首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Integrated livestock-fish aquaculture utilizes animal excreta, urine, and feed leftovers as pond fertilizers to enhance the growth of plankton and other microorganisms eaten by the fish. However, antimicrobial-resistant bacteria may be transferred and develop in the pond due to selective pressure from antimicrobials present in animal feed, urine, and feces. In an experimental pig-fish farm located in periurban Hanoi, Vietnam, nine piglets were provided feed containing 5 μg of tetracycline (TET)/kg pig weight/day and 0.45 μg of enrofloxacin (ENR)/kg pig weight/day during the second and fourth (last) months of the experiment. The aim of this study was to determine the association between the provision of pig feed with antimicrobials and the development of antimicrobial resistance, as measured in a total of 520 Escherichia coli and 634 Enterococcus strains isolated from pig manure and water-sediment pond samples. MIC values for nalidixic acid (NAL) and ENR showed that E. coli and Enterococcus spp. overall exhibited significant higher frequencies of resistance toward NAL and ENR during the 2 months when pigs were administered feed with antimicrobials, with frequencies reaching 60 to 80% in both water-sediment and manure samples. TET resistance for both indicators was high (>80%) throughout the study period, which indicates that TET-resistant E. coli and Enterococcus spp. were present in the piglets before the initiation of the experiment. PCR-based identification showed similar relative occurrences of Enterococcus faecium, Enterococcus faecalis, and other Enterococcus spp. in the water-sediment and manure samples, suggesting that Enterococcus spp. isolated in the ponds originated mainly from the pig manure. The development of antimicrobial resistance in integrated animal husbandry-fish farms and possible transfers and the impact of such resistance on food safety and human health should be further assessed.  相似文献   

2.
Integrated fish farming uses the manure from animal husbandry as fertilisers in the fish ponds. A total of 410 enterococcal isolates, from integrated and traditional fish farms in Thailand, were collected to assess whether the input of manure from chickens receiving feed containing growth promoters and antimicrobial treatments influenced the species composition and the bacterial antimicrobial resistance in the fish pond environment. Enterococcus faecium and E. faecalis were the predominate species isolated from the integrated farms, whereas E. casseliflavus and E. mundtii isolates were most prevalent in traditional farms. Enterococcus faecalis and E. faecium demonstrated the highest prevalence of resistance, whereas E. mundtii isolates were susceptible to all antimicrobials tested. All the enterococci species isolated from the integrated farms, generally demonstrated higher resistance phenotypes to the tested antimicrobials compared with the same species from traditional farms. The erm(B) and tet(M) genes, associated with resistance to erythromycin and tetracycline, respectively, were found in 87% of the erythromycin-resistant and 95% of the oxytetracycline-resistant enterococci isolates respectively. These results suggest that the species composition and antimicrobial resistance of enterococci in tropical aquatic environments are influenced by faecal and antimicrobial pollution.  相似文献   

3.
The present widespread use of antimicrobials in crop farming is based upon their successful application in human medicine. However, recent evidence suggests that the massive anthropogenic release of antimicrobials into the biosphere has selected for resistant bacteria and facilitated the transfer of resistance genes among them. This work deals with the examination of iceberg lettuce collected at 10 farms from two regions in Costa Rica. Farmers from nine sampling sites regularly apply commercial formulations containing gentamicin, oxytetracycline, streptomycin, or a combination of them without being able to indicate how often and how much of these products have been sprayed onto the crops. One organic farm was also investigated for comparative purposes. Oxytetracycline- and gentamicin-resistant bacteria were abundantly detected using selective enrichment cultures. Furthermore, colony mixtures from selective plates were characterized by chemotaxonomical and molecular fingerprinting methods. Both types of resistant communities accounted for a significant fraction of all culturable bacteria and included several resistance genes as well as factors for their potential horizontal transfer. Given the fact that lettuce is eaten raw, it may contribute to the dissemination of antimicrobial-resistant bacteria and/or their resistance genes from the environment to the microbial biota of the human intestine.  相似文献   

4.
The present widespread use of antimicrobials in crop farming is based upon their successful application in human medicine. However, recent evidence suggests that the massive anthropogenic release of antimicrobials into the biosphere has selected for resistant bacteria and facilitated the transfer of resistance genes among them. This work deals with the examination of iceberg lettuce collected at 10 farms from two regions in Costa Rica. Farmers from nine sampling sites regularly apply commercial formulations containing gentamicin, oxytetracycline, streptomycin, or a combination of them without being able to indicate how often and how much of these products have been sprayed onto the crops. One organic farm was also investigated for comparative purposes. Oxytetracycline- and gentamicin-resistant bacteria were abundantly detected using selective enrichment cultures. Furthermore, colony mixtures from selective plates were characterized by chemotaxonomical and molecular fingerprinting methods. Both types of resistant communities accounted for a significant fraction of all culturable bacteria and included several resistance genes as well as factors for their potential horizontal transfer. Given the fact that lettuce is eaten raw, it may contribute to the dissemination of antimicrobial-resistant bacteria and/or their resistance genes from the environment to the microbial biota of the human intestine.  相似文献   

5.
AIMS: The aims of this study were: (i) to determine the proportions of Aeromonas spp. resistant to florfenicol (FC), oxolinic acid (OA) and oxytetracycline (OTC) along a river receiving effluents from fish farms, and (ii) to assess the relevance of using this bacterial group as an indicator for studying the consequences of the use and release of these aquacultural antimicrobials in the freshwater environment, as compared with performing antimicrobial measurements in sediments. METHODS AND RESULTS: Sediment interstitial waters sampled along a river during two distinct climatic seasons were plated on an Aeromonas-selective medium supplemented or not with OA, OTC or FC. The October 2004 campaign showed an enrichment of OA- and OTC-resistant Aeromonas immediately downstream of the fish farms and a wastewater treatment plant. Two fish farms showed similar results in March 2005. In contrast, only 10 FC-resistant Aeromonas strains could be isolated, which revealed that minimum inhibitory concentrations of FC were greater than 64 microg ml(-1) and multiple antimicrobial resistances. Contamination of sediments by antimicrobials was detected but was not always co-localized with resistance peaks or known point sources of contamination. CONCLUSIONS: Aeromonas could be valuable indicators of OA, OTC and FC resistance in the freshwater environment. Fish farms contribute to the contamination of the river by antimicrobials and resistant bacteria. SIGNIFICANCE AND IMPACT OF THE STUDY: Considering the still very low proportion of FC-resistant Aeromonas, this study can be considered as a reference for further studies about this recently introduced veterinary antimicrobial agent.  相似文献   

6.
AIMS: To determine the incidence of antimicrobial-resistant Salmonella spp. on processed poultry (turkey) at Midwestern poultry plants. METHODS AND RESULTS: Two participating plants were visited at monthly intervals for a period of 1 year. Surface swabs were obtained from carcasses at two selected points on the production line, pre- and post-chill. In addition, samples of the chill water from chill tanks were also examined. Isolation and detection of Salmonella spp. from carcass swabs and chill water was carried out using standard enrichment techniques. Immunomagnetic separation was used to enhance the recovery of the pathogen. Salmonella isolates recovered were identified, serotyped and their antimicrobial resistance profiles determined using the National Antimicrobial Resistance Monitoring System. Results from the study indicated that the overall incidence of Salmonella was approx. 16.7%, with a greater incidence of the pathogen observed on pre-chill than post-chill carcasses. Salmonella isolates recovered displayed resistance to an average of four different antimicrobials. Approximately 15 different serotypes of Salmonella spp. were recovered, with Salmonella serotype Agona, Salmonella serotype Hadar, Salmonella serotype Heidelberg and Salmonella serotype Senftenberg being the most common. CONCLUSIONS: The incidence of Salmonella spp. was relatively low and isolates recovered showed significant degrees of antimicrobial resistance. Factors such as the processing plant examined, the season and farms that were presenting animals for processing influenced the incidence of the pathogen. SIGNIFICANCE AND IMPACT OF THE STUDY: Differences were observed in the serotypes of Salmonella recovered and the types of antimicrobial resistance found at the two plants. The study suggests that the use of antimicrobials at the farm level influences the creation of an environment that promotes the selection of antimicrobial-resistant Salmonella spp. The incidence, isolation and detection of Salmonella spp. on processed poultry are discussed.  相似文献   

7.
Anthropogenic environments such as those created by intensive farming of livestock, have been proposed to provide ideal selection pressure for the emergence of antimicrobial-resistant Escherichia coli bacteria and antimicrobial resistance genes (ARGs) and spread to humans. Here, we performed a longitudinal study in a large-scale commercial poultry farm in China, collecting E. coli isolates from both farm and slaughterhouse; targeting animals, carcasses, workers and their households and environment. By using whole-genome phylogenetic analysis and network analysis based on single nucleotide polymorphisms (SNPs), we found highly interrelated non-pathogenic and pathogenic E. coli strains with phylogenetic intermixing, and a high prevalence of shared multidrug resistance profiles amongst livestock, human and environment. Through an original data processing pipeline which combines omics, machine learning, gene sharing network and mobile genetic elements analysis, we investigated the resistance to 26 different antimicrobials and identified 361 genes associated to antimicrobial resistance (AMR) phenotypes; 58 of these were known AMR-associated genes and 35 were associated to multidrug resistance. We uncovered an extensive network of genes, correlated to AMR phenotypes, shared among livestock, humans, farm and slaughterhouse environments. We also found several human, livestock and environmental isolates sharing closely related mobile genetic elements carrying ARGs across host species and environments. In a scenario where no consensus exists on how antibiotic use in the livestock may affect antibiotic resistance in the human population, our findings provide novel insights into the broader epidemiology of antimicrobial resistance in livestock farming. Moreover, our original data analysis method has the potential to uncover AMR transmission pathways when applied to the study of other pathogens active in other anthropogenic environments characterised by complex interconnections between host species.  相似文献   

8.
Antimicrobials used in salmon aquaculture pass into the marine environment. This could have negative impacts on marine environmental biodiversity, and on terrestrial animal and human health as a result of selection for bacteria containing antimicrobial resistance genes. We therefore measured the numbers of culturable bacteria and antimicrobial-resistant bacteria in marine sediments in the Calbuco Archipelago, Chile, over 12-month period at a salmon aquaculture site approximately 20 m from a salmon farm and at a control site 8 km distant without observable aquaculture activities. Three antimicrobials extensively used in Chilean salmon aquaculture (oxytetracycline, oxolinic acid, and florfenicol) were studied. Although none of these antimicrobials was detected in sediments from either site, traces of flumequine, a fluoroquinolone antimicrobial also widely used in Chile, were present in sediments from both sites during this period. There were significant increases in bacterial numbers and antimicrobial-resistant fractions to oxytetracycline, oxolinic acid, and florfenicol in sediments from the aquaculture site compared to those from the control site. Interestingly, there were similar numbers of presumably plasmid-mediated resistance genes for oxytetracycline, oxolinic acid and florfenicol in unselected marine bacteria isolated from both aquaculture and control sites. These preliminary findings in one location may suggest that the current use of large amounts of antimicrobials in Chilean aquaculture has the potential to select for antimicrobial-resistant bacteria in marine sediments.  相似文献   

9.
Antimicrobial resistance is a global threat to livestock, human and environmental health. Although resistant bacteria have been detected in wildlife, their role in the epidemiology of antimicrobial resistance is not clear. Our objective was to investigate demographic, temporal and climatic factors associated with carriage of antimicrobial resistant Escherichia coli in raccoons and the environment. We collected samples from raccoon paws and feces and from soil, manure pit and dumpsters on five swine farms and five conservation areas in Ontario, Canada once every five weeks from May to November, 2011–2013 and tested them for E. coli and susceptibility to 15 antimicrobials. Of samples testing positive for E. coli, resistance to ≥ 1 antimicrobials was detected in 7.4% (77/1044; 95% CI, 5.9–9.1) of raccoon fecal samples, 6.3% (23/365; 95% CI, 4.0–9.3) of paw samples, 9.6% (121/1260; 8.0–11.4) of soil samples, 57.4% (31/54; 95% CI, 43.2–70.8) of manure pit samples, and 13.8% (4/29; 95% CI, 3.9–31.7) of dumpster samples. Using univariable logistic regression, there was no significant difference in the occurrence of resistant E. coli in raccoon feces on conservation areas versus farms; however, E. coli isolates resistant to ≥ 1 antimicrobials were significantly less likely to be detected from raccoon paw samples on swine farms than conservation areas and significantly more likely to be detected in soil samples from swine farms than conservation areas. Resistant phenotypes and genotypes that were absent from the swine farm environment were detected in raccoons from conservation areas, suggesting that conservation areas and swine farms may have different exposures to resistant bacteria. However, the similar resistance patterns and genes in E. coli from raccoon fecal and environmental samples from the same location types suggest that resistant bacteria may be exchanged between raccoons and their environment.  相似文献   

10.
The impact on wildlife health of the increase in the use of antimicrobial agents with the intensification of livestock production remains unknown. The composition, richness and prevalence of cloacal microflora as well as bacterial resistance to antibiotics in nestlings and full-grown Egyptian vultures Neophron percnopterus were assessed in four areas of Spain in which the degree of farming intensification differs. Differences in diet composition, especially the role of stabled livestock carrion, appear to govern the similarities of bacterial flora composition among continental populations, while the insular vulture population (Fuerteventura, Canary Islands) showed differences attributed to isolation. Evidence of a positive relationship between the consumption of stabled livestock carrion and bacterial resistance to multiple antibiotics was found. Bacterial resistance was high for semisynthetic penicillins and enrofloxacin, especially in the area with the most intensive stabled livestock production. The pattern of antibiotic resistance was similar for the different bacterial species within each area. Bacterial resistance to antibiotics may be determined by resistance of bacteria present in the livestock meat remains that constituted the food of this species, as indicated by the fact that resistance to each antibiotic was correlated in Escherichia coli isolated from swine carrion and Egyptian vulture nestlings. In addition, resistance in normal faecal bacteria (present in the microflora of both livestock and vultures) was higher than in Staphylococcus epidermidis, a species indicator of the transient flora acquired presumably through the consumption of wild rabbits. Potential negative effects of the use of antimicrobials in livestock farming included the direct ingestion of these drug residues and the effects of bacterial antibiotic resistance on the health of scavengers.  相似文献   

11.
Veterinary antibiotics in the aquatic and terrestrial environment   总被引:1,自引:0,他引:1  
The fate of antibiotics in the environment, and especially antibiotics used in animal husbandry, is subject to recent studies and the issue of this review. The assumed quantity of antibiotics excreted by animal husbandry adds up to thousands of tonnes per year. Administered medicines, their metabolites or degradation products reach the terrestrial and aquatic environment by the application of manure or slurry to areas used agriculturally, or by pasture-reared animals excreting directly on the land, followed by surface run-off, driftage or leaching in deeper layers of the earth. The scientific interest in antimicrobially active compounds in manure and soil, but also in surface and ground water, has increased during the last decade. On the one side, scientific interest has focused on the behaviour of antibiotics and their fate in the environment, on the other hand, their impact on environmental and other bacteria has become an issue of research. Analytical methods have now been developed appropriately and studies using these new techniques provide accurate data on concentrations of antimicrobial compounds and their residues in different organic matters. Some antibiotics seem to persist a long time in the environment, especially in soil, while others degrade very fast. Not only the fate of these pharmaceuticals but their origin as well is an object of scientific interest. Besides human input via wastewater and other effluents, livestock production has been recognised as a source of contamination. One main concern with regard to the excessive use of antibiotics in livestock production is the potential promotion of resistance and the resulting disadvantages in the therapeutic use of antimicrobials. Since the beginning of antibiotic therapy, more and more resistant bacterial strains have been isolated from environmental sources showing one or multiple resistance. There have been several attempts to use antibiotic resistance patterns in different bacteria as indicators for various sources of faecal pollution. This review gives an overview of the available data on the present use of veterinary antibiotics in agriculture, on the occurrence of antibiotic compounds and resistant bacteria in soil and water and demonstrates the need for further studies.  相似文献   

12.
We present the findings of a participatory experiment on integrated aquaculture-agriculture systems (Fingerponds) at the Lake Victoria wetlands, Kenya. Fingerponds are flood-based lacustrine or floodplain wetland fishponds. The aim of the study was to explore, within a wetland/floodplain interface environment, the potential of semi-intensive fish production to enhance the wetland fishery and protect the natural ecosystem from wide-scale, destructive encroachment. The ponds were stocked naturally by flood water. After flood recession, livestock manure was added to the ponds and the effects of manuring on water and sediment quality and fish yields were studied. Manuring had positive effects on the nitrogen, phosphorous and chlorophyll a concentrations of the pond water. Regression analysis results indicated that site, manuring and environmental and climatic variables explained 58–70% of the variation in dissolved nitrogen and phosphorous, and 71% of the variation in chorophyll a. Manuring enhanced the total phosphorus concentration in the sediment but it only had marginal effects on total nitrogen. Although the net fish yields were highly variable between sites and seasons, ranging from 402 to 1069 kg ha−1, the data showed that manuring was advantageous. The duration of the culture period, site variability and manuring explained 82% of the variation in fish yields. We conclude that Fingerponds fertilized with livestock manure from abutting riparian subsistence agriculture can improve fish production, enhance food diversity and security and contribute to more efficient use of papyrus wetlands for food production. This in turn may reduce large-scale conversion of wetlands to agriculture.  相似文献   

13.
禽畜养殖粪便中多重抗生素抗性细菌研究   总被引:3,自引:0,他引:3  
通过对新乡地区8家养猪场和11家养鸡场饲喂抗生素情况的调研,发现头孢氨苄、阿莫西林、卡那霉素、庆大霉素等4种抗生素是该地区被普遍使用的兽药抗生素。通过多点取样法和微生物培养技术对3家养鸡场和3家养猪场不同养殖时期的粪便进行单一抗生素和多重抗生素抗性细菌的检测,结果表明养鸡场堆置1周的粪便中抗头孢氨苄的细菌比例最高,达到65.90%,对所研究的3种和4种抗生素同时抗性的比例高达8.60%—12.51%和9.73%,明显高于饲喂中药的对照养鸡场样本检测结果(0.02%—2.73%和0.12%)。养猪场堆置1周的粪便中检测到抗头孢氨苄的细菌比例也是最高,达到49.12%上,但养猪场粪便中多重抗生素抗性细菌的比例明显低于养鸡场。同时研究发现,在两种养殖场中,幼龄期粪便中检测到的多重抗性细菌比例明显高于成熟期粪便,这可能与养殖过程中鸡、猪在幼龄期由于防病和促生长等因素而同时大剂量使用多种抗生素有关。  相似文献   

14.
The regular use of antimicrobials in livestock production selects for antimicrobial resistance. The potential impact of this practice on human health needs to be studied in more detail, including the role of the environment for the persistence and transmission of antimicrobial-resistant bacteria. During an investigation of a pig farm and its surroundings in Brandenburg, Germany, we detected abundant cephalosporin- and fluoroquinolone-resistant Escherichia coli in pig faeces, sedimented dust, and house flies (Musca domestica). Genome sequencing of E. coli isolates revealed large phylogenetic diversity and plasmid-borne extended-spectrum beta lactamase (ESBL) genes CTX-M-1 in multiple strains. [Correction added on 28 February 2023, after first online publication: In the preceding sentence, ‘and TEM-1’ was previously included but has been deleted in this version.] Close genomic relationships indicated frequent transmission of antimicrobial-resistant E. coli between pigs from different herds and across buildings of the farm and suggested dust and flies as vectors for dissemination of faecal pathogens. Strikingly, we repeatedly recovered E. coli from flies collected up to 2 km away from the source, whose genome sequences were identical or closely related to those from pig faeces isolates, indicating the fly-associated transport of diverse ESBL-producing E. coli from the pig farm into urban habitation areas. The observed proximity of contaminated flies to human households poses a risk of transmission of antimicrobial-resistant enteric pathogens from livestock to man.  相似文献   

15.
Fresh produce is known to carry nonpathogenic epiphytic microorganisms. During agricultural production and harvesting, leafy greens can become contaminated with antibiotic-resistant pathogens or commensals from animal and human sources. As lettuce does not undergo any inactivation or preservation treatment during processing, consumers may be exposed directly to all of the (resistant) bacteria present. In this study, we investigated whether lettuce or its production environment (irrigation water, soil) is able to act as a vector or reservoir of antimicrobial-resistant Escherichia coli. Over a 1-year period, eight lettuce farms were visited multiple times and 738 samples, including lettuce seedlings (leaves and soil), soil, irrigation water, and lettuce leaves were collected. From these samples, 473 isolates of Escherichia coli were obtained and tested for resistance to 14 antimicrobials. Fifty-four isolates (11.4%) were resistant to one or more antimicrobials. The highest resistance rate was observed for ampicillin (7%), followed by cephalothin, amoxicillin-clavulanic acid, tetracycline, trimethoprim, and streptomycin, with resistance rates between 4.4 and 3.6%. No resistance to amikacin, ciprofloxacin, gentamicin, or kanamycin was observed. One isolate was resistant to cefotaxime. Among the multiresistant isolates (n = 37), ampicillin and cephalothin showed the highest resistance rates, at 76 and 52%, respectively. E. coli isolates from lettuce showed higher resistance rates than E. coli isolates obtained from soil or irrigation water samples. When the presence of resistance in E. coli isolates from lettuce production sites and their resistance patterns were compared with the profiles of animal-derived E. coli strains, they were found to be the most comparable with what is found in the cattle reservoir. This may suggest that cattle are a potential reservoir of antimicrobial-resistant E. coli strains in plant primary production.  相似文献   

16.
Bacteria inhibitory to fish larval pathogenic bacteria were isolated from two turbot larva rearing farms over a 1-year period. Samples were taken from the rearing site, e.g., tank walls, water, and feed for larvae, and bacteria with antagonistic activity against Vibrio anguillarum were isolated using a replica plating assay. Approximately 19,000 colonies were replica plated from marine agar plates, and 341 strains were isolated from colonies causing clearing zones in a layer of V. anguillarum. When tested in a well diffusion agar assay, 173 strains retained the antibacterial activity against V. anguillarum and Vibrio splendidus. Biochemical tests identified 132 strains as Roseobacter spp. and 31 as Vibrionaceae strains. Partial sequencing of the 16S rRNA gene of three strains confirmed the identification as Roseobacter gallaeciensis. Roseobacter spp. were especially isolated in the spring and early summer months. Subtyping of the 132 Roseobacter spp. strains by randomly amplified polymorphic DNA with two primers revealed that the strains formed a very homogeneous group. Hence, it appears that the same subtype was present at both fish farms and persisted during the 1-year survey. This indicates either a common, regular source of the subtype or the possibility that a particular subtype has established itself in some areas of the fish farm. Thirty-one antagonists were identified as Vibrio spp., and 18 of these were V. anguillarum but not serotype O1 or O2. Roseobacter spp. strains were, in particular, isolated from the larval tank walls, and it may be possible to establish an antagonistic, beneficial microflora in the rearing environment of turbot larvae and thereby limit survival of pathogenic bacteria.  相似文献   

17.
重症监护病房不动杆菌感染的流行和耐药性分析   总被引:3,自引:1,他引:2  
目的了解浙江省人民医院重症监护病房(ICU)不动杆菌暴发流行原因和耐药性,预防医院感染的发生.方法回顾性分析该院ICU 2004年临床标本中分离的不动杆菌.结果该院ICU 2004年不动杆菌感染在所有的分离菌株中所占比例最高,达26.7%;不动杆菌感染主要源于呼吸道样本,占79.1%;该院不动杆菌的耐药情况更为严峻,对所有检测的抗生素都表现了极高的耐药率,对亚胺培南和美洛培南的耐药率也很高,可能与该院ICU的不动杆菌感染由几个同源的高耐药的菌株传播有关,表现出耐药性十分严重的流行发生.结论严格执行消毒隔离制度,寻找感染源头,通过根除医院环境中的不动杆菌,阻止不动杆菌感染扩散.  相似文献   

18.
The practice of spreading of livestock wastes onto land used for the production of food or animal feeds is widely regarded as the least environmentally damaging disposal method, however, the practice is still fraught with pitfalls such as N pollution of air and water and significant microbiological risks. Therefore this paper focuses on some of the latest developments that provide new insights into the microbiological safety of animal manures, the related treatment options and the spreading the products onto land. In conclusion the paper stresses the need to fully address issues concerning environmental contamination and transmission of antimicrobial-resistant bacteria through livestock manure, improve current environmental regulations regarding manure management practice and coordination of research activities and dissemination of technical information.  相似文献   

19.
Current agricultural practices involve inclusion of antimicrobials in animal feed and result in manure containing antimicrobials and antimicrobial-resistant microorganisms. This work evaluated the effects of land application of swine manure on the levels of tetracycline, macrolide, and lincosamide antimicrobials and on macrolide, lincosamide, and streptogramin B (MLSB) resistance in field soil samples and laboratory soil batch tests. MLSB and tetracycline antimicrobials were quantified after solid-phase extraction using liquid chromatography-tandem mass spectrometry. The prevalence of the ribosomal modification responsible for MLSB resistance in the same samples was quantified using fluorescence in situ hybridization. Macrolide antimicrobials were not detected in soil samples, while tetracyclines were detected, suggesting that the latter compounds persist in soil. No significant differences in ribosomal methylation or presumed MLSB resistance were observed when amended and unamended field soils were compared, although a transient (<20-day) increase was observed in most batch tests. Clostridium cluster XIVa accounted for the largest fraction of resistant bacteria identified in amended soils. Overall, this study did not detect a persistent increase in the prevalence of MLSB resistance due to land application of treated swine manure.Treated swine manure contains substantial levels of both antimicrobial-resistant microorganisms (10, 26) and antimicrobials (7, 18, 33). Land application of manure could therefore contribute to public health risks associated with the increasing prevalence of antimicrobial resistance in pathogens both directly, through the dissemination of antimicrobial-resistant pathogens, and indirectly, through the introduction of and selection for antimicrobial resistance genes. Because limited data are available, this connection is largely a theoretical connection, particularly for the indirect effects. However, a recent retrospective study of antimicrobial resistance in soil did support the hypothesis that there is an environmental connection by documenting that there was an increase in the abundance of antibiotic resistance genes in samples collected from 1940 to 2008, during which time antimicrobial production increased dramatically (12).The fate of antimicrobials in amended soils is a function of their sorptive properties, the soil characteristics, and the potential for abiotic and biotic degradation of the antimicrobials. Tetracyclines tend to adsorb to soil (21, 23), which leads to persistence in amended soils (3, 7, 11), although they are also susceptible to degradation (3, 4). The macrolide tylosin frequently is not detected (3, 4, 7, 11, 33) and is likely rapidly degraded in manure and soils (8, 16, 24). However, persistence of tylosin for several months in amended soil has also been reported (6). The differences in degradation rates may be caused by differences in soil characteristics, manure-to-soil ratios, and/or microbial communities (15, 16, 21).Addition of both antimicrobials and antimicrobial-resistant microorganisms might be expected to result in an increase in the levels of resistance. However, most studies have not shown that there is a long-term increase in antimicrobial resistance due to land application of manure at agronomically prescribed rates (5, 9, 26). Transient (i.e., <45-day) increases have been reported (9, 26), as have elevated levels of resistance at sites near manure piles (5). In contrast, another report showed that there were significantly higher levels of tylosin resistance in soils that received animal manure from operations that used subtherapeutic levels of antimicrobials than in soils at sites where there was no use of subtherapeutic levels of antimicrobials (19). One limitation of these studies was their use of culture-based methods to quantify resistance; the results may not be representative of the entire microbial community. The molecular methods that have been used to quantify resistance also have limitations, and the most serious limitation is the inability of these methods to examine the full diversity of known and unknown resistance genes. The previous molecular studies of the impact of land application on resistance were largely restricted to qualitative analyses (10, 25), although quantitative PCR methods for analysis of tetracycline resistance genes have recently been used for cattle and swine lagoons (14, 20). In a retrospective soil study, Knapp et al. (12), who also used quantitative PCR, found multiple site differences, which made it difficult to evaluate the impact of manure application. However, the site with the highest manure application rate did not show the highest levels of antimicrobial resistance, suggesting that there are other factors that have a greater influence on the prevalence of resistance.In the present study, a variation of the fluorescence in situ hybridization (FISH) technique was used to assess the impact of land application of swine manure on the levels of macrolide-lincosamide-streptogramin B (MLSB) resistance. Although the MLSB antimicrobials are chemically distinct, methylation or mutation of a single base of the 23S rRNA prevents binding and results in cross-resistance to all three classes (29). The prevalence of MLSB antimicrobial resistance in the microbial community can therefore be quantified indirectly by hybridization of an oligonucleotide probe to unmethylated, MLSB-sensitive ribosomes, using either membrane hybridization (1, 10) or FISH (31). These methods do not require culturing or a comprehensive knowledge of the diversity of resistance gene sequences, but they do not detect resistance to specific antimicrobials that results from other mechanisms, such as macrolide efflux.This study focused on evaluating the impact of land application of swine manure on the levels of antimicrobials and the prevalence of antimicrobial resistance in the soil environment. The concentrations of tetracycline, macrolide, and lincosamide antimicrobials and the prevalence of MLSB resistance were compared for field soils that received no manure, swine manure from farms that did not use antimicrobials (referred to below as organic farms), and swine manure from conventional farms to determine whether land application affects the levels of antimicrobials and MLSB resistance. The effects of addition of manure, antimicrobials (lincomycin and chlortetracycline), and MLSB-resistant microorganisms on the prevalence of MLSB resistance were also compared using soil batch tests.  相似文献   

20.
Modern food animal production depends on use of large amounts of antibiotics for disease control. This provides favourable conditions for the spread and persistence of antimicrobial-resistant zoonotic bacteria such as Campylobacter and E. coli O157. The occurrence of antimicrobial resistance to antimicrobials used in human therapy is increasing in human pathogenic Campylobacter and E. coli from animals. There is an urgent need to implement strategies for prudent use of antibiotics in food animal production to prevent further increases in the occurrence of antimicrobial resistance in food-borne human pathogenic bacteria such as Campylobacter and E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号