首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein-protein interactions mediate most of the processes in the living cell and control homeostasis of the organism. Impaired protein interactions may result in disease, making protein interactions important drug targets. It is thus highly important to understand these interactions at the molecular level. Protein interactions are studied using a variety of techniques ranging from cellular and biochemical assays to quantitative biophysical assays, and these may be performed either with full-length proteins, with protein domains or with peptides. Peptides serve as excellent tools to study protein interactions since peptides can be easily synthesized and allow the focusing on specific interaction sites. Peptide arrays enable the identification of the interaction sites between two proteins as well as screening for peptides that bind the target protein for therapeutic purposes. They also allow high throughput SAR studies. For identification of binding sites, a typical peptide array usually contains partly overlapping 10-20 residues peptides derived from the full sequences of one or more partner proteins of the desired target protein. Screening the array for binding the target protein reveals the binding peptides, corresponding to the binding sites in the partner proteins, in an easy and fast method using only small amount of protein.In this article we describe a protocol for screening peptide arrays for mapping the interaction sites between a target protein and its partners. The peptide array is designed based on the sequences of the partner proteins taking into account their secondary structures. The arrays used in this protocol were Celluspots arrays prepared by INTAVIS Bioanalytical Instruments. The array is blocked to prevent unspecific binding and then incubated with the studied protein. Detection using an antibody reveals the binding peptides corresponding to the specific interaction sites between the proteins.  相似文献   

2.
Protein arrays hold great promise for proteome-scale analysis of protein-protein interaction networks, but the technical challenges have hindered their adoption by proteomics researchers. The crucial issue of design and fabrication of protein arrays have been addressed in several studies, but the detection strategies used for identifying protein-protein interactions have received little attention. In this study, we evaluated six different detection strategies to identify four different protein-protein interaction pairs. We discuss each detection approach in terms of signal-to-background (S/B) ratio, ease of use, and adaptability to high-throughput format. Protein arrays for this study were made by expressing both the bait proteins (proteins captured at the surface) and prey proteins (probes) in cell-free rabbit reticulocyte lysate (RRL) systems. Bait proteins were expressed as HaloTag fusions that allow covalent capture on a HaloTag ligand-coated glass without any prior protein purification step. Prey proteins were expressed and modified with either tags (protein or peptides) or labels (fluorescent or radiometric) for detection. This simple method for creating protein arrays in combination with our analyses of several detection strategies should increase the usefulness of protein array technologies.  相似文献   

3.
Transmembrane (TM) alpha-helical peptides with neutral flanking residues such as tryptophan form highly ordered striated domains when incorporated in gel-state 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) bilayers and inspected by atomic force microscopy (AFM) (1). In this study, we analyze the molecular organization of these striated domains using AFM, photo-cross-linking, fluorescence spectroscopy, nuclear magnetic resonance (NMR), and X-ray diffraction techniques on different functionalized TM peptides. The results demonstrate that the striated domains consist of linear arrays of single TM peptides with a dominantly antiparallel organization in which the peptides interact with each other and with lipids. The peptide arrays are regularly spaced by +/-8.5 nm and are separated by somewhat perturbed gel-state lipids with hexagonally organized acyl chains, which have lost their tilt. This system provides an example of how domains of peptides and lipids can be formed in membranes as a result of a combination of specific peptide-peptide and peptide-lipid interactions.  相似文献   

4.
5.
Surface plasmon resonance (SPR) nanosensors based on metallic nanohole arrays have been widely reported to detect binding interactions in biological specimens. A simple and effective method for constructing nanoscale arrays is essential for the development of SPR nanosensors. In this work, we report a one-step method to fabricate nanohole arrays by thermal nanoimprinting in the matrix of IPS (Intermediate Polymer Stamp). No additional etching process or supporting substrate is required. The preparation process is simple, time-saving and compatible for roll-to-roll process, potentially allowing mass production. Moreover, the nanohole arrays were integrated into detection platform as SPR sensors to investigate different types of biological binding interactions. The results demonstrate that our one-step method can be used to efficiently fabricate large-area and uniform nanohole arrays for biochemical sensing.  相似文献   

6.
The core histone tail domains play important roles in different stages of chromatin condensation. The tails are required for folding nucleosome arrays into secondary chromatin structures such as the approximately 30 nm diameter chromatin fiber and for mediating fiber-fiber interactions important for formation of tertiary chromatin structures. Crosslinking studies have demonstrated that inter-nucleosomal tail-DNA contacts appear in conjunction with salt-induced folding of nucleosome arrays into in higher order chromatin structures. However, since both folding of nucleosome arrays and fiber-fiber interactions take place simultaneously in >2-3 mM MgCl(2) such inter-nucleosome interactions may reflect short range (intra-array) or longer range (inter-array) interactions. Here, we describe a novel technique to specifically identify inter-array interactions mediated by the histone tail domains. In addition, we describe a new method for the preparation of H3/H4 tetramers.  相似文献   

7.
Over the past decade of proteome research peptide arrays have become a widespread and powerful tool to study molecular recognition events and to identify biologically active peptides. A variety of applications such as epitope mapping, characterisation of protein-protein interactions, enzyme-substrate or inhibitor interactions, and many more, have been published. Today's technologies for array production, inspired by DNA chips, have recently turned to the miniaturisation of peptide arrays. These advances open up an expanding spectrum of applications and the information obtained will be well-suited to developing substrates and inhibitors for diagnostic and therapeutic purposes.  相似文献   

8.
Synthetic peptides incorporating various chemical moieties, for example, phosphate groups, are convenient tools for investigating protein modification enzymes, such as protein phosphatases (PPs). However, short peptides are sometimes poor substrates, and their binding to commonly used matrices is unpredictable and variable. In general, protein substrates for PPs are superior for enzymatic assays, binding to various matrices, and Western blot analysis. The preparation and characterization of phosphoproteins, however can be difficult and technically demanding. In this study, the intein-mediated protein ligation (IPL) technique was used to readily generate phosphorylated protein substrates by ligating a synthetic phosphopeptide to an intein-generated carrier protein (CP) possessing a carboxyl-terminal thioester with a one-to-one stoichiometry. The ligated phosphoprotein (LPP) substrate was treated with a PP and subsequently subjected to array or Western blot analysis with a phospho-specific antibody. This approach is highly effective in producing arrays of protein substrates containing phosphorylated amino acid residues and has been applied for screening of PPs with specificity toward phosphorylated tyrosine, serine, or threonine residues, resulting in an approximately 240-fold increase in sensitivity in dot blot analysis compared with the use of synthetic peptides. The IPL technique overcomes the disadvantages of current methods and is a versatile system for the facile production of protein substrates containing well-defined structural motifs for the study of protein modification enzymes.  相似文献   

9.
This protocol describes the methodology for the synthesis of dehydroalanine (Dha)-containing peptides and illustrates their use in convergent ligation strategies for the preparation of peptide conjugates. A nonproteinogenic amino acid, Fmoc-Se-phenylselenocysteine (SecPh), can be prepared in high yield over four synthetic steps and be conveniently incorporated into peptides by standard solid-phase peptide synthesis techniques. Globally deprotected peptides containing phenylselenocysteine can be converted to dehydrated peptides following a chemoselective, mild oxidation with hydrogen peroxide or sodium periodate (i.e., the phenylselenocysteine side chain is converted to that of Dha). Dha residues are electrophilic handles for the preparation of glycopeptides, lipopeptides or other peptide conjugates; one such transformation will be outlined here. The preparation of Dha-containing peptides, including the synthesis of SecPh, peptide elongation and oxidative treatment of phenylselenocysteine-containing peptides can be completed by one person in approximately 3-5 weeks. However, once SecPh is in hand, the time required for the preparation of peptides is significantly shorter and comparable to that for any peptide synthesis.  相似文献   

10.
Glass has become the standard substrate for the preparation of DNA arrays. Typically, glass is modified using silane chemistries to provide an appropriate functional group for nucleic acid synthesis or oligonucleotide immobilization. We have found substantial issues with the stability of these surfaces as manifested in the unwanted release of oligomers from the surface when incubated in aqueous buffers at moderate temperatures. To address this issue, we have explored the use of carbon-based substrates. Here, we demonstrate in situ synthesis of oligonucleotide probes on carbon-based substrates using light-directed photolithographic phosphoramidite chemistry and evaluate the stabilities of the resultant DNA arrays compared to those fabricated on silanized glass slides. DNA arrays on carbon-based substrates are substantially more stable than arrays prepared on glass. This superior stability enables the use of high-density DNA arrays for applications involving high temperatures, basic conditions, or where serial hybridization and dehybridization is desired.  相似文献   

11.
Sun L  Rush J  Ghosh I  Maunus JR  Xu MQ 《BioTechniques》2004,37(3):430-6, 438, 440 passim
Peptide arrays are increasingly used to define antibody epitopes and substrate specificities of protein kinases. Their use is hampered, however, by ineffective and variable binding efficiency of peptides, which often results in low sensitivity and inconsistent results. To overcome these limitations, we have developed a novel method for making arrays of synthetic peptides on various membranes after ligating the peptide substrates to an intein-generated carrier protein. We have conducted screening for optimal carrier proteins by immunoreactivity and direct assessment of binding using a peptide derivatized at a lysine sidechain with fluorescein, CDPEK(fluorescein)DS. Ligation of a synthetic peptide antigen to a carrier protein, HhaI methylase, resulted in an improved retention of peptides and an increased sensitivity of up to 10(4)-fold in immunoassay- and epitope-scanning experiments. Denaturing the ligation products with 2% sodium dodecyl sulfate (SDS) or an organic solvent (20% methanol) prior to arraying did not significantly affect the immunoreactivity of the HhaI methylase-peptide product. Because the carrier protein dominates the binding of ligation products and contains one peptide reactive site, the amount of peptide arrayed onto the membranes can be effectively normalized. This technique was utilized in the alanine scanning of hemagglutinin (HA) antigen using two monoclonal antibodies, resulting in distinguishing the different antigen epitope profiles. Furthermore, we show that this method can be used to characterize the antibodies that recognize phosphorylated peptides. This novel approach allows for synthetic peptides to be uniformly arrayed onto membranes, compatible with a variety of applications.  相似文献   

12.
Plants defend themselves against infection by biotic attackers by producing distinct phytohormones. Especially jasmonic acid (JA) and salicylic acid (SA) are well known defense-inducing hormones. Here, the effects of MeJA and SA on the Arabidopsis thaliana kinome were monitored using PepChip arrays containing kinase substrate peptides to analyze posttranslational interactions in MeJA and SA signaling pathways and to test if kinome profiling can provide leads to predict posttranslational events in plant signaling. MeJA and SA mediate differential phosphorylation of substrates for many kinase families. Also some plant specific substrates were differentially phosphorylated, including peptides derived from Phytochrome A, and Photosystem II D protein. This indicates that MeJA and SA mediate cross-talk between defense signaling and light responses. We tested the predicted effects of MeJA and SA using light-mediated upward leaf movement (differential petiole growth also called hyponastic growth). We found that MeJA, infestation by the JA-inducing insect herbivore Pieris rapae, and SA suppressed low light-induced hyponastic growth. MeJA and SA acted in a synergistic fashion via two (partially) divergent signaling routes. This work demonstrates that kinome profiling using PepChip arrays can be a valuable complementary ~omics tool to give directions towards predicting behavior of organisms after a given stimulus and can be used to obtain leads for physiological relevant phenomena in planta.  相似文献   

13.
14.
Large-scale functional analysis using peptide or protein arrays   总被引:22,自引:0,他引:22  
The array format for analyzing peptide and protein function offers an attractive experimental alternative to traditional library screens. Powerful new approaches have recently been described, ranging from synthetic peptide arrays to whole proteins expressed in living cells. Comprehensive sets of purified peptides and proteins permit high-throughput screening for discrete biochemical properties, whereas formats involving living cells facilitate large-scale genetic screening for novel biological activities. In the past year, three major genome-scale studies using yeast as a model organism have investigated different aspects of protein function, including biochemical activities, gene disruption phenotypes, and protein-protein interactions. Such studies show that protein arrays can be used to examine in parallel the functions of thousands of proteins previously known only by their DNA sequence.  相似文献   

15.
The orientation of membrane fragments into a lamellar array by a flat surface is analyzed. This analysis includes processes such as centrifugation and drying and physical effects due to membrane fragment steric interactions, finite size, elasticity, and thermal fluctuations. Several model calculations of optimal orientational order in multilayer membrane arrays are presented. The predictions of a smectic A model agree quantitatively with the measured spatial dependence of the fluctuations in layer orientation in a multilamellar arrays. A new technique, based in part on this analysis, for the preparation of well-oriented multilamellar arrays of natural and artificial membranes, isopotential spin-dry centrifugation, is described. The method involves the use of specially designed inserts for the buckets of a standard vacuum ultracentrifuge. The membrane fragments to be oriented are sedimented from solution or suspension onto a substrate of a convenient material which forms a gravitational isopotential surface at high g. Sedimentation is accompanied by removal of the suspending medium at high g to produce oriented films with a selected degree of solvation. In addition, a method is described whereby small solute molecules can be maintained in constant concentration with the membrane fragments during this process. Initial application of the method to the orientation of purple membrane fragments is described. The degree of orientation obtained in this system is evaluated using freeze-fracture and scanning electron microscopy, optical birefringence, linear dichroism, and microscopy.  相似文献   

16.
Since Merrifield introduced the concept of solid phase synthesis in 1963 for the rapid preparation of peptides, a large variety of different supports and resin-linkers have been developed that improve the efficiency of peptide assembly and expand the myriad of synthetically feasible peptides. The aryl hydrazide is one of the most useful resin-linkers for the synthesis of chemically modified peptides. This linker is completely stable during Boc- and Fmoc-based solid phase synthesis and yet it can be cleaved under very mild oxidative conditions. The present article reviews the use of this valuable linker for the rapid and efficient synthesis of C-terminal modified peptides, head-to-tail cyclic peptides and lipidated peptides.  相似文献   

17.
Most Cys2His2 zinc finger proteins contain tandem arrays of metal binding domains. The tandem nature of these arrays suggests that metal binding by these domains may not be independent but rather that metal binding may occur in a cooperative manner. This is especially true in light of the crystal structure of a three zinc finger array bound to DNA that revealed several types of interactions between domains. To address this question, peptides containing two tandem domains have been prepared. While metal binding studies do show that the two finger peptide has a metal ion affinity about threefold higher than that for a single domain peptide with the same sequence, additional studies reveal that this behavior is due to increased single site affinities in the context of the two domain peptide rather than to cooperativity. These studies indicate that domains of this type are independent of one another with regard to metal binding, at least in the absence of DNA. This observation has implications with regard to the question of whether the activities of proteins of this class might be modulated by available zinc concentrations.  相似文献   

18.
Garaguso I  Borlak J 《Proteomics》2008,8(13):2583-2595
The analytical performance of MALDI-MS is highly influenced by sample preparation and the choice of matrix. Here we present an improved MALDI-MS sample preparation method for peptide mass mapping and peptide analysis, based on the use of the 2,5-dihydroxybenzoic acid matrix and prestructured sample supports, termed: matrix layer (ML). This sample preparation is easy to use and results in a rapid automated MALDI-MS and MS/MS with high quality spectra acquisition. The between-spot variation was investigated using standard peptides and statistical treatment of data confirmed the improvement gained with the ML method. Furthermore, the sample preparation method proved to be highly sensitive, in the lower-attomole range for peptides, and we improved the performance of MALDI-MS/MS for characterization of phosphopeptides as well. The method is versatile for the routine analysis of in-gel tryptic digests thereby allowing for an improved protein sequence coverage. Furthermore, reliable protein identification can be achieved without the need of desalting sample preparation. We demonstrate the performance and the robustness of our method using commercially available reference proteins and automated MS and MS/MS analyses of in-gel digests from lung tissue lysate proteins separated by 2-DE.  相似文献   

19.
In the vertebrate retina neurons of the same type commonly form non-random arrays, assembled by unknown positional mechanisms during development. Computational models in which no two cells are closer than a minimal distance, simulate many retinal arrays. These findings have important biological implications, since they suggest that cells are determined as neurons of specific types before entering their arrays, and that local, possibly contact-mediated interactions acting exclusively among the elements of an array account for its assembly. This is here verified by combining experimental manipulations in normal and transgenic models with computational analysis for the cholinergic mosaics, the only arrays so far for which the development of spatial ordering is known quantitatively. When generalised, these findings suggest a plan for vertebrate retinal patterning, where homotypic interactions organise retinal arrays first, then local interactions between synaptic partners suffice to establish the topographical connections that support retinal processing.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号