共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Background
Sequence related families of genes and proteins are common in bacterial genomes. In Escherichia coli they constitute over half of the genome. The presence of families and superfamilies of proteins suggest a history of gene duplication and divergence during evolution. Genome encoded protein families, their size and functional composition, reflect metabolic potentials of the organisms they are found in. Comparing protein families of different organisms give insight into functional differences and similarities. 相似文献3.
MOTIVATION: Deciphering the location of gene duplications and multiple gene duplication episodes on the Tree of Life is fundamental to understanding the way gene families and genomes evolve. The multiple gene duplication problem provides a framework for placing gene duplication events onto nodes of a given species tree, and detecting episodes of multiple gene duplication. One version of the multiple gene duplication problem was defined by Guigó et al. in 1996. Several heuristic solutions have since been proposed for this problem, but no exact algorithms were known. RESULTS: In this article we solve this longstanding open problem by providing the first exact and efficient solution. We also demonstrate the improvement offered by our algorithm over the best heuristic approaches, by applying it to several simulated as well as empirical datasets. 相似文献
4.
R M Medzhitov 《Biokhimii?a (Moscow, Russia)》1991,56(1):3-8
A concept of the evolution of signal molecules and their receptors is proposed. The formation of novel regulatory proteins by way of gene fusion and gene shuffling and the role of these processes in metabolic integration are considered. The different receptor variants may be due to alternative splicing which is regulated in a tissue-specific manner. 相似文献
5.
6.
X-ray crystallography has revealed that many integral membrane proteins consist of two domains with a similar fold but opposite (antiparallel) orientation in the membrane. The proteins are believed to have evolved by gene duplication and gene fusion events from a dual topology ancestral membrane protein, that adapted both orientations in the membrane and formed antiparallel homodimers. Here, we present a detailed analysis of the DUF606 family of bacterial membrane proteins that contains the entire collection of intermediate states of such an evolutionary pathway: single genes that would code for dual topology homodimeric proteins, paired genes coding for homologous proteins with a fixed but opposite orientation in the membrane that would form heterodimers, and fused genes that encode antiparallel two-domain fusion proteins. Two types of paired genes can be discriminated corresponding to the order in which the genes coding for the two oppositely oriented proteins occur in the operon. On the protein level, the heterodimers resulting from the two types of gene pairs are indistinguishable. In contrast, two types of fused genes corresponding to the two possible orders in which the oppositely oriented domains are present in the encoded proteins, do result in discernible types of proteins. The large number of genetic and protein states in the DUF606 family allowed for a detailed phylogenic analysis that revealed a total of nine independent duplication events in the DUF606 family, five of which resulted in paired genes, and four resulted in fused genes. Noticeably, there was no evidence for a sequential mechanism in which fusions evolve from a pair of genes. Rather, an evolutionary mechanism is proposed by which antiparallel two-domain proteins are the direct result of a gene duplication event. Combining the phylogeny of proteins and hosting microorganisms allowed for a reconstruction of the evolutionary pathway. 相似文献
7.
In this study, we investigated the evolution of vertebrate tissues by examining the potential association among gene expression, duplication, and base substitution patterns. In particular, we compared whole-genome duplication (WGD) with small-scale duplication (SSD), as well as tissue restricted with ubiquitously expressed genes. All patterns were also analysed in the light of gene evolutionary rates. Among those genes characterized by rapid evolution and expressed in a restricted range of tissues, SSD was represented in a larger proportion than WGD. Conversely, genes with ubiquitous expression were associated with slower evolutionary rates and a larger proportion of WGD. The results also show that evolutionary rates were faster in genes expressed in endodermal tissues and slower in ectodermal genes. Accordingly, the proportion of the SSD and WGD genes was highest in the endoderm and ectoderm, respectively. Therefore, quickly evolving SSD genes might have contributed to the faster evolution of endodermal tissues, whereas the comparatively slowly evolving WGD genes might have functioned to maintain the basic characteristics of ectodermal tissues. Mesenchymal tissues occupied an intermediate position in this regard, whereas the patterns observed for haemocytes were unique. Rapid tissue evolution could be related to a specific gene duplication mode (SSD) and faster molecular evolution in response to exposure to the external environment. These findings reveal general patterns underlying the evolution of tissues and their corresponding genes. 相似文献
8.
9.
10.
Repeating sequences and gene duplication in proteins 总被引:13,自引:0,他引:13
A D McLachlan 《Journal of molecular biology》1972,64(2):417-437
The theory that proteins have evolved by repeated internal duplication of short segments of polypeptide chains has been tested by looking for repeats and near repeats in over 50 different proteins, many of them of known structure. The probability that the observed repeats could arise by chance has been calculated. 相似文献
11.
Background
Coloration and color patterning belong to the most diverse phenotypic traits in animals. Particularly, teleost fishes possess more pigment cell types than any other group of vertebrates. As the result of an ancient fish-specific genome duplication (FSGD), teleost genomes might contain more copies of genes involved in pigment cell development than tetrapods. No systematic genomic inventory allowing to test this hypothesis has been drawn up so far for pigmentation genes in fish, and almost nothing is known about the evolution of these genes in different fish lineages. 相似文献12.
Gene duplication is a common evolutionary process that leads to the expansion and functional diversification of protein subfamilies. The evolutionary events that cause paralogous proteins to bind different protein ligands (functionally diverged interfaces) are investigated and compared to paralogous proteins that bind the same protein ligand (functionally preserved interfaces). We find that functionally diverged interfaces possess more subfamily-specific residues than functionally preserved interfaces. These subfamily-specific residues are usually partially buried at the interface rim and achieve specific binding through optimized hydrogen bond geometries. In addition to optimized hydrogen bond geometries, side-chain modeling experiments suggest that steric effects are also important for binding specificity. Residues that are completely buried at the interface hub are also less conserved in functionally diverged interfaces than in functionally preserved interfaces. Consistent with this finding, hub residues contribute less to free energy of binding in functionally diverged interfaces than in functionally preserved interfaces. Therefore, we propose that protein binding is a delicate balance between binding affinity that primarily occurs at the interface hub and binding specificity that primarily occurs at the interface rim. 相似文献
13.
14.
15.
Gene regulatory networks are perhaps the most important organizational level in the cell where signals from the cell state and the outside environment are integrated in terms of activation and inhibition of genes. For the last decade, the study of such networks has been fueled by large-scale experiments and renewed attention from the theoretical field. Different models have been proposed to, for instance, investigate expression dynamics, explain the network topology we observe in bacteria and yeast, and for the analysis of evolvability and robustness of such networks. Yet how these gene regulatory networks evolve and become evolvable remains an open question. 相似文献
16.
The ATP-binding cassette (ABC) transporter genes represent the largest family of transporters and these genes are abundant in the genome of all vertebrates. Through analysis of the genome sequence databases we have characterized the full complement of ABC genes from several mammals and other vertebrates. Multiple gene duplication and deletion events were identified in ABC genes in different lineages indicating that the process of gene evolution is still ongoing. Gene duplication resulting in either gene birth or gene death plays a major role in the evolution of the vertebrate ABC genes. The understanding of this mechanism is important in the context of human health because these ABC genes are associated with human disease, involving nearly all organ systems of the body. In addition, ABC genes play an important role in the development of drug resistance in cancer cells. Future genetic, functional, and evolutionary studies of ABC transporters will provide important insight into human and animal biology. 相似文献
17.
Current fossil, embryological and genetic data shed light on the evolution of the gene regulatory network (GRN) governing bone formation. The key proteins and genes involved in skeletogenesis are well accepted. We discuss when these essential components of the GRN evolved and propose that the Runx genes, master regulators of skeletogenesis, functioned in early cartilages well before they were co-opted to function in the making of bone. Two rounds of whole genome duplication, together with additional tandem gene duplications, created a genetic substrate for segregation of one GRN into several networks regulating the related tissues of cartilage, bone, enamel, and dentin. During this segregation, Runx2 assumed its position at the top of the bone GRN, and Sox9 was excluded from bone, retaining its ancient role in cartilage. 相似文献
18.
19.
Nuclear receptors contain a conserved hydrophobic ligand binding pocket that is particularly amenable to structure-based protein engineering. Thus, site-directed mutagenesis of the ligand binding pocket has resulted in the creation of nuclear receptors with novel ligand specificities. Such proteins are now being used to control gene expression in vivo in a ligand-dependent manner. 相似文献
20.
The tuf gene of eubacteria, encoding the EF-tu elongation factor, was duplicated early in the evolution of the taxon. Phylogenetic and genomic location analysis of 20 complete eubacterial genomes suggests that this ancient duplication has been differentially lost and maintained in eubacteria. 相似文献