation-dephos-phorylation mechanism. This explains why the transfer of reducing equivalents from the mitochondrial compartment to the cytoplasmic compartment of chicken hepatocytes is insensitive to cyclic AMP. However, glucagon and dibutyryl cyclic AMP inhibit net glucose utilization, inhibit fatty acid synthesis, inhibit lactate and pyruvate accumulation in the presence of α-cyano-4-hydroxycinnamate, and stimulate gluconeogenesis from lactate and dihydroxyacetone by chicken hepatocytes. Thus, a site of action of cyclic AMP distinct from pyruvate kinase must exist in the glycolytic-gluconeogenic pathway of chicken liver.  相似文献   

    15.
    16.
    [1-Nα-Trinitrophenylhistidine,12-homoarginine]glucagon (THG) is a potent antagonist of the effects of glucagon on liver membrane adenylate cyclase. In isolated hepatocytes, this glucagon analogue was an extremely weak partial agonist for cAMP accumulation, and it blocked the stimulation of cAMP accumulation produced by glucagon. However, THG was a full agonist for the stimulation of glycogenolysis, gluconeogenesis and urea synthesis in rat hepatocytes, and did not antagonize the metabolic effects of glucagon under most of the conditions examined. Forskolin potentiated the stimulation of cAMP accumulation produced by glucagon or THG, but did not potentiate their metabolic actions. A much larger increase in cAMP levels seemed to be required for the stimulation of hepatocyte metabolism by forskolin than by glucagon or THG. This may suggest the existence of a functional compartmentation of cAMP in rat hepatocytes. The possible existence of compartments in cAMP-mediated hormone actions and the involvement of factors, besides cAMP, in mediating the effects of THG and glucagon is suggested.  相似文献   

    17.
    Effects of norepinephrine on gluconeogenesis and ureogenesis from glutamine by hepatocytes from fasted rats were assessed. Comparisons were made to asparagine metabolism and to the effects of NH4Cl and dibutyryl cyclic AMP. With asparagine as substrate, aspartate content was very high but norepinephrine, dibutyryl cyclic AMP, or NH4Cl had little effect on gluconeogenesis or ureogenesis. Metabolism of asparagine could be greatly enhanced by the combination of oleate, ornithine, and NH4Cl. However, even under these conditions, asparatate content remained high, and norepinephrine and dibutyryl cyclic AMP had little influence on glucose or urea synthesis. With glutamine as substrate, aspartate content was much lower, but was greatly elevated by norepinephrine, dibutyryl cyclic AMP, or NH4Cl. Each of these effectors strongly stimulated glucose and urea formation from glutamine. NH4Cl stimulation was accompanied by an increased glutamate and decreased alpha-ketoglutarate content. This suggests the mechanism for NH4Cl stimulation is a near-equilibrium adjustment to ammonia by glutamate dehydrogenase and aspartate aminotransferase rather than a principal involvement of glutaminase. Although both norepinephrine and dibutyryl cyclic AMP lowered alpha-ketoglutarate to the same extent, norepinephrine more rapidly increased aspartate content and led to a smaller accumulation of glutamate than did dibutyryl cyclic AMP. Moreover, only norepinephrine led to a rapid increase in succinyl-CoA concentration. The catecholamine effect could not be explained by specific changes in cytosolic or mitochondrial redox states. The results suggest that alpha-ketoglutarate dehydrogenase is a site of catecholamine action in rat liver. Since purified alpha-ketoglutarate dehydrogenase is known to be Ca2+ stimulated and Ca2+ flux is involved in catecholamine action, these findings also suggest that mitochondrial Ca2+ is elevated by catecholamines.  相似文献   

    18.
    《Life sciences》1994,54(24):PL451-PL456
    We investigated the involvement of α1-adrenoceptor subtypes in the positive chronotropic response to norepinephrine (NE) in neonatal rat cardiac myocytes at day 3 of culture. The cardiac myocytes at day 3 of culture exhibited a dose-dependent positive chronotropic response to NE in the presence of propranolol, a β-adrenoceptor antagonist. The positive chronotropic responses to NE were completely antagonized by the α1-adrenoceptor antagonist prazosin. The NE-induced positive chronotropic response was inhibited 68% by the α1B-adrenoceptor antagonist, chloroethylclonidine (CEC), but partially (41%) so by the α1A-adrenoceptor antagonist, WB4101. In the membrane fraction derived from cardiac myocytes at day 3 of culture, pretreatment with CEC decreased the Bmax of the α1-adrenoceptor to 22% of the control value. The NE-induced positive chronotropic response was inhibited 62 and 77% by the voltage-gated Ca2+ channel blocker such as nifedipine and verapamil, respectively. These findings indicate (1) that cultured neonatal rat cardiac myocytes possess both α1-adrenoceptor subtypes, i.e., α1A and α1B, (2) that the predominant α1-adrenoceptor subtypes mediating NE-induced positive chronotropy in neonatal rat cardiac myocytes at day 3 of culture are α1B-subtypes, and (3) that NE-induced positive chronotropy may be caused via voltage-gated Ca2+ channel activation.  相似文献   

    19.
    Prostaglandin E1 (PGE1) failed to stimulate rat liver cyclic AMP (cAMP), induce hyperglycemia, glycogenolysis or lipolysis or prevent epinephrine-induced hyperglycemia in isolated perfused rat liver, even though other known glycogenolytic agents (glucagon and epinephrine) activated cAMP in this same system. The data do not support a physiologic role for PGE1 on hepatic glycogenolysis or lipolysis. Although the effects of PGE1 on gluconeogenesis, lipogenesis, ureogenesis or amino acid transport in isolated perfused liver were not investigated, if PGE1 is subsequently found to influence these metabolic parameters, such alterations would probably occur independent of a change in cAMP activity.  相似文献   

    20.
    In many tissues, norepinephrine appears to inhibit its own release through an interaction at alpha adrenergic receptors. We have developed an assay for measuring the release of endogenous norepinephrine based on HPLC and have studied the regulation of release in the rat submandibular gland by alpha adrenergic antagonists. The method uses electrochemical detection to quantitate norepinephrine released from tissue slices and does not require preloading of the tissue with [3H]norepinephrine. Yohimbine, an alpha-2 adrenergic antagonist, potentiates by 50% the release caused by potassium induced depolarization with an EC50 of 0.14 microM. Prazosin, an alpha-1 antagonist, has a similar effect, but is less potent with an EC50 of 0.77 microM. Thus, the alpha adrenergic receptor mediating the regulation of norepinephrine release is of the alpha-2 subtype. The observed equal efficacies and lack of additivity of release potentiation by yohimbine and prazosin at maximal doses suggest that both drugs act at the same receptor. The five-fold difference in potency between prazosin and yohimbine is consistent with the recent observations indicating species differences between rodent and non-rodent alpha-2 adrenergic receptors.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号