首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The genus Oreocharis as circumscribed here consists of 27 species including 5 varieties, of which 5 species and 4 varieties are described as new in the present paper. In the work analysed were the external morphology and geographic distribution and examined under SEM were pollen exine of 22 species and seed coat of 16 species. As a result, three types of the corolla, two types of the anther, three types of the pollen exine and three types of the seed coat are distinguished here in the paper. It is discovered that the corolla in the genus is relatively stable, though diverse, and highly correlated with the characters of pollen grains and seeds. The corolla clearly bilabiate but constricted at the throat, occurring in O. auricula, O. cordatula, O. aurantiaca, etc., for an example, is correlated with smooth, reticulate pollen exine and partial tectum and the reticulate and smooth seed coat. For this reason the subdivision of the genus in the paper is mainly based on the characters of the corolla, but combined with those of the anther, pollen and seed coat. The genus is divided into four sections in the present classification. Dasydesmus Craib, based on a single species. O. bodinieri, is reduced here, and the reasons are given. The genus is distributed mainly in the subtropics, and less frequently in the tropics, of China south of 32.5°N and east of 98.5°E, with only two species beyond the border, O. hirsuta in Thailand (only a single locality in Chiengmai) and O. aurea also found in north Vietnam (see Fig. 1, Table 3). Sect. 1. Stomactin (Clarke) Fritsch. Corolla urceolate-tubular, constricted at the throat, with limb distinctly bilabiate; anthers broad-oblong; seed coat reticulate, smooth, rarely minutely tuberculate; pollen exine fine-reticulate, tectum partial and smooth, luminae slightly unequal in size. Sect. 2. Orthanthera K. Y. Pan Corolla campanulate or campanulate-tubular; anthers broad-oblong; seed coat reticulate, muri smooth, rarely spiny-processed; pollen exine fine-reticulate, with partial and smooth tectum and luminae slightly unequal in size, rarely exine insular and fine-tuberculate, tectum perforate. Setc. 3. Oreocharis Corolla thin-tubular; anthers broad-oblong; seed coat densely spinyprocessed, rarely fine-tuberculate; pollen exine insular, densely spiny-processed, rarely finereticulate and smooth, luminae unequal in size. Sect. 4. Platyanthera K. Y. Pan Corolla campanulate; anthers hippocrepiform; seed coat densely spiny-processed; pollen exine fine-reticulate, tectum perforate, luminae small, nearly equal in size. In the section Stomactin, although the constriction of corolla at its throat is a specialized character, the characters of seed coat, pollen grains and anthers are apparently primitive. Therefore it may be said at least that more primitive characters are preserved in the section. In the section Oreocharis, on the contrary, the characters of corolla, seed coat and pollen exine are all advanced. And in the section Platyanthera, the seed coat, pollen (with perforate tectum) and anthers have developed rather specialized characters.  相似文献   

2.
One fundamental difference between plants and animals is the existence of a germ-line in animals and its absence in plants. In flowering plants, the sexual organs (stamens and carpels) are composed almost entirely of somatic cells, a small subset of which switch to meiosis; however, the mechanism of meiotic cell fate acquisition is a long-standing botanical mystery. In the maize (Zea mays) anther microsporangium, the somatic tissues consist of four concentric cell layers that surround and support reproductive cells as they progress through meiosis and pollen maturation. Male sterility, defined as the absence of viable pollen, is a common phenotype in flowering plants, and many male sterile mutants have defects in somatic and reproductive cell fate acquisition. However, without a robust model of anther cell fate acquisition based on careful observation of wild-type anther ontogeny, interpretation of cell fate mutants is limited. To address this, the pattern of cell proliferation, expansion, and differentiation was tracked in three dimensions over 30 days of wild-type (W23) anther development, using anthers stained with propidium iodide (PI) and/or 5-ethynyl-2′-deoxyuridine (EdU) (S-phase label) and imaged by confocal microscopy. The pervading lineage model of anther development claims that new cell layers are generated by coordinated, oriented cell divisions in transient precursor cell types. In reconstructing anther cell division patterns, however, we can only confirm this for the origin of the middle layer (ml) and tapetum, while young anther development appears more complex. We find that each anther cell type undergoes a burst of cell division after specification with a characteristic pattern of both cell expansion and division. Comparisons between two inbreds lines and between ab- and adaxial anther florets indicated near identity: anther development is highly canalized and synchronized. Three classical models of plant organ development are tested and ruled out; however, local clustering of developmental events was identified for several processes, including the first evidence for a direct relationship between the development of ml and tapetal cells. We speculate that small groups of ml and tapetum cells function as a developmental unit dedicated to the development of a single pollen grain.  相似文献   

3.
Emmenanthe penduliflora is an obligate fire-recruiter and demonstrates a prolonged seed dormancy followed by germination closely cued to the immediate post-fire environment. This study investigated, at the ultrastructure level, the causal factor(s) associated with seed dormancy and the stimulation of germination after exposure to smoke. The seed coat was responsible for the proximal regulation of dormancy - a waxy cuticular layer situated between the testa and endosperm was the primary barrier to the diffusion of water and small diameter solutes. The sub-testa cuticle in dormant seeds was partially permeable, as indicated by the presence of permeate channels. A short exposure to dry smoke (3 min) promoted a significant increase in seed germination (dormant 80.3% smoke-treated 793%). Exposure to smoke also resulted in two major changes to the morphology of the seed. First, smoke treatment produced an intense chemical scarification at the seed surface; the external cuticle was plasticized to form numerous small spheres on the seed surface. Second, smoke significantly altered the permeability of the internal (sub-testa) cuticle. A significant increase in both the number and size of permeate channels in the sub-testa cuticle indicated that these modifications were directly associated with the breaking of seed dormancy. The observed changes at both the internal (sub-testa) and external cuticles are consistent with the hypothesis that volatiles in smoke exert a surfactant-like reaction to break seed dormancy in E. penduliflora.  相似文献   

4.
5.
《Autophagy》2013,9(5):878-888
In flowering plants, the tapetum, the innermost layer of the anther, provides both nutrient and lipid components to developing microspores, pollen grains, and the pollen coat. Though the programmed cell death of the tapetum is one of the most critical and sensitive steps for fertility and is affected by various environmental stresses, its regulatory mechanisms remain mostly unknown. Here we show that autophagy is required for the metabolic regulation and nutrient supply in anthers and that autophagic degradation within tapetum cells is essential for postmeiotic anther development in rice. Autophagosome-like structures and several vacuole-enclosed lipid bodies were observed in postmeiotic tapetum cells specifically at the uninucleate stage during pollen development, which were completely abolished in a retrotransposon-insertional OsATG7 (autophagy-related 7)-knockout mutant defective in autophagy, suggesting that autophagy is induced in tapetum cells. Surprisingly, the mutant showed complete sporophytic male sterility, failed to accumulate lipidic and starch components in pollen grains at the flowering stage, showed reduced pollen germination activity, and had limited anther dehiscence. Lipidomic analyses suggested impairment of editing of phosphatidylcholines and lipid desaturation in the mutant during pollen maturation. These results indicate a critical involvement of autophagy in a reproductive developmental process of rice, and shed light on the novel autophagy-mediated regulation of lipid metabolism in eukaryotic cells.  相似文献   

6.
Gentiana leucomelaena manifests dramatic flower color polymorphism, with both blue‐ and white‐flowered individuals (pollinated by flies and bees) both within a population and on an individual plant. Previous studies of this species have shown that pollinator preference and flower temperature change as a function of flower color throughout the flowering season. However, few if any studies have explored the effects of flower color on both pollen viability (mediated by anther temperature) and pollinator preference on reproductive success (seed set) in a population or on individual plants over the course of the entire flowering season. Based on prior observations, we hypothesized that flower color affects both pollen viability (as a function of anther temperature) and pollen deposition (as a function of pollinator preference) to synergistically determine reproductive success during the peak of the flowering season. This hypothesis was tested by field observations and hand pollination experiments in a Tibetan alpine meadow. Generalized linear model and path analyses showed that pollen viability was determined by flower color, flowering season, and anther temperature. Anther temperature correlated positively with pollen viability during the peak of the early flowering season, but negatively affected pollen viability during the peak of the mid‐ to late flowering season. Pollen deposition was determined by flower color, flowering season (early, or mid‐ to late season), and pollen viability. Pollen viability and pollen deposition were affected by flower color that in turn affected seed set across the peak of the flowering season (i.e., when the greatest number of flowers were being pollinated). Hand pollination experiments showed that pollen viability and pollen deposition directly influenced seed set. These data collectively indicate that the preference of pollinators for flower color and pollen viability changed during the flowering season in a manner that optimizes successful reproduction in G. leucomelaena. This study is one of a few that have simultaneously considered the effects of both pollen viability and pollen deposition on reproductive success in the same population and on individual plants.  相似文献   

7.
Seed coat structure and dormancy   总被引:1,自引:0,他引:1  
An understanding of dormancy mechanisms is of ecological and economic importance. Identification of the level at which dormancy is imposed appears to be species specific. The variation brought about by this therefore requires that developmental studies be included in seed coat dormancy experiments. In most cases, a site of permeability can be identified during the developmental process, and this information can be utilized later to remove dormancy. Under natural conditions, the removal of seed coat dormancy requires the interaction of a number of ecological and physiological dormancy-breaking cues.  相似文献   

8.
The number of pollen grains is a critical determinant of reproductive success in seed plants and varies among species and individuals. However, in contrast with many mutant-screening studies relevant to anther and pollen development, the natural genetic basis for variations in pollen number remains largely unexplored. To address this issue, we carried out a genome-wide association study in maize, ultimately revealing that a large presence/absence variation in the promoter region of ZmRPN1 alters its expression level and thereby contributes to pollen number variation. Molecular analyses showed that ZmRPN1 interacts with ZmMSP1, which is known as a germline cell number regulator, and facilitates ZmMSP1 localization to the plasma membrane. Importantly, ZmRPN1 dysfunction resulted in a substantial increase in pollen number, consequently boosting seed production by increasing female–male planting ratio. Together, our findings uncover a key gene controlling pollen number, and therefore, modulation of ZmRPN1 expression could be efficiently used to develop elite pollinators for modern hybrid maize breeding.  相似文献   

9.
10.
Seeds of alfalfa (Medicago sativa L.) can exhibit seedcoat imposed dormancy, which produces hard seeds within a seed lot. These seeds do not germinate because they do not imbibe water due to a barrier to water entry in the seed coat. The aim of this work was to analyze the anatomical and chemical characteristics of the testa of alfalfa seeds with respect to water permeability levels. The anatomy of seeds of the cv. Baralfa 85 was studied and structural substances, polyphenols, tannins and cutin present in the testa of seeds of different water permeability levels were determined. The anatomical characteristics of the seed coat and the proportions of components were found to determine the permeability level of the seed coat, an aspect that is associated with the physical seed dormancy level. Anatomically, increased thickness of the testa was associated with a lower permeability level. The difference may be attributed to the variation in cuticle thickness, length of macrosclereids and thickness of the cell wall, and presence and development of osteosclereids. From the physiological and chemical points of view, the mechanism of physical dormancy of the testa is explained by a greater amount of components that repel water and cement the cell wall, such as polyphenols, lignins, condensed tannins, pectic substances, and a lower proportion of cellulose and hemicellulose.  相似文献   

11.
Expression of many proteinases has been documented during anther development. Although their roles are not completely understood, their inhibition could possibly result in impairment of anther development leading to male sterility. We proposed that such an impairment of anther development can be engineered in plants resulting in male sterile plants that can be used for hybrid seed production. Here, we report that anther-specific expression of Aprotinin gene (serine proteinase inhibitor) in tobacco has resulted in male sterility. Southern analysis and zymogram analysis confirmed the integration and expression of Aprotinin gene in the anthers of the transgenic plants. Transverse sections of anthers of transgenic male sterile plants showed damaged tapetum. The pollen germination in the transgenic plants ranged between 2% and 65% that confirmed the impairment in pollen production leading to male sterility and low seed yield. Thus, inhibition of serine proteinases that are expressed during anther development has resulted in impaired pollen production and male sterility, though the exact role of these proteinases in anther development still has to be elucidated.  相似文献   

12.
Key message

The developmental stage of anther development is generally more sensitive to abiotic stress than other stages of growth. Specific ROS levels, plant hormones and carbohydrate metabolism are disturbed in anthers subjected to abiotic stresses.

Abstract

As sessile organisms, plants are often challenged to multiple extreme abiotic stresses, such as drought, heat, cold, salinity and metal stresses in the field, which reduce plant growth, productivity and yield. The development of reproductive stage is more susceptible to abiotic stresses than the vegetative stage. Anther, the male reproductive organ that generate pollen grains, is more sensitive to abiotic stresses than female organs. Abiotic stresses affect all the processes of anther development, including tapetum development and degradation, microsporogenesis and pollen development, anther dehiscence, and filament elongation. In addition, abiotic stresses significantly interrupt phytohormone, lipid and carbohydrate metabolism, alter reactive oxygen species (ROS) homeostasis in anthers, which are strongly responsible for the loss of pollen fertility. At present, the precise molecular mechanisms of anther development under adverse abiotic stresses are still not fully understood. Therefore, more emphasis should be given to understand molecular control of anther development during abiotic stresses to engineer crops with better crop yield.

  相似文献   

13.
Jasmonate (JA) signaling is essential for several environmental responses and reproductive development in many plant species. In Arabidopsis thaliana, the most obvious phenotype of JA biosynthetic and perception mutants is profound sporophytic male sterility characterized by failure of stamen filament elongation, severe delay of anther dehiscence and pollen inviability. The site of action of JA in the context of reproductive development has been discussed, but the ideas have not been tested experimentally. To this end we used targeted expression of a COI1‐YFP transgene in the coi1‐1 mutant background. As COI1 is an essential component of the JA co‐receptor complex, the null coi1‐1 mutant is male sterile due to lack of JA perception. We show that expression of COI1‐YFP in the epidermis of the stamen filament and anther in coi1 mutant plants is sufficient to rescue filament elongation, anther dehiscence and pollen viability. In contrast, filament expression alone or expression in the tapetum do not restore dehiscence and pollen viability. These results demonstrate that epidermal JA perception is sufficient for anther function and pollen viability, and suggest the presence of a JA‐dependent non‐autonomous signal produced in the anther epidermis to synchronize both anther dehiscence and pollen maturation.  相似文献   

14.

Background and Aims

Seed yield and dormancy status are key components of species fitness that are influenced by the maternal environment, in particular temperature. Responses to environmental conditions can differ between ecotypes of the same species. Therefore, to investigate the effect of maternal environment on seed production, this study compared two contrasting Arabidopsis thaliana ecotypes, Cape Verdi Isle (Cvi) and Burren (Bur). Cvi is adapted to a hot dry climate and Bur to a cool damp climate, and they exhibit winter and summer annual phenotypes, respectively.

Methods

Bur and Cvi plants were grown in reciprocal controlled environments that simulated their native environments. Reproductive development, seed production and subsequent germination behaviour were investigated. Measurements included: pollen viability, the development of floral structure, and germination at 10 and 25 °C in the light to determine dormancy status. Floral development was further investigated by applying gibberellins (GAs) to alter the pistil:stamen ratio.

Key Results

Temperature during seed development determined seed dormancy status. In addition, seed yield was greatly reduced by higher temperature, especially in Bur (>90 %) compared with Cvi (approx. 50 %). The reproductive organs (i.e. stamens) of Bur plants were very sensitive to high temperature during early flowering. Viability of pollen was unaffected, but limited filament extension relative to that of the pistils resulted in failure to pollinate. Thus GA applied to flowers to enhance filament extension largely overcame the effect of high temperature on yield.

Conclusions

High temperature in the maternal environment reduced dormancy and negatively affected the final seed yield of both ecotypes; however, the extent of these responses differed, demonstrating natural variation. Reduced seed yield in Bur resulted from altered floral development not reduced pollen viability. Future higher temperatures will impact on seed performance, but the consequences may differ significantly between ecotypes of the same species.  相似文献   

15.
In recalcitrant seeds of horse chestnut (Aesculus hippocastanum L.) maintaining a high water content during winter, dormancy is determined by the presence and influence of the seed coat, while the axial organs of the embryos excised from these seeds are not dormant. Such axial organs were capable for active water uptake and rapid fresh weight increase, so that their fresh weights exceeded those in intact seeds at the time of radicle protrusion. Fructose plays an essential role in the water uptake as a major osmotically active compound. ABA interferes with the water uptake by the axial organs and thus delays the commencement of their growth. The manifestation of seed response to ABA during the entire dormancy period indicates the presence of active ABA receptors and the pathways of its signal transduction. The content of endogenous ABA in the embryo axes doubled in the middle of dormancy period, which coincided with a partial suppression of water uptake by the axes. During seed dormancy release and imbibition before radicle protrusion, the level of endogenous ABA in axes declined gradually. Application of exogenous ABA can imitate dormancy by limiting water absorption by axial organs. Fusicoccin A (FC A) treatment neutralized completely this ABA effect. Endogenous FC-like ligands were detected in the seed axial organs during dormancy release and germination. Apparently, endogenous FC stimulates water uptake via the activation of plasmalemmal H+-ATPase, acidification of cell walls, their loosening, and turgor pressure reduction. FC can evidently counteract the ABA-induced suppression of water uptake by controlling the activity of H+-ATPase. It is likely that, in dormant intact recalcitrant seeds, axial organs, maintaining a high water content, are competent to elevate their water content and to start their preparation for germination under the influence of FC when coat-imposed dormancy becomes weaker.  相似文献   

16.
In flowering plants, the tapetum, the innermost layer of the anther, provides both nutrient and lipid components to developing microspores, pollen grains, and the pollen coat. Though the programmed cell death of the tapetum is one of the most critical and sensitive steps for fertility and is affected by various environmental stresses, its regulatory mechanisms remain mostly unknown. Here we show that autophagy is required for the metabolic regulation and nutrient supply in anthers and that autophagic degradation within tapetum cells is essential for postmeiotic anther development in rice. Autophagosome-like structures and several vacuole-enclosed lipid bodies were observed in postmeiotic tapetum cells specifically at the uninucleate stage during pollen development, which were completely abolished in a retrotransposon-insertional OsATG7 (autophagy-related 7)-knockout mutant defective in autophagy, suggesting that autophagy is induced in tapetum cells. Surprisingly, the mutant showed complete sporophytic male sterility, failed to accumulate lipidic and starch components in pollen grains at the flowering stage, showed reduced pollen germination activity, and had limited anther dehiscence. Lipidomic analyses suggested impairment of editing of phosphatidylcholines and lipid desaturation in the mutant during pollen maturation. These results indicate a critical involvement of autophagy in a reproductive developmental process of rice, and shed light on the novel autophagy-mediated regulation of lipid metabolism in eukaryotic cells.  相似文献   

17.
Angiosperm male reproductive organs (anthers and pollen grains) have complex and interesting morphological features, but mechanisms that underlie their patterning are poorly understood. Here we report the isolation and characterization of a male sterile mutant of No Pollen 1 (NP1) in rice (Oryza sativa). The np1‐4 mutant exhibited smaller anthers with a smooth cuticle surface, abnormal Ubisch bodies, and aborted pollen grains covered with irregular exine. Wild‐type exine has two continuous layers; but np1‐4 exine showed a discontinuous structure with large granules of varying size. Chemical analysis revealed reduction in most of the cutin monomers in np1‐4 anthers, and less cuticular wax. Map‐based cloning suggested that NP1 encodes a putative glucose‐methanol‐choline oxidoreductase; and expression analyses found NP1 preferentially expressed in the tapetal layer from stage 8 to stage 10 of anther development. Additionally, the expression of several genes involved in biosynthesis and in the transport of lipid monomers of sporopollenin and cutin was decreased in np1‐4 mutant anthers. Taken together, these observations suggest that NP1 is required for anther cuticle formation, and for patterning of Ubisch bodies and the exine. We propose that products of NP1 are likely important metabolites in the development of Ubisch bodies and pollen exine, necessary for polymerization, assembly, or both.  相似文献   

18.
Anther cuticle and pollen exine are the major protective barriers against various stresses. The proper functioning of genes expressed in the tapetum is vital for the development of pollen exine and anther cuticle. In this study, we report a tapetum‐specific gene, Abnormal Pollen Vacuolation1 (APV1), in maize that affects anther cuticle and pollen exine formation. The apv1 mutant was completely male sterile. Its microspores were swollen, less vacuolated, with a flat and empty anther locule. In the mutant, the anther epidermal surface was smooth, shiny, and plate‐shaped compared with the three‐dimensional crowded ridges and randomly formed wax crystals on the epidermal surface of the wild‐type. The wild‐type mature pollen had elaborate exine patterning, whereas the apv1 pollen surface was smooth. Only a few unevenly distributed Ubisch bodies were formed on the apv1 mutant, leading to a more apparent inner surface. A significant reduction in the cutin monomers was observed in the mutant. APV1 encodes a member of the P450 subfamily, CYP703A2‐Zm, which contains 530 amino acids. APV1 appeared to be widely expressed in the tapetum at the vacuolation stage, and its protein signal co‐localized with the endoplasmic reticulum (ER) signal. RNA‐Seq data revealed that most of the genes in the fatty acid metabolism pathway were differentially expressed in the apv1 mutant. Altogether, we suggest that APV1 functions in the fatty acid hydroxylation pathway which is involved in forming sporopollenin precursors and cutin monomers that are essential for the development of pollen exine and anther cuticle in maize.  相似文献   

19.
The dry type stigma of Brassica is covered with a continuous layer of cuticle. Cutinase and non-specific esterases may be involved in breakdown of this cuticle barrier during pollen-stigma interaction, but only a little is known about their nature and characteristics. We report here the presence of two distinct esterases from stigma and pollen of Brassica. A 33 kD esterase assayed using MU-butyrate substrate shows high activity in stigma papillae. A similar esterase from Tropaeolum pollen has been shown to possess active cutinase activity. The esterase activity in anther tissue is due to a 24 kD enzyme with substrate specificity toward acetate esters. Both enzymes require sulfhydryl groups for their catalytic activity. Immunogold labelling of antibodies raised against these esterases localised the proteins at the subcellular level. Antibodies for MU-butyrate hydrolase gave a positive signal in the cell walls of mature stigma papillae and in the tapetum and microspores during early stages of anther development. In the mature anther, a positive signal in the cytoplasm of pollen grains with some detectable localisation in the exine layer of the pollen wall was obtained. Similar results were obtained with acetate hydrolase antibodies. These esterases are thus spatially and temporally regulated in stigma and anther tissues.Abbreviations MU methyl umbelliferyl - pAbC anti-butyrate hydrolase polyclonal antibodies - pAbE anti-acetate hydrolase polyclonal antibodies  相似文献   

20.
Cabomba is a small water lily genus that is native to the New World. Studies of pollen development and associated changes in the anther yield valuable characters for considering the evolution of reproductive biology in seed plants. Here we characterized the complete ontogenetic sequence for pollen in Cabomba caroliniana. Anthers at the microspore mother cell, tetrad, free microspore, and mature pollen grain stages were studied using scanning electron, transmission electron, and light microscopy. Tetragonal and decussate tetrads both occur in C. caroliniana, indicating successive microsporogenesis. The exine is tectate-columellate, and the infratectal columellae are the first exine elements to form, followed by a continuous tectum and a thin foot layer. A lamellate endexine initiates in the early free microspore stage, but becomes compressed in mature grains. Tectal microchannels and sculptural rods also initiate during the early free microspore stage, and significant pollenkitt deposition follows, supporting the hypothesis that these elements function in entomophily. The tapetum is morphologically amoeboid, with migratory tapetal cells directly contacting developing free microspores within the anther locule. Results from this study illustrate the importance of including ontogenetic data in analyzing pollen characters and in developing evolutionary and ecological hypotheses. The new palynological data also emphasize the character plasticity that occurs in basal angiosperms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号