首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Chili pepper (Capsicum annuum L., cv. Tampique?o 74) cell suspensions were employed to study the influence of phenylalanine and phenylpropanoids on the total production of capsaicinoids, the hot taste compounds of chili pepper fruits. The effect of capsaicinoid precursors and intermediates on the accumulation of lignin as an indicator of metabolic diversion was also investigated. Addition of 100 μM of either phenylalanine, cinnamic or caffeic acids to chili pepper cell cultures did not cause significant increases in total capsaicinoids (expressed as capsaicin content, and calculated as averages of the measured values) during the growth cycle. The highest total capsaicinoid content was recorded in cultures grown in the presence of vanillin (142.61 μg g−1 f.wt.), followed by cells treated with 100 μM vanillylamine (104.88 μg g−1 f.wt.), p-coumaric acid (72.36 μg g−1 f.wt.). and ferulic acid (34.67 μg g−1 f.wt.). Capsaicinoid content for control cells was 13.97 μg g−1 f.wt. Chili pepper cell suspensions cultured in the presence of 100 μM of either phenylalanine, or cinnamic, caffeic, or ferulic acids, or the same concentration, of vanillin and vanillylamine, did not exhibit statistically significant differences in the content of lignin as compared with control cells. However, addition of p-coumaric acid (100 μM) to the cultute medium significantly increased thelignin production (c. 10–15 times the contents of control cells).  相似文献   

2.
Capsicum species produce fruits that synthesize and accumulate unique hot compounds known as capsaicinoids in placental tissues. The capsaicinoid biosynthetic pathway has been established, but the enzymes and genes participating in this process have not been extensively studied or characterized. Capsaicinoids are synthesized through the convergence of two biosynthetic pathways: the phenylpropanoid and the branched-chain fatty acid pathways, which provide the precursors phenylalanine, and valine or leucine, respectively. Capsaicinoid biosynthesis and accumulation is a genetically determined trait in chili pepper fruits as different cultivars or genotypes exhibit differences in pungency; furthermore, this characteristic is also developmentally and environmentally regulated. The establishment of cDNA libraries and comparative gene expression studies in pungent and non-pungent chili pepper fruits has identified candidate genes possibly involved in capsaicinoid biosynthesis. Genetic and molecular approaches have also contributed to the knowledge of this biosynthetic pathway; however, more studies are necessary for a better understanding of the regulatory process that accounts for different accumulation levels of capsaicinoids in chili pepper fruits.  相似文献   

3.
Suspension cultures of Habanero pepper (Capsicum chinense Jacq.) were exposed to salicylic acid or methyl jasmonate to change secondary metabolism. Both treatments led to the accumulation of capsaicinoids and their late biosynthetic intermediate, vanillin. Both elicitors had a positive effect on the activities of phenylalanine ammonia lyase and coumarate O-methyltransferase, but none of them represented the main limiting step for capsaicinoid accumulation since vanillin contents were two orders of magnitude higher than those of capsaicinoids.  相似文献   

4.
Cell suspension cultures of chili pepper ( Capsicum annuum L. cv. Tampiqueño 74) displaying differences in their resistance to p -fluorophenylalanine (PFP) and in their contents of capsaicin (the compound which is responsible for the hot taste of chili pepper fruits) were characterized in relation to the activity of phenylalanine ammonia-lyase (PAL; EC 4.3.1.5), the levels of free l -phenylalanine, phenolics and the phenylpropanoid acids involved in capsaicin biosynthesis. A nonselected cell line, a sensitive line (CA-02), a moderately resistant cell line (CA-29) and two resistant cell lines (CA-04 and CA-16) were studied. Higher PAL activities and higher levels of phenylalanine and phenolics were found in the PFP-resistant cells even after a minimum of 9 subcultures (15 days each) in the absence of the analog, indicating that the selected trait was stable. PFP-resistant chili pepper cells accumulated higher amounts of capsaicin precursors (cinnamic, caffeic and ferulic acids) than either the nonselected cells or the sensitive cell line. p -Coumaric acid was not detected at significant levels in any of the cell cultures. Overall, accumulation of free phenyl-alanine correlated well with PAL activity, phenolics, phenylpropanoids and capsaicin levels, suggesting an active flow through the phenylpropanoid pathway in PFP-resistant cells of chili pepper.  相似文献   

5.

Background  

There is no dedicated database available for Expressed Sequence Tags (EST) of the chili pepper (Capsicum annuum), although the interest in a chili pepper EST database is increasing internationally due to the nutritional, economic, and pharmaceutical value of the plant. Recent advances in high-throughput sequencing of the ESTs of chili pepper cv. Bukang have produced hundreds of thousands of complementary DNA (cDNA) sequences. Therefore, a chili pepper EST database was designed and constructed to enable comprehensive analysis of chili pepper gene expression in response to biotic and abiotic stresses.  相似文献   

6.
Activities of phenylalanine (Phe) biosynthetic enzymes chorismate mutase (CM) and arogenate dehydratase (ADT) and of phenylalanine ammonia lyase [PAL, an enzyme that directs Phe towards capsaicinoid (CAP) synthesis] were analyzed during Capsicum chinense Jacq. (habanero pepper) fruit development. A maximum CM activity coincided with a maximum CAP accumulation. However, ADT exhibited two activity peaks, one during the early phase (10 - 17 days post-anthesis, DPA) and another during the late phase (35 - 37 DPA); only the latter coincided with CAP. Interestingly, PAL activity was inversely related to CAP accumulation; lower activities coincided with a maximum CAP content. These results suggest the operation of a control mechanism that coordinated Phe synthesis and its channeling towards CAP synthesis during the course of fruit development.  相似文献   

7.
Fluctuations of pungent principles of hot pepper fruits (capsaicinoid), chlorophylls, carotenoid, and fresh fruit weight in Capsicum annuum var. annuum cv. Karayatsubusa at different growth stages after flowering were examined. Capsaicinoid was first detected 20 days after flowering, and reached maximal level around 40 days after flowering, then later decreased gradually. The capsaicinoid composition did not show any appreciable change throughout the stages after flowering. CAP and DC were the major components in all of the stages examined. By using radioisotopic technique, it was found that the main formation and accumulation sites of capsaicinoid are in the placenta of the fruits.  相似文献   

8.
The influence of osmotic stress on capsaicin production was investigated in cell suspension cultures of Capsicum chinense Jacq.cv. Naga King Chili, a chili species native to Northeastern India. The sterilized seeds were germinated in Murashige and Skoog medium. Two-week-old hypocotyls were excised from in vitro germinated seedlings and implanted in MS medium containing 2, 4-dichlorophenoxyacetic acid (2?mg/l), and Kinetin (0.5?mg/l) for callus induction. Capsaicin production in the suspension cultures was significantly affected using sucrose, mannitol, and NaCl in the medium. Stoichiometric analysis with different combinations of sucrose and non-sugar osmotic agent (NaCl) showed that osmotic stress was an important factor for enhancing capsaicin production in cell suspension cultures of C. chinense. The capsaicin content of 1,644.1???g?g?1 f.wt was recorded on day 15 in cultures grown in MS medium containing 87.64?mM sucrose in combination with 40?mM NaCl. However, osmotic stress treatment at 160?mM NaCl with sucrose resulted in lowering capsaicin accumulation and separation of cell wall from their cytoplasm, under microscopic observation.  相似文献   

9.
Kim M  Kim S  Kim S  Ki BD 《Molecules and cells》2001,11(2):213-219
Capsaicinoids responsible for pungency of chili pepper are synthesized exclusively in the placenta tissue of the fruit. As an elementary step in the molecular genetics study of capsaicinoid biosynthesis, a cDNA library was constructed from the placenta of a highly pungent pepper, Capsicum chinense cv. Habanero using the suppression subtractive hybridization (SSH). Thirty-nine cDNA clones from about 400 subtracted clones were selected through dot blot analysis and according to their nucleotides sequence. Sequence information of the chosen clones was evaluated by comparing it with DNA and protein databases. Results showed that the cDNA clones could be divided into 4 groups; cDNAs with similarities in genes encoding metabolic enzymes including acyl transferase and fatty acid alcohol oxidase (Group I), putative cell wall proteins (Group II), biotic and abiotic stress-inducible proteins (Group III), and lastly, cDNAs with no similarity (Group IV). Northern blot analysis was performed to confirm that these clones are differentially expressed in pungent pepper. The results revealed that all cDNA clones were differentially expressed in pungent pepper. In addition, the cDNA clones of Groups I and IV were differentially or preferentially expressed in the placenta of pungent pepper.  相似文献   

10.
The reaction of several cultivated potato varieties (Solarium tuberosum L.) to three strains of tobacco etch potyvirus (TEV-F, TEV-Mex21 and TEV-ATCC) and the reaction of several pepper lines (Capsicum annuum L. and C. chinense L.) to two strains of potato Y potyvirus (PVYO and PVYN) and one strain of potato A potyvirus (PVA-M) was tested. The potato varieties included in this study carried resistance genes against PVY, PVA and potato V potyvirus, but all were susceptible to TEV and developed mottle and mosaic symptoms. TEV was readily transmitted by mechanical inoculation from tobacco and potato to potato, whereas transmission from pepper to potato occurred infrequently. TEV was transmitted through potato tubers, and from pepper to potato plants by aphids. Lack of detectable systemic infection following graft-inoculation indicated extreme resistance to PVYO and PVA in several pepper lines. No pepper line was systemically infected with PVYN following mechanical inoculation (graft-inoculation was not carried out with PVYN). The development of necrotic lesions following mechanical and graft-inoculation indicated hypersensitive response to PVYO in several pepper lines which resembled the resistance responses to these potyvirus strains in potato. Results of this study together with previous work indicate that C. annuum cv. Avelar is resistant to four potyviruses [PVY, PVA, pepper mottle potyvirus (PepMoV) and some isolates of TEV]; C. annuum cv. Criollo de Morelos and C. chinense PI 152225 and PI 159236 are resistant to three potyviruses (PVY, PepMoV and PVA; and PVY, PepMoV and TEV, respectively); C. annuum 9093–1 and 92016–1 are resistant to PVY and PepMoV; and C. annuum cv. Jupiter and C. annuum cv. RNaky are resistant to PVYN and PVA.  相似文献   

11.
Capsaicinoids are responsible for the pungent taste of chili pepper fruits of Capsicum species. Capsaicinoids are biosynthesized through both the phenylpropanoid and the branched-fatty acids pathways. Fragments of Comt (encoding a caffeic acid O-methyltransferase), pAmt (a putative aminotransferase), and Kas (a β-keto-acyl-[acyl-carrier-protein] synthase) genes, that are differentially expressed in placenta tissue of pungent chili pepper, were individually inserted into a Pepper huasteco yellow veins virus (PHYVV)-derived vector to determine, by virus-induced gene silencing, irrespective of whether these genes are involved in the biosynthesis of capsaicinoids. Reduction of the respective mRNA levels as well as the presence of related siRNAs confirmed the silencing of these three genes. Morphological alterations were evident in plants inoculated with PHYVV::Comt and PHYVV::Kas constructs; however, plants inoculated with PHYVV::pAmt showed no evident alterations. On the other hand, fruit setting was normal in all cases. Biochemical analysis of placenta tissues showed that, indeed, independent silencing of all three genes led to a dramatic reduction in capsaicinoid content in the fruits demonstrating the participation of these genes in capsaicinoid biosynthesis. Using this approach it was possible to generate non-pungent chili peppers at high efficiency.  相似文献   

12.
Abstrat  The color of mature pepper fruit is determined by the composition of carotenoids. The fruit color of red pepper is genetically determined by three loci, y, c1, and c2. We have been developing a genetic map of hot pepper using RFLP and AFLP markers in the F2 population of an interspecific cross between Capsicum annuum cv TF68 and Capsicum chinense cv Habanero. The color of the ripe fruit of TF68 is red and Habanero is orange. The red color is dominant over orange in the F1 and the locus controlling this character has been marked in our SNU Linkage Group 7. To identify the gene or markers tightly linked to the red/orange locus, several candidate genes involved in the carotenoid biosynthesis pathway, namely FPS, GGPS, PSY, PDS, LCY and CCS, were examined. One of the candidate genes, phytoene synthase, cosegregated completely with fruit color in the F2 population. QTL analysis of the pigment content of F2 individuals quantified by HPLC also indicated that phytoene synthase is the locus responsible for the development of fruit color. The color, pigment content and genetic behavior of Habanero also suggest that phytoene synthase may be responsible for the c2 gene discriminating between red and orange cultivars. Received: 15 March 2000 / Accepted: 16 August 2000  相似文献   

13.
The intracellular localization site of capsaicinoid, the pungentprinciple of hot pepper, was studied by Percoll density gradientcentrifugation technique and by light and electron microscopy.Protoplasts prepared from the placenta of the hot pepper fruit,"Karayatsubusa" (Capsicum annuum var. annuum cv. Karayatsubusa),were used for subcellular fractionation by Percoll density gradientcentrifugation. Capsaicinoid was detected at the top of thetube. The fraction containing the most capsaicinoid was collectedfor light and transmission electron microscopy. Capsaicinoidin the intact vacuoles was located in the same place as thatin the protoplasts subfractionated by Percoll density gradientcentrifugation. Transmission electron microscopy showed thatthe capsaicinoid-localized fraction had vesicle and vacuole-likestructures, including electron-dense granules, similar to thoseobserved in intact epidermal cells of the placenta. On the otherhand, no electron-dense granule with a structure similar tothat of the epidermal cells was found in the other fractionsexamined. Capsaicinoid probably is located mostly in the vacuole. 1Formation and Metabolism of Pungent Principle of Capsicum Fruits.Part VIII. (Received December 27, 1979; )  相似文献   

14.

The placental tissue of the highly pungent chilli cultivar, Capsicum chinense Jacq. cv. ‘Umorok’, is used as explants for callus induction. Callus cultures were subcultured after every 32 days and growth curves for a period of six consecutive growth cycles were studied till a stable capsaicinoids producing callus cultures were obtained. The capsaicinoids content in placental tissue explants decreased gradually during the first 2 months of culture as the explants dedifferentiated to form friable callus while the biomass and capsaicinoid content did not show much change in the subsequent growth cycles. The maximum callus biomass of 7.8 g freshweight (FW) or 0.56 g dry weight (DW) per culture were obtained on the 24th day of every growth cycle and the maximum average capsaicinoids content (1.6 mg g?1 FW capsaicin and 0.78 mg g?1 FW dihydrocapsaicin) were obtained on the 20th day of every growth cycle. To investigate the underlying dynamics for capsaicinoid biosynthesis during callus formation, comparative gene expression analysis of the genes involved in capsaicinoid biosynthesis pathway were also studied by qRT-PCR analysis. When compared with placental tissue, all the studied genes showed reduced expression during callus formation, especially putative aminotransferase (pAMT) and pungent gene 1 (Pun1), which were extensively down regulated from the 3rd month onwards in the callus cultures. Therefore, the present study revealed that the down-regulated expression of mainly two putative genes in capsaicinoid biosynthetic pathway (pAMT and Pun1) resulted in lower accumulation of capsaicinoids in callus cultures compared to placental tissues of fruits.

  相似文献   

15.
Using uniform random design optimization and the mathematical model equation we optimized the regeneration tissue culture system of the chilli pepper. An efficient and detailed plant reproducible protocol in vitro has been established using different explants and induction media for three chilli pepper cultivars. The result displayed that the seedlings at the curved hypocotyl stage were the best choice to prepare for explants, the genotype of explants affected shoot buds induction frequency and number of shoot buds per explant, and the cotyledon explant was more responsive than hypocotyl explant. The optimal media for maximum shoot initiation and regeneration and the optimal elongation medium were obtained. For Capsicum annuum var. annuum (cv. Xinsu), Capsicum annuum var. annuum (cv. Neimengchifeng) and Capsicum frutescens (cv. Xingfu), the induction rates were 99.17%, 97.50 and 96.11%, respectively; the elongation rates of shoot buds were 86.67%, 85.19% and 82.96%, respectively. The MS medium with 0.57 μM IAA and 0.69 μM NAA is the best choice for root induction. The frequency of their root emergence was 95.00-98.33%. Regenerated chilli peppers were successfully acclimatized and cultivated with 100% survival. This work will help to improve multiplication process and the genotype of chilli pepper, and may have commercial impact.  相似文献   

16.
Cell suspensions of chili pepper (Capsicum annuum L.) were subjected to a selection process on semisolid medium containing the amino acid analog p-fluorophenylalanine (PFP). Four cell lines with different degrees of resistance were selected and suspension cultures were established from each of them. Resistance was retained even after 75 days of culture in the absence of PFP. PFP-resistant cell lines accumu lated higher levels of capsaicin than sensitive lines even after prolonged culture in PFP-free medium. Capsaicin production in non-selected cells was only 26.8% of that found in one cell line resistant to 500 M PFP. The capsaicin content in the non-selected cell suspension and in one of the resis tant cell lines was 6.7% and 24.9% respectively, that of fruits.Abbreviations BA benzyladenine - 2,4-D 2,4-dichlorophenoxyacetic acid - PFP p-fluorophenylalanine - d. wt. dry weight - f. wt. fresh weight  相似文献   

17.
When a pepper cultivar (Capsicum chinense cv. Seychelles-2, Sy-2) native to the Seychelles was grown in Japan, all seedlings showed seasonal developmental abnormalities such as development of abnormally shaped leaves. Other pepper cultivars grew well in all seasons while the growth of cv. Sy-2 was stunted. In this study, we first examined the effects of various changes in temperature and photoperiod on the cv. Sy-2 phenotype. The results showed that temperatures lower than 24°C led to the formation of abnormal leaves. Second, morphological and anatomical analyses of cotyledons and true leaves developed at 28 and 20°C were conducted. The narrower and thicker cotyledons developed at 20°C had fewer palisade cells in the leaf-length direction, and more cells in the leaf-thickness direction. True leaves developed at 20°C were irregularly shaped, thicker and had smaller leaf area. In addition, true leaves developed at 20°C had fewer palisade cells in the leaf-length and leaf-width directions and had more cells in the leaf-thickness direction. Furthermore, abnormal periclinal cell divisions in the mesophyll and/or epidermal cell layers were observed during leaf blade development at 20°C. These results suggest that the observed changes in cell proliferation and abnormal periclinal cell divisions were related, at least in part, to abnormal leaf development of cv. Sy-2 at temperatures below 24°C.  相似文献   

18.
ABSTRACT

Capsaicinoids are responsible for the pungent flavor of peppers (Capsicum sp.). The cultivar CH-19 Sweet is a non-pungent pepper mutant that biosynthesizes the low-pungent capsaicinoid analogs, capsinoids. Capsinoids possess important pharmaceutical properties. However, capsinoid concentrations are very low in CH-19 Sweet, and Capsicum cultivars with high content capsinoids are desirable for industrial applications of capsinoids.

Habanero, Bhut Jolokia, and Infinity are species of Capsicum chinense, and have strong pungency and intense fruity flavors. In the present study, we report new cultivars with high concentrations of capsinoids (more than ten-fold higher than in CH-19 Sweet), and showed that these cultivars (Dieta0011-0301 and Dieta0011-0602 from Bhut Jolokia, Dieta0041-0401 and Dieta0041-0601 from Infinity) are of nutritional and medicinal value and have fruity aromas. We also obtained a vanilla bean flavor, vanillyl alcohol, and vanillyl ethyl ether from capsinoids in the fruit of these cultivars following the addition of ethanol at room temperature.  相似文献   

19.
Pepper (Capsicum annuum L.) is an economically important crop with added nutritional value. Production of capsaicin is an important quantitative trait with high environmental variance, so the development of markers regulating capsaicinoid accumulation is important for pepper breeding programs. In this study, we performed association mapping at the gene level to identify single nucleotide polymorphisms (SNPs) associated with capsaicin pathway metabolites in a diverse Capsicum annuum collection during two seasons. The genes Pun1, CCR, KAS and HCT were sequenced and matched with the whole-genome sequence draft of pepper to identify SNP locations and for further characterization. The identified SNPs for each gene underwent candidate gene association mapping. Association mapping results revealed Pun1 as a key regulator of major metabolites in the capsaicin pathway mainly affecting capsaicinoids and precursors for acyl moieties of capsaicinoids. Six different SNPs in the promoter sequence of Pun1 were found associated with capsaicin in plants from both seasons. Our results support that CCR is an important control point for the flux of p-coumaric acid to specific biosynthesis pathways. KAS was found to regulate the major precursors for acyl moieties of capsaicinoids and may play a key role in capsaicinoid production. Candidate gene association mapping of Pun1 suggested that the accumulation of capsaicinoids depends on the expression of Pun1, as revealed by the most important associated SNPs found in the promoter region of Pun1.  相似文献   

20.
In this work we report a new method forin vitro chili pepper (Capsicum annuum L.) plant regeneration based on shoot formation from wounded hypocotyls. Chili pepper seeds were surface sterilized and germinated on agar (0.8%) at 25 ± 2°C in the dark. Five factors that may influence shoot regeneration were studied: age of seedlings, hypocotyl wounding site, time elapsed between wounding the hypocotyls and decapitation of seedlings, culture media and cultivars. In order to study the influence of the first three factors on shoot regeneration, the apical, middle or basal hypocotyl regions of seedlings of cv. Mulato Bajio at different stages of development (9, 15, 16, 21 and 28 d old) were wounded with a syringe needle, and the seedlings were cultured on MS semisolid medium without growth regulators at 25 ± 2°C under a 16/8 h light/dark photoperiod (daylight fluorescent lamps; 35 mol m-2 s--1) until decapitation. The seedlings were decapitated (3 mm below the cotyledons) at different times after wounding (0, 2, 4, 10, 12 and 14 d), and each explant was evaluated for bud and shoot formation ( 5 mm in length) at the wounded site after 30 d of incubation. In general, seedlings at the stage of curved hypocotyl (9 d old) wounded in the apical region of hypocotyl were the best explants for shoot regeneration when inoculated on culture medium without growth regulators. Decapitation after wounding also influenced the shoot regeneration efficiency, with 10–14 d being the best period. Up to 90% shoot regeneration in cv. Mulato Bajio was obtained under these conditions. Statistically significant differences were observed for shoot formation among 21 cultivars tested. Regeneration of whole plants was achieved by rooting the shoots with indole-3-butyric acid pulses of 60 mg L–1 for 3 h and then subculturing on MS medium without growth regulators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号