首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The present study examined the ability to establish pregnancies after transfer of pig embryos derived from in vitro fertilization (IVF) of in vitro matured (IVM) oocytes by X and Y chromosome-bearing spermatozoa sorted by flow cytometry. Cumulus-oocyte complexes (COC) were cultured in BSA-free NCSU-23 medium containing porcine follicular fluid (10%), cysteine (0.1 mg/mL), epidermal growth factor (10 ng/mL), LH (0.5 microgram/mL) and FSH (0.5 microgram/mL) for 22 h, then the oocytes were cultured without hormonal supplements for an additional 22 h. Boar semen was collected and prepared by flow cytometry sorting of X and Y chromosome bearing spermatozoa. After IVM, cumulus-free oocytes were co-incubated with sorted X or Y spermatozoa (2 x 10(4)/mL) for 6 to 7 h in modified Tris-buffered medium containing 2.5 mM caffeine and 0.4% BSA. After IVF, putative embryos were transferred to NCSU-23 medium containing 0.4% BSA for culture. A portion of the oocytes was fixed 12 h after IVF, the remainder were cultured up to 96 h. At 96 h after IVF, 8-cell to morula stage embryos (n = 30 to 35) from each gender were surgically transferred to the uterus of recipient gilts. Insemination of IVM pig oocytes with X- or Y-bearing sperm cells did not influence the rate of penetration (67 vs 80%), polyspermy (40 vs 53%), male pronuclear formation (95 vs 96%), or mean number of spermatozoa per oocyte (1.6 vs 1.6), respectively. Furthermore, no difference was observed between cleavage rates at 48 h after IVF (X, 49 vs Y, 45%). Transfer of embryos derived from X-bearing spermatozoa to 18 recipients resulted in 5 pregnancies and delivery of 23 females and 1 male piglet. Similarly, transfer of embryos derived from Y-bearing sperm cells to 10 recipients resulted in 3 pregnancies, with 9 male piglets delivered. The results show that X- and Y-bearing spermatozoa sorted using USDA sperm sexing technology can be successfully used in an IVM-IVF system to obtain piglets of a predetermined sex.  相似文献   

2.
Gamete intrafallopian transfer (GIFT) was successfully established in the pig. In Experiment 1 (6 replicates) 234 oocytes (39 +/- 5.5 per recipient) plus spermatozoa (4000 to 8000 per oocyte) were transferred bilaterally into the oviducts of synchronized gilts, and embryos were recovered 48 h thereafter. The recovery rate was 50.4% and 50% of the recovered oocytes were fertilized. A total of 55 embryos was cultured in vitro in NCSU-medium for 48 h and 63.6% developed to morula or blastocyst stages. In Experiment 2 (5 replicates) 220 oocytes (44 +/- 4.9 per recipient) plus spermatozoa (4000 per oocyte) were transferred to 5 recipients which were allowed to go to term. Three gilts delivered 16 (n = 3, 5, 8) piglets. In Experiment 3 (5 replicates) 183 oocytes (36.6 +/- 1.2 per recipient) plus flow cytometry gender sorted spermatozoa (4000 per oocyte) were transferred to 5 recipients. The recovery rate was 47.8%, and 27.6% of the oocytes were fertilized. From all cleaved oocytes 45.8% developed to expanded blastocysts, with the number of blastomeres varying from 20 to 85 (38.3 +/- 22.5). These results indicate that the GIFT procedure can be used successfully in pigs, and can be a valuable tool for the study of gamete interaction as well as in the continued development of biotechnological procedures such as sex pre-determination.  相似文献   

3.
Flow cytometric sperm sorting based on X and Y sperm DNA difference has been established as the only effective method for sexing the spermatozoa of mammals. The standard method for verifying the purity of sorted X and Y spermatozoa has been to reanalyze sorted sperm aliquots. We verified the purity of flow-sorted porcine X and Y spermatozoa and accuracy of DNA reanalysis by fluorescence in situ hybridization (FISH) using chromosome Y and 1 DNA probe. Eight ejaculates from 4 boars were sorted according to the Beltsville Sperm Sexing method. Porcine chromosome Y- and chromosome 1-specific DNA probes were used on sorted sperm populations in combination with FISH. Aliquots of the sorted sperm samples were reanalyzed for DNA content by flow cytometry. The purity of the sorted X-bearing spermatozoa was 87.4% for FISH and 87.0% for flow cytometric reanalysis; purity for the sorted Y-bearing spermatozoa was 85.9% for FISH and 84.8% for flow cytometric reanalysis. A total of 4,424 X sperm cells and 4,256 Y sperm cells was examined by FISH across the 8 ejaculates. For flow cytometry, 5,000 sorted X spermatozoa and 5,000 Y spermatozoa were reanalyzed for DNA content for each ejaculate. These results confirm the high purity of flow sorted porcine X and Y sperm cells and the validity of reanalysis of DNA in determining the proportions of X- and Y-sorted spermatozoa from viewing thousands of individual sperm chromosomes directly using FISH.  相似文献   

4.
This study was carried out to determine if a rapid, simultaneous detection system using chromosome Y- and 1-bearing boar spermatozoa was applicable for sexing embryos. Porcine embryos were recovered from gilts and sows 4 to 6 d after mating, and whole embryos or biopsy cells were mounted on a glass slide with a small amount of fixative (methanol: acetic acid: distilled water = 9:1:4). The samples were then stained by means of a fluorescence in situ hybridization (FISH) procedure developed specifically for the detection of Y-bearing spermatozoa. Hybridization was performed using digoxigenin (dig)-labeled chromosome Y- specific DNA, and biotin-labeled chromosome 1-specific DNA sequences were detected as a signal of FITC and Texas Red on nucleus visualized DAPI-stain. Proportions of whole embryos labeled with chromosome 1-probe were 17 and 97% at the 3 to 16 and > or = 32 cell stage, respectively. Of the 93 biopsied embryos analyzed by FISH, 85 embryos (91%) could be accurately classified as male or female. Of the 65 biopsied embryos, 60 embryos (92%) had a clear blastocoele and a inner cell mass after 48 h of culture in vitro, and these embryos were evaluated as available embryos. One out of 4 recipient gilts which received sexed embryos at transfer farrowed 12 piglets of the expected sex. The results of this study demonstrated that porcine embryos at the > or = 32 cell stage can be sexed within 2 h using the FISH method. Moreover further development of the FISH technique could make it an effective tool for the study of early porcine embryos and for the control of porcine sex.  相似文献   

5.
The objective of this study was to examine preimplantation development and sperm aster characteristics of bovine male and female embryos produced by using spermatozoa sorted for the X or Y chromosome. In vitro matured oocytes were inseminated at 24 h of maturation with sorted X or Y chromosome-bearing spermatozoa, using either fresh or frozen-thawed semen. Samples were taken from each sperm group 12 h post insemination (hpi), fixed, and immunostained for the microtubule cytoskeleton. Confocal microscopy enabled visualization of sperm aster formation and microtubule characteristics of each zygote during early fertilization. Cultured embryos were checked for cleavage at 30, 35, 40 and 45 hpi, embryo development was examined daily until Day 8 of culture. Blastocyst cell numbers were determined at the end of the experiments. Reanalysis of the sorted sperm cells for DNA content showed purity rates of 90.1 and 92.1% for X and Y chromosome-bearing spermatozoa, respectively. Reduced fertilization and development rates were observed when sorted spermatozoa were used compared with fresh and frozen-thawed spermatozoa. Penetration rates at 12 hpi were 39.5, 44.7, 55.9 and 79.0%, while blastocyst formation rates at Day 8 were 26.7, 26.5, 31.7 and 40.7% for X and Y chromosome-bearing spermatozoa, using fresh and frozen-thawed semen groups, respectively. Sperm aster size was larger in males than females, while the size of pronuclei and subjective grade of sperm aster quality showed no differences between sexes. In this study, a greater cleavage rate and sperm aster size in male embryos indicated a dimorphic pattern of development in male and female embryos during fertilization and first cleavage.  相似文献   

6.
Developmental competence of pig oocytes matured and fertilized in vitro   总被引:2,自引:0,他引:2  
Pig follicles 3 to 6 mm in diameter were everted and matured for 44 h. The oocytes were then collected and exposed to capacitated boar sperm purified by centrifugation in a two step (65 and 70%) Percoll gradient. Of 110 ova fixed 14 h after in vitro fertilization, 78% were penetrated and 47% were monospermic. Next, 681 oocytes were cultured in vitro for 44 h after in vitro fertilization and the 266 embryos which had reached the two- to four-cell stage were transferred into the oviducts of 12 synchronized recipient gilts. Four days later, 211 embryos (79%) were recovered by uterine flushing. 40.7% of these were at the blastocyst stage, and 20% were at the morula stage. In a final experiment, four out of eight gilts which had received 40 to 50 two- to four-cell embryos, were diagnosed pregnant 30 and 37 d after in vitro fertilization. One sow farrowed nine live piglets and one stillborn, two pregnancies were in progress, while one sow returned to estrus 47 d after in vitro fertilization. These results demonstrate that pig oocytes matured and fertilized in vitro can develop to the blastocyst stage and establish a normal pregnancy resulting in the birth of live piglets.  相似文献   

7.
The present study was carried out to determine the pregnancy rates, farrowing rates and litter size in sows with either induced or spontaneous ovulation inseminated with flow cytometric sorted spermatozoa using deep intrauterine insemination technology. Spermatozoa were stained with Hoechst 33342 and sorted by flow cytometry/cell sorting but not separated into separate X and Y populations. In Experiment 1, sows (n=200) were weaned and treated for estrus/ovulation induction with eCG/hCG. Inseminations with either sorted (70 or 140 million) or non-sorted (70 or 140 million) spermatozoa were done using a specially designed flexible catheter. Farrowing rates were 39.1 and 78.7% for 70 million of sorted and non-sorted, respectively, and 46.6 and 85.7% for 140 million of sorted and non-sorted, respectively (P<0.05). The litter size in sows inseminated with sorted spermatozoa showed a tendency to be lower than when non-sorted spermatozoa were inseminated. In Experiment 2, sows (n=140) were inseminated as in Experiment 1 except that natural estrus was used. The ovaries of these sows were evaluated by transrectal ultrasonography. Farrowing rates were 25 and 77.2% for 70 million of sorted and non-sorted, respectively, and 32 and 80.9% for 140 million of sorted and non-sorted, respectively (P<0.05). These results show that the Deep Intrauterine Insemination technology can be successfully used to produce piglets from sorted spermatozoa when sows are hormonally treated to induce synchronous post weaning oestrus and ovulation.  相似文献   

8.
The objective was to determine farrowing rates and litter sizes that could be achieved in a typical farm-to-farm porcine embryo transfer program using vitrified blastocysts that were zona pellucida intact when cryopreserved. The embryos were transferred surgically on-farm into recipient sows that were managed throughout gestation and farrowing under the same conditions as other sows in the herd. Twenty recipient sows (mean parity 2.1) received a total of 568 embryos; seven received 203 embryos derived from donor sows, five received 139 embryos from gilts and eight received a mixture of 161 embryos from sows and 65 from gilts. Sixteen sows (80%) were confirmed pregnant at approximately 35 days gestation, 15 farrowed at full term (farrowing rate 75%). One sow died during gestation (with a total of 18 fetuses in utero). A total of 123 piglets were born (mean, 8.2), of which 115 were born alive (mean, 7.7). Of the 568 embryos transferred to all 20 sows, 21.6% resulted in piglets born and 29.0% survived to produce piglets in sows that farrowed. There were no significant differences in embryo survival among sow, gilt or mixed sow and gilt embryos. The ratio of males to females was 71/52 and the mean birth weight was 1.6 kg (range 0.6-2.6 kg). In conclusion, vitrified zona pellucida intact embryos can be used to transfer genetic material from farm-to-farm with acceptable reproductive performance.  相似文献   

9.
Sex preselection in cats can have applications for both breeding purposes and as an experimental model for endangered felids. The present study examined the ability to produce cat embryos from in vitro fertilization (IVF) of in vitro matured (IVM) cat oocytes with flow cytometrically sorted spermatozoa and to verify the sex of the embryos obtained from sexed spermatozoa by PCR. In the first experiment, a total of 224 oocytes were fertilized with spermatozoa from six ejaculates sorted without sex separation. The sorting process did not influence the cleavage rate (sorted 44.0% versus unsorted 46.1%), day 6 morula-blastocyst rate (sorted 26.6% versus unsorted 29.6%) and day 7 blastocyst rate (sorted 16.5% versus unsorted 16.5%). In the second experiment, a total of 84 IVM oocytes were fertilized with sorted X- and Y-chromosome bearing spermatozoa from four ejaculates in order to obtain embryos of preselected sex. Embryonic sex determination by PCR revealed that 21 out of 24 embryos reaching morula/blastocyst stage (87.5%) were of the desired sex. In particular 12 out of 14 embryos (85.7%) derived from X-bearing spermatozoa were female and 9 embryos out of 10 (90%) derived from Y-bearing spermatozoa were male. Our results show, for the first time, that X- and Y-chromosome bearing spermatozoa sorted by high-speed flow cytometry can be successfully used in an IVM-IVF system to obtain cat embryos of a predetermined sex.  相似文献   

10.
An artificial insemination bull (Bos taurus) exhibiting 23% macrocephalic spermatozoa in the ejaculate was investigated. Spermatozoa with a projected head area of ≥52 μm2 were considered macrocephalic. Diploidy was assumed from the measurement of sperm head area and proved by flow cytometry, which was used to sort the sperm into haploid and diploid fractions. Fluorescence in situ hybridization was used to detect the sex chromosomes with an X-Y probe set. Diploid spermatozoa most likely originate from a defective second meiotic division (M2 diploids), as only 0.7% XY-bearing spermatozoa (M1 diploids) were detected in the spermatozoa of the flow cytometric diploid sort. The painting probes generated a single X or Y spot for both unsorted semen and diploid sorted spermatozoa. This indicates a close proximity of the nonpartitioned sister chromatids in the spermatozoa. The BC1.2 probe, which labels BTAYp13-12, was used to clarify the presence of the two chromatids in the singular signal of the simultaneously hybridized Y-painting probe. In scoring more than 1000 randomly sampled spermatozoa hybridized with the BC1.2 probe, 32% showed the YY diploid signal and 18% the Y signal. The sperm diploidy in this bull was caused by an incomplete partitioning of sister chromatids during the second meiotic division (M2) associated with a failure in nuclear cleavage.  相似文献   

11.
An experiment was undertaken to assess the fertilizing capacity of sex-sorted, frozen-thawed ram spermatozoa, artificially inseminated into superovulated ewes, and the quality and survivability of the resultant pre-sexed embryos. Synchronized (intravaginal progestagen pessary and GnRH) donors were superovulated using PMSG and repeat ovarian stimulation with FSH before insemination. Ewes (n=67) were inseminated with either 30x10(6) or 15x10(6) motile non-sorted (control) or 15x10(6) motile sex-sorted (sorted) frozen-thawed spermatozoa (control: C30 or C15; sorted: S15, respectively) and the resultant embryos transferred immediately into synchronized recipients (n=160). The percentage of transferable embryos, pregnancy rate and embryo survival were similar (P>0.05) across all treatments. Oocyte cleavage rate was higher for ewes inseminated with S15 (172/230; 74.8%; P<0.05) than for C15 (97/151; 64.2%) or C30 (89/141; 63.1%) spermatozoa. Of the lambs resulting from embryos produced with sex-sorted spermatozoa, 86/93 (92.5%) were born of the predicted sex. This study demonstrated for the first time that pre-sexed offspring derived from superovulated sheep can be produced following transfer of embryos. Furthermore, sex-sorting by flow cytometry did not compromise the in vivo fertilizing capacity of ram spermatozoa in superovulated sheep, nor did it affect the quality or survivability of the resultant embryos.  相似文献   

12.
The only established difference on which to base the separation of X and Y chromosome-bearing spermatozoa is chromosomal constitution. This difference is quantifiable both from chromosome morphology (karyotype) and from DNA content. Flow cytometric techniques were used to measure relative DNA content of the X and Y populations and to flow-sort spermatozoa from Chinchilla laniger. Epididymal spermatozoa were recovered in PBS, fixed in 80% ethanol, treated with papain and dithioerythritol, and stained for DNA with Hoechst 33342. Sperm nuclei were analyzed and sorted on an EPICS V flow cytometer/cell sorter, modified specifically for spermatozoa. Two clearly resolved peaks (coefficient of variation < 1.5%) with approximately 7.5% difference in DNA content between X and Y chromosome-bearing spermatozoa were evident. Sperm nuclei were sorted from a portion of the X and Y peaks at a rate of 55 nuclei/sec for each population. Purities of individual X and Y populations averaged 95% as determined by reanalysis of the sorted populations. Successful sorting of Chinchilla X and Y chromosome-bearing spermatozoa into separate populations may aid in the identification of a biochemical marker that could be used to discriminate between the two sperm populations and lead to a practical procedure for sexing spermatozoa.  相似文献   

13.
A total of 393 porcine embryos was transported in two trials each lasting more than 30h from Hannover, Federal Republic of Germany to Buenos Aires, Argentina. The embryos were shipped in phosphate buffered saline (PBS) medium supplemented with 10% lamb serum and packaged in 0.25ml straws placed in a modified thermos bottle at 36.5 degrees C. Upon arrival, 359 embryos (90.8%) were evaluated as morphologically intact and were transferred to 19 recipients. Twelve recipients remained pregnant. Three recipients aborted and nine recipients (47.4%) farrowed a mean number of 5.6 +/- 2.6 (x +/- SD) piglets after 115.1 +/- 1.8 d of gestation. The average birthweight was 1.1 +/- 0.2 kg. The percentage of embryos resulting in live piglets was 28.6% in farrowing recipients. These births represented the first piglets from embryos that had been stored for more than 30h in vitro and shipped from Europe to South America.  相似文献   

14.
This study was conducted to determine fertilization rate and embryo development using the Beltsville Sperm Sexing Technology with two different laser power outputs, 25 and 125 milliwatts (mW). Freshly ejaculated boar semen was diluted; one aliquot was not stained or sorted (nonsort) and a second aliquot was stained with Hoechst 33342 and sorted as a complete population, not separated into X and Y populations (all-sort). Ovulation controlled gilts were surgically inseminated with 2 x 10(5) spermatozoa (44-46 hr after human chorionic gonadotropin (hCG)) into the isthmus of each oviduct, one oviduct receiving nonsort and the other all-sort at 25 or 125 mW. A total of 426 embryos were flushed from oviducts at slaughter 43 hr after laparotomy and prepared for determination of fertilization and cleavage rates using confocal laser microscopy for analysis of actin cytoskeleton and chromatin configuration. The percentage of fertilized eggs and embryos was less for the 25 mW all-sort compared to nonsort or the 125 mW all-sort (77.9 vs. 96.3 and 96.2%, P < 0.05). The percentage of fragmented embryos was greater for the 25 mW all-sort than the nonsort (15.2 vs. 4.5%, P < 0.05), but did not differ significantly from 125 mW all-sort mean (7.2%). The percentage of normal embryos (80.4% overall) did not differ (P > 0.05) among treatments. However, the rate of embryo development was slower (P < 0.05) after insemination with the 25 mW all-sort spermatozoa compared to nonsort spermatozoa. Embryos in the 3-4 and 5-9 cell stages for the 25-mW all-sort and nonsort were 78 and 20% vs. 49 and 50%, respectively. The embryo percentages for the 125 mW (3-4 and 5-9 cell stages, 59 and 35%) did not differ significantly (P > 0.05) from the nonsort or 25 mW all-sort. We conclude that the use of 125 mW laser power for sorting boar spermatozoa is advantageous to maintain high resolution separation and has no detrimental effect on embryo development compared to 25 mW.  相似文献   

15.
Flow cytometry is a potential method for the separation of X and Y bearing spermatozoa, on the basis of their relative DNA content evaluated by the fluorescence emission intensity due to specific fluorochrome DNA staining. However, spermatozoa DNA is highly condensed and nuclei exhibit flat non spherical shape, which can produce artefacts impeding accurate analysis. In order to avoid these limitations, decondensation of DNA performed by enzymatic treatment and a modification of the flow cytometer that orients the spermatozoa relative to the laser beam are generally used. In this work, we describe alternative methods and materials for selection of 1) decondensed and thus dead spermatozoa without orientation, sorted on the basis of only the 10% spermatozoa containing the least DNA (expected Y) and the 10% spermatozoa containing the more DNA (expected X), or 2) native spermatozoa homogeneously oriented using a simultaneous measurement of Axial light loss (extinction) and Forward angle light scatter. For testing enrichment of each selected fraction we have worked out a molecular hybridization procedure using X and Y specific DNA probes. We analyse and sort bull spermatozoa on these basis: the purity obtained for these fractions is 80% without orientation after enzymatic treatment, and 70% on live spermatozoa "optically" oriented.  相似文献   

16.
Improving the fertilizing ability of sex sorted boar spermatozoa   总被引:1,自引:0,他引:1  
The sex sorting of spermatozoa by flow cytometry induces damage, since sperm cells are highly diluted, affecting their functionality and fertilizing ability. In this work it was investigated whether the concentration of sex sorted spermatozoa by the sedimentation method, rather than centrifugation, in combination with the presence of the seminal plasma protein PSP-I/PSP-II heterodimer may improve their fertilizing ability. Spermatozoa were sorted by flow cytometry and collected in BTS with 10% of seminal plasma (group C: control) or with 1.5mg/mL of PSP-I/PSP-II heterodimer (group H). Collected spermatozoa from each medium were split into two aliquots. One aliquot of each group was centrifuged (800 x g/5 min) just after sorting and stored 16-18 h at 17 degrees C (groups Cc and Hc) at 6 x 10(6)sperm/mL. The second aliquot was directly stored at 17 degrees C for 16-18 degrees C (group Cs and Hs). After storage the supernatant was discarded and the sedimented pellet adjusted to 6 x 10(6)sperm/mL. Membrane integrity, acrosome status and motility characteristics of spermatozoa from all groups were assessed. Post-weaning pre-ovulatory sows were inseminated by laparoscopy into the oviduct with 0.3 x 10(6) sex sorted spermatozoa to assess their ability to penetrate oocytes in vivo. Putative zygotes were collected 18 h after insemination by washing the oviduct. Penetration and monospermic rates were evaluated. After 16-18 h of storage, centrifuged spermatozoa collected with 10% seminal plasma or 1.5 mg/mL PSP-I/PSP-II heterodimer after sex sorting showed lower (p<0.05) percentages of membrane integrity, motility and fertilization than sedimented spermatozoa. Overall, the presence of 10% seminal plasma or PSP-I/PSP-II heterodimer did not affect the results. However, a positive effect of PSP-I/PSP-II heterodimer (p<0.05) was observed in sedimented spermatozoa. Hence, our results indicate that the sedimentation method in the presence of PSP-I/PSP-II heterodimer improves the in vivo fertilizing ability of sex sorted boar spermatozoa.  相似文献   

17.
The objectives of this study were to determine the optimal time of insemination in the pre-ovulatory period (from 32 to 0 h before ovulation) and to evaluate once-daily versus twice-daily inseminations in gilts. In Experiment 1, pre-puberal gilts (n=102) were observed for estrus every 8h and ultrasonography was performed every 8h from the onset of estrus to confirmation of ovulation. The gilts were inseminated once with 4 x 10(9) spermatozoa at various intervals prior to ovulation. Pregnancy detection was conducted 24 days after AI and gilts were slaughtered 4-6 days later. Corpora lutea and the number of viable embryos were counted and the embryo recovery rate was calculated (based on the percentage of corpora lutea). Inseminations performed <24h before ovulation resulted in a higher embryo recovery rate (P=0.02) and produced 2.1 more embryos (P=0.01) than inseminations >or=24h before ovulation. However, the pregnancy rate was reduced when inseminations were performed >16 h before ovulation (P=0.08). In Experiment 2, pre-puberal gilts (n=105) were observed for estrus every 12h and ultrasonography was performed every 12h from the onset of estrus to confirmation of ovulation. Gilts were inseminated (with 4 x 10(9) spermatozoa) 12h after the onset of estrus, with inseminations repeated either every 12h (twice-daily) or 24h (once-daily) during estrus. The gilts were allowed to farrow. There were no differences (between gilts bred twice-daily versus once-daily) for return to estrus rate (P=0.36) and adjusted farrowing rate (P=0.19). However, gilts inseminated once-daily had 1.2 piglets less than those inseminated twice-daily (P=0.09). In conclusion, gilts should be inseminated up to 16 h before ovulation, as intervals >16 h reduced pregnancy rate and litter size.  相似文献   

18.
The only known and measurable difference between X- and Y-chromosome bearing spermatozoa is the small difference in their DNA content. The X sperm in the human carry 2.8% more DNA than the Y sperm, while in domestic livestock this difference ranges from 3.0 to 4.2%. The only successful sperm separation method, flow cytometric sorting, is based on this difference in DNA content. Using this technique, X and Y sperm populations with purities greater than 90% can be obtained. The number of spermatozoa that can be sorted in a given time period, however, is too low for application of this technique in routine artificial insemination. Therefore, the search for a marker other than DNA to differentiate between X and Y sperm remains of interest in order to develop a method for large scale X and Y sperm separation. The aim of the present study was to investigate whether porcine X and Y sperm contain some difference in their plasma membrane proteins. The flow cytometric sorting of sperm enabled a direct comparison of the proteins of the X and Y sperm populations High resolution two-dimensional (2-D) electrophoresis was used; however, adaptations were needed to enable its use for analysis of proteins of flow cytometrically sorted sperm, both in the sorting procedure, membrane protein solubilization, and in the 2-D electrophoresis. Up to 1,000 protein spots per gel could be detected and quantified. Comparison of the 2-D protein patterns revealed differences in protein spots between sperm of two individual boars. However, no differences in protein spots between the X and Y sperm fractions were found. These results provide additional support for the view that X- and Y-chromosome bearing spermatozoa are phenotypically identical, and cast doubt on the likelihood that a surface marker can provide a base for X and Y sperm separation. © 1996 Wiley-Liss, Inc.  相似文献   

19.
At present, it is possible to transfer pig embryos directly into the uterine body of sows by nonsurgical procedures. The aim of this study was to develop a procedure for nonsurgical embryo transfer (ET) into the upper part of one uterine horn in gilts and sows. In experiment 1, 29 gilts and 43 sows were used. Intrauterine insertions took place for each female at days 4-6 of the estrous cycle (D0 = onset of estrus). An artificial insemination (AI) spirette was inserted into the cervix to assist with the guidance of a modified flexible catheter originally developed for deep intrauterine insemination in pigs. The flexible catheter length inserted anterior to the inserted AI spirette was 43.0 +/- 1.7 cm. The time required to complete the procedure was affected by the type of female (P < 0.001) and by the difficulties encountered for inserting the catheter (P < 0.001). However, when no or minor difficulties were encountered during the insertion of the catheter (in approximately 70 and 80% of gilts and sows, respectively), the time required to complete the procedure did not differ between gilts (2.5 +/- 0.1 min) and sows (2.3 +/- 0.1 min). In experiment 2, 24 to 31 fresh morulae and/or blastocysts were transferred to each of 24 recipients. Seventeen animals (70.8%) farrowed an average of 6.9 +/- 0.7 piglets, of which 0.6 +/- 0.3 piglets were born dead. In conclusion, the procedure described in this study offers new possibilities to transfer embryos nonsurgically to the uterine horn of pigs.  相似文献   

20.
This study investigated the effects of different incubation periods for oocyte maturation and contact inhibition of donor cells as well as different osmolarities for storage of recipient oocytes on fusion rates, cleavage rates, and blastocyst yields of porcine somatic nuclear transfer (SCNT) derived embryos. In addition, the in vivo developmental potential of cloned embryos derived from the most promising SCNT protocol was tested by transfer to recipient gilts. Storage of in vitro-matured oocytes for 7.5 h in calcium-free TL-HEPES medium at 295 or 320 mOsmol prior to activation yielded significantly (p < 0.05) higher parthenogenetic blastocyst rates compared to storage in TL-HEPES with an osmolarity of 270 mOsmol (24.4 +/- 3.0% and 26.2 +/- 4.3% vs. 18.3 +/- 6.4%, respectively, mean +/- SD) and improved the visibility of the polar body. Electrical fusion of fibroblasts to enucleated oocytes matured for 38, 40, or 42 h resulted in similar fusion and cleavage rates (74.8-84.4%). However, nuclear transfer with oocytes matured for 40 h in vitro yielded significantly higher (p < 0.05) development to the blastocyst stage after 7 days of culture (14.7 +/- 1.7%) than with oocytes matured for 38 h (9.5 +/- 2.1%) or 42 h (5.1 +/- 2.1%). Contact inhibition for 24, 48, or 72 h significantly (p < 0.05) increased the proportion of cells at G0/G1 compared with cycling fibroblasts. However, duration of contact inhibition of the donor cells for either 24, 48, or 72 h had no effect on blastocyst rates of SCNT embryos. Four gilts received an average of 150 SCNT embryos (range 138-161) reconstructed with oocytes matured for 40 h; two of these became pregnant; one of them went to term and farrowed four piglets on day 115 of pregnancy. Microsatellite analysis confirmed that the clones were genetically identical with the donor cells. These results show that changes of the in vitro maturation protocol may affect in vitro development of reconstructed porcine embryos, while duration of the contact inhibition period plays a minor role for the success of porcine SCNT. The effects on in vivo development are yet to be determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号