首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Water translocation in Kalanchoë daigremontiana during periods of drought   总被引:1,自引:1,他引:0  
Abstract. Kalanchoë daigremontiana strongly reduced daily water loss within 6 d of drought using CAM to restrict transpiration and net CO2 uptake to the dark period.
Water translocation from old to young leaves of the plant was an additional mechanism which reduced the negative effects of drought on the water relations of young leaves. Excision of old leaves after 7–9 d of drought resulted in a decrease in the water content of young leaves. This was observed despite a decrease in transpirational water loss from young leaves. Water content in young leaves increased slightly in plants with all their leaves in place.
The dry weight of young leaves clearly increased during the experimental period when old leaves were present, but it remained relatively constant in plants without old leaves. Obviously, in addition to water, solutes were transported from old to young leaves of the plant via the phloem. Xylem tension was higher in young compared to old leaves; thus, water translocation could have occurred via xylem elements.
Since transport of organic matter in the phloem is also linked to water flow, phloem transport additionally may contribute effectively to the balance of the water budget in young leaves.  相似文献   

2.
C. Schäfer  U. Lüttge 《Oecologia》1986,71(1):127-132
Summary Measurements of gas exchange, xylem tension and nocturnal malate synthesis were conducted with well-watered and droughted plants of Kalanchoë uniflora. Corresponding results were obtained with plants grown in 9 h and 12 h photoperiods. In well-watered plants, 50 to 90% of total CO2-uptake occurred during the light period. Nocturnal CO2-uptake and malate synthesis were higher and respiration rate was lower in old leaves (leaf pairs 6 to 10) compared to young leaves (leaf pairs 1 to 5). Within four days of drought distinct physiological changes occurred. Gas exchange during the light period decreased and CO2-uptake during the dark period increased. Nocturnal malate synthesis significantly increased in young leaves.Respiration rate decreased during periods of drought, this decrease being more pronounced in young leaves compared to old leaves. Restriction of gas exchange during the light period resulted in a decrease of transpiration ratio from more than 100 to about 20. The difference between osmotic pressure and xylem tension decreased in young leaves, indicating a reduction in bulk leaf turgor-pressure.We conclude that both the CAM-enhancement in young leaves and the decrease of respiration rate are responsible for the increase of nocturnal CO2-uptake during water stress. During short drought periods, which frequently occur in humid habitats, the observed physiological changes result in a marked reduction of water loss while net CO2-uptake is maintained. This might be relevant for plant growth in the natural habitat.Abbreviations LP light period - DP dark period - CAM crassulacean acid metabolism  相似文献   

3.
Trehalose and the trehalose biosynthetic pathway are important contributors and regulators of stress responses in plants. Among recent findings for trehalose and its metabolism, the role of signalling in the regulation of growth and development and its potential for use as a storage energy source can be listed. The xerophytic plant Capparis ovata (caper) is well adapted to drought and high temperature stress in arid and semi‐arid regions of the Mediterranean. The contribution of trehalose and the trehalose biosynthetic pathway to drought stress responses and tolerance in C. ovata are not known. We investigated the effects of PEG‐mediated drought stress in caper plants and analysed physiological parameters and trehalose biosynthetic pathway components, trehalose‐6‐phosphate synthase (TPS), trehalose‐6‐phosphate phosphatase (TPP), trehalase activity, trehalose and proline content in drought stress‐treated and untreated plants. Our results indicated that trehalose and the trehalose biosynthetic pathway contributed to drought stress tolerance of C. ovata. Overall growth and leaf water status were not dramatically affected by drought, as both high relative growth rate and relative water content were recorded even after 14 days of drought stress. Trehalose accumulation increased in parallel to induced TPS and TPP activities and decreased trehalase activity in caper plants on day 14. Constitutive trehalose levels were 28.75 to 74.75 μg·g·FW?1, and drought stress significantly induced trehalose accumulation (385.25 μg·g·FW?1 on day 14) in leaves of caper. On day 14 of drought, proline levels were lower than on day 7. Under drought stress the discrepancy between trehalose and proline accumulation trends might result from the mode of action of these osmoprotectant molecules in C. ovata.  相似文献   

4.
Leaf diffusion resistance was influenced by leaf age in well-wateredand water-stressed clonal tea plants. In well-watered plantsand in two of the three clones studied, young leaves showeda significantly lower diffusion resistance than old leaves.In water-stressed plants young leaves always exhibited a higherdiffusion resistance than old leaves. The highest diffusionresistance, irrespective of leaf age and water stress, occurredin clone DN which is known to be the most drought tolerant ofthe three clones studied, suggesting that drought tolerancein clone DN is caused, at least in part, by a stomatal regulationmechanism. Water release characteristic curves for the threeclones indicated differences in the water content-water potentialrelationship between young and old leaves as well as betweenclones. The drought tolerant clones had a higher relative watercontent for a given water potential compared with the drought-susceptibleclone. Camellia sinensis L., tea, diffussion resistance, water stress  相似文献   

5.
We allowed plant water deficits to develop at two different rates following the cessation of watering in order to investigate the effects of water stress on cytochrome pathway and alternative pathway respiration in the leaves of the arctic herb Saxifraga cernua. Plants were pretreated by growth in either a commercial organic (CO) mixture or a vermiculite-perlite (VP) mixture, which allowed the complete development of water deficits in 19 and 8 days, respectively. The rate of water potential reduction was approximately 0.11 MPa day−1 in the leaves of CO plants, compared to a reduction of 0.21 MPa day−1 in leaves of VP plants. Osmotic adjustment occurred to a greater extent in leaves of CO plants and corresponded with an increase in ethanol-soluble sugars. In leaves of CO plants, cytochrome pathway activity gradually declined from that of control rates until day 11, and then declined more rapidly. In contrast, cytochrome pathway activity significantly increased in response to water deficits in leaves of VP plants. In leaves of both CO and VP plants, alternative pathway activity declined as water stress progressed. Relatively severe water deficits reduced alternative pathway capacity in leaves of both CO and VP plants. We also investigated the effect of previous exposure to water deficits on leaf respiration. In plants that had previously experienced three cycles of water stress, the increase in cytochrome pathway activity during the fourth water stress cycle was small compared to the increase observed in leaves of plants experiencing water stress for the first time. These results suggest that cytochrome pathway activity is differentially sensitive to the rate of development of plant water deficits and that respiratory responses to acute water stress are not necessarily similar to the responses to chronic water stress.  相似文献   

6.
Abscisic acid (ABA) regulates the physiological and biochemical mechanisms required to tolerate drought stress, which is considered as an important abiotic stress. It has been postulated that ABA might be involved in regulation of plant phenolic compounds biosynthesis, especially anthocyanins that accumulate in plants subjected to drought stress; however, the evidence for this postulate remains elusive. Therefore, we studied whether ABA is involved in phenolic compounds accumulation, especially anthocyanin biosynthesis, using drought stressed Aristotelia chilensis plants, an endemic berry in Chile. Our approach was to use fluridone, an ABA biosynthesis inhibitor, and then subsequent ABA applications to young and fully‐expanded leaves of drought stressed A. chilensis plants during 24, 48 and 72 h of the experiment. Plants were harvested and leaves were collected separately to determine the biochemical status. We observed that fluridone treatments significantly decreased ABA concentrations and total anthocyanin (TA) concentrations in stressed plants, including both young and fully‐expanded leaves. TA concentrations following fluridone treatment were reduced around fivefold, reaching control plant levels. ABA application restored ABA levels as well as TA concentrations in stressed plant at 48 h of the experiment. We also observed that TA concentrations followed the same pattern as ABA concentrations in the ABA treated plants. Quantitative real‐time PCR revealed that AcUFGT gene expression decreased in fully‐expanded leaves of stressed plants treated with fluridone, while a subsequent ABA application increased AcUFGT expression. Taken together, our results suggest that ABA is involved in the regulation of anthocyanin biosynthesis under drought stress.  相似文献   

7.
Bedding plants are an important part of the urban public space and private gardens. However, they are not always properly watered and suffer from drought stress, especially when grown in containers. In this trial a response to water stress of two commonly used species, impatiens (Impatiens walleriana Hook) and geranium (Pelargonium hortorum L. H. Bailey) were compared. The former is highly herbaceous and prone to wilting whereas the latter has hairy leaves and is better adapted to drought. Plants were grown at three levels of soil water content (SWC): 80% (control), 60% (mild stress) and 30% (severe stress). Drought was maintained during three 10 day cycles, separated by 10 day periods of normal watering. In both species roots were significantly longer in plants grown at 30% SWC as compared to 80% SWC while plant height and flower number were reduced by drought only in impatiens. The initial relative water content (RWC) was lower in geranium and decreased less in response to drought than in impatiens. Ammonium content in leaves of both species increased significantly under stress but the ranges of increase were different in both species. There was a significant increase in the free amino acids content in leaves of impatiens as compared to geranium but this rise was more time than drought dependent. The reduction in the a + b chlorophyll concentration in leaves of impatiens was significantly time and stress dependent while no reaction in geranium was observed. The above results show that changes in leaf RWC merit further attention as a possible indicator of plant response to drought stress in ornamental plants but additional studies are needed before this or other parameters can be used to evaluate new bedding plants for introduction into urban growing conditions, or as selection criteria in breeding for adaptation to demanding growing conditions.  相似文献   

8.
Accumulation of various osmolytes was examined in plants of sugar beet cv. Janus grown under two soil water treatments: control (60% of the field water capacity; FWC) and drought (30–35% FWC). The water shortage started on the 61st day after emergence (DAE), at the stage of the beginning of tap-roots development and was imposed for 35 days. Osmotic potential of sugar beet plant organs, particularly tap-roots, was decreased significantly as a consequence of a long-term drought. Water shortage reduced univalent (K+, Na+) cations concentrations in the petioles and divalent (Ca2+, Mg2+) ions level in the mature and old leaves. Cation concentrations in the tap-roots were not affected by water shortage. The ratio of univalent to divalent cations was significantly increased in young leaves and petioles as a consequence of drought. Long-term water deficit caused a significant reduction of inorganic phosphorus (Pi) concentration in young and old leaves. Under the water stress condition, the concentration of proline was increased in all individual plant organs, except proline concentration in the youngest leaves. Drought treatment caused a significant increase of glycine betaine content in shoot without any change in tap-roots. Glucose concentrations were significantly increased only in tap-roots as the effect of drought. In response to water shortage the accumulation of sucrose was observed in all the examined leaves and tap-roots. Overall, a long-term drought activated an effective mechanism for osmotic adjustment both in the shoot and in the root tissues which may be critical to survival rather than to maintain plant growth but sugar beet organs accumulate different solutes as a response to water cessation.  相似文献   

9.
The effect of growth conditions and plant age on the relationships between respiratory pathways was investigated in Rhodiola roseaand Ajuga reptans.The alternative pathway (AP) contributed 0–50% to the leaf respiration; however, this pathway was absent from the overwintered leaves of A. reptans.In both plant species, AP contributed 15–20% to the respiration of mature leaves, and in the young rapidly expanding leaves the contribution was twice higher. The highest AP contribution (40–50%) was found in the leaves of A. reptansplants grown in an experimental plot in full light. As compared to the plot-grown plants, A. reptansplants grown in their natural habitats were characterized by a lower AP contribution to the respiration of leaves; they contained two times less nonstructural carbohydrates and accumulated less biomass. We conclude that a high AP contribution to the respiration of leaves correlates with their rapid growth and that a high supply of respiratory substrates is one of prerequisite for the AP activation.  相似文献   

10.
Abstract 1. Water stress may increase or reduce the suitability of plants for herbivores. The recently proposed ‘pulsed stress hypothesis’ suggests consideration of stress phenology (pulsed vs. continuous stress) to explain these conflicting effects of plant water stress on herbivore performance. 2. This hypothesis was tested for the effect of differing stress intensity on performance and preference of insect herbivores belonging to different feeding guilds, namely leaf‐chewing insects (Spodoptera littoralis caterpillars) and phloem‐feeding insects (Aphis pomi aphids), on apple plants (Malus domestica). The plants were non‐stressed or exposed to a low or high intensity of pulsed water stress. 3. Plant responses to the different stress levels were generally monotonic. Growth, stomatal conductance (gs), leaf water, and old‐leaf nitrogen concentration decreased, whereas young‐leaf nitrogen concentration and leaf mass per area (LMA) increased with increasing stress intensity. The stable isotope composition of foliar carbon (δ13C) responded non‐monotonically to the drought treatments. The δ13C values were highest in low‐stress plants, intermediate in high‐stress plants, and lowest in non‐stressed plants. 4. The preference and performance responses of the caterpillars were also non‐monotonic. Non‐stressed plants were intermediately, low‐stress plants least, and high‐stress plants most attractive or suitable. Aphid population growth was highest on non‐stressed plants and lowest on low‐stress plants. 5. The results highlight the importance of water stress intensity for the outcome of interactions between herbivores and drought‐affected plants. They show that pulsed water stress may enhance or reduce insect herbivore performance and plant resistance, depending on stress intensity.  相似文献   

11.
Water is a main factor limiting plant growth. Integrative responses of leaf traits and whole plant growth to drought will provide implications to vegetation restoration. This study investigated the drought responses of Vitex negundo L. var. heterophylla (Franch.) Rehd. with a focus on leaf morphology and physiology, seedling growth and biomass partitioning. Potted 1-year-old seedlings were subjected to four water supply regimes [75, 55, 35 and 15% field capacity (FC)], served as control, mild water stress, moderate water stress and severe water stress. Leaf morphological traits varied to reduce the distance of water transfer under water stress and leaflets were dispersed with drought. Net photosynthetic rate decreased significantly under water stress: stomatal closure was the dominant limitation at mild and moderate drought, while metabolic impairment was dominant at severe drought. The physiological impairment at severe drought could also be detected from the relative lower water use efficiency and non-photochemical quenching to moderate water stress. Total biomass of well-watered plants was more than twice that at moderate water deficit and nearly ten times that at severe water deficit. In summary, V. negundo var. heterophylla had adaptation mechanism to water deficit even in the most serious condition, but different strategies were adopted. Seedlings invested more photosynthate to roots at mild and moderate drought while more photosynthate to leaves at severe drought. A nearly stagnant seedling growth and a sharp decline of total biomass were the survival strategy at severe water stress, which was not favorable to vegetation restoration. Water supply above 15% FC is recommended for the seedlings to vegetation restoration.  相似文献   

12.
Jasmonic acid (JA) is known to be involved in the response of plants to environmental stresses such as drought, and betaine (glycinebetaine) is an osmopretectant accumulated in plants under environmental stresses including drought. However, it remains currently unclear whether JA is involved in the water‐stress‐induced betaine accumulation in plant leaves. The present experiment, performed with the whole pear plant (Pyrus bretschneideri Redh. cv. Suli), revealed that the exogenously applied JA induced a significant increase of the betaine level in the pear leaves when the plants were not yet stressed by drought, and when the plants were subjected to water stress, the ‘JA plus drought’ treatment induced a significant higher betaine level than did the drought treatment alone. Meanwhile, the ‘JA plus drought’ treatment induced higher levels of betaine aldehyde dehydrogenase (BADH, E C 1.2.1.8) and activities in the leaves than did the drought treatment alone. These results obtained in the whole plant experiments were supported by the results of detached leaf experiments. In detached leaves JA induced significant increases in betaine levels, BADH activities and BADH protein amounts in a time‐ and concentration‐dependent manner. These data demonstrate that JA is involved in the drought‐induced betaine accumulation in pear leaves.  相似文献   

13.
The effects of treatment with NaCl (3, 100 and 300 mM) for 1, 2, 3 and 7 d on plant growth and ion accumulation were analyzed in 2-week and 8-week-old Annona muricata and A. squamosa plants. Fresh mass and root growth inhibition were directly related to the increase in salinity, particularly for A. squamosa. Two-weeks old seedlings were sensitive to 100 and 300 mM NaCl particularly after 7 d, whereas 8-week-old plants were shown to be more resistant to NaCl even at 300 mM NaCl. Na+ and Cl mostly accumulated in young leaves. Our results suggest that A. squamosa is more sensitive than A. muricata to salt stress and that older seedlings of both species are more tolerant than younger seedlings.  相似文献   

14.
In mature and young leaves of sunflower (Helianthus annuus L. cv. Catissol-01) plants grown in the greenhouse, photosynthetic rate, stomatal conductance, and transpiration rate declined during water stress independently of leaf age and recovered after 24-h rehydration. The intercellular CO2 concentration, chlorophyll (Chl) content, and photochemical activity were not affected by water stress. However, non-photochemical quenching increased in mature stressed leaves. Rehydration recovered the levels of non-photochemical quenching and increased the Fv/Fm in young leaves. Drought did not alter the total Chl content. However, the accumulation of proline under drought was dependent on leaf age: higher content of proline was found in young leaves. After 24 h of rehydration the content of proline returned to the same contents as in control plants.  相似文献   

15.
用CO_2分析。含酸量和PEP羧化酶活性测定的方法对长药景天(Sedum spectabile)光合型进行研究,其成熟叶浇水时表现为C_3型,干旱条件下转变成CAM型,但极度的干旱又使其CAM活性降低。浇水植株的幼叶PEP羧化酶活性和含酸量低,成熟叶较高。但在干旱过程中,幼叶酶活性和含酸量的增加比成熟叶更为显著,表明幼叶对水分胁迫更敏感。水分胁迫中,叶最大PEP羧化酶活性和最大含酸量在植株由下而上各叶位转移。  相似文献   

16.
堇菜叶片草酸钙晶体与水分维持的关系   总被引:1,自引:0,他引:1  
随着全球气候变化加重,干旱强度和持续时间逐渐增加,严重影响植物生长和作物产量。喀斯特为典型的干旱和高钙生境,植物叶片富集大量的草酸钙晶体,而该晶体与植物耐旱性之间的关系并不清楚。该研究以喀斯特适生植物堇菜(Viola verecumda)为材料,土壤进行自然干旱,分析堇菜叶片的草酸钙晶体变化特征与水分之间的关系。结果表明:在土壤自然干旱条件下,堇菜主要通过细胞内束缚水的释放,维持细胞内水分平衡;而在干旱后期,叶片通过关闭气孔,将部分自由水转变为束缚水,防止水分流失。此外,草酸钙晶体的密度与束缚水含量具有极其显著的强正相关线性回归关系(r=0.825 3,P0.000 1),表明草酸钙晶体作为主要的束缚水物质。因此,堇菜植物在耐旱过程中可能协调草酸钙晶体和气孔的生理行为忍耐干旱胁迫。  相似文献   

17.
The response of antioxidant enzymes to cyclic drought was studied in control non-transformed tobacco (Nicotiana tabacum L. cv. Petit Havana SR1) and two types of transgenic Pssu-ipt tobacco (grafted on wild rootstock and poorly rooted progeny of F1 generation) grown under different conditions of irradiation (greenhouse, referred as high light, versus growth chamber, referred as low light). Water stress cycles started with plants at two contrasting developmental stages, i.e., at the stage of vegetative growth (young) and at the onset of flowering (old). Drought reduced the growth of SR1 plants compared with transgenic ones, particularly, when treatment started in earlier stage of plant development. Relative leaf water content was significantly lower (below 70%) in all transgenic grafts and plants compared with the wild type, irrespective of age, drought, and growth conditions. The response of antioxidant enzymes was significantly dependent on plant type and plant age; nevertheless, growth conditions and water stress also affected enzyme activities. Contrary to non-transgenic tobacco, where about half of glutathione reductase activity was found in older plants, both transgenic types exhibited unchanged activities throughout plant development and stress treatment. No differences were found in catalase activity, although the growth in the greenhouse caused a moderate increase in all older plants. In contrast to non-transgenic and Pssu-ipt rooted plants, peroxidase activities (ascorbate, guaiacol, and syringaldazine peroxidase) in older Pssu-ipt grafts were up to four times higher, irrespective of growth and stress, nevertheless, the effect seemed to be age-dependent. Superoxide dismutase (SOD) activity was affected particularly by plant age but also by growth conditions. Unlike in older plants, water stress caused an increase of SOD activities in all younger plants. The differences observed in activities of enzymes of intermediary metabolism (i.e., malic enzyme and glucose-6-phosphate dehydrogenase) revealed that transgenic grafts probably compensated differently for a decrease of ATP and NADPH than control and transgenic rooted plants under stress.  相似文献   

18.
19.
Climate change is expected to increase drought frequency and intensity which will threaten plant growth and survival. In such fluctuating environments, perennial plants respond with hydraulic and biomass adjustments, resulting in either tolerant or avoidant strategies. Plants' response to stress relies on their phenotypic plasticity. The goal of this study was to explore physiology of young Populus nigra in the context of a time‐limited and progressive water deficit in regard to their growth and stress response strategies. Fourteen French 1‐year‐old black poplar genotypes, geographically contrasted, were subjected to withholding water during 8 days until severe water stress. Water fluxes (i.e. leaf water potentials and stomatal conductance) were analyzed together with growth (i.e. radial and longitudinal branch growth, leaf senescence and leaf production). Phenotypic plasticity was calculated for each trait and response strategies to drought were deciphered for each genotype. Black poplar genotypes permanently were dealing with a continuum of adjusted water fluxes and growth between two extreme strategies, tolerance and avoidance. Branch growth, leaf number and leaf hydraulic potential traits had contrasted plasticities, allowing genotype characterization. The most tolerant genotype to water deficit, which maintained growth, had the lowest global phenotypic plasticity. Conversely, the most sensitive and avoidant genotype ceased growth until the season's end, had the highest plasticity level. All the remaining black poplar genotypes were close to avoidance with average levels of traits plasticity. These results underpinned the role of plasticity in black poplar response to drought and calls for its wider use into research on plants' responses to stress.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号