首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Eight Nicotiana benthamiana defensin genes were identified that could be divided into two classes with class II defensins being longer than class I defensins due to an additional acidic C-terminal domain. Class I defensins were NbDef1.1, NbDef1.2, NbDef1.3, NbDef1.4, NbDef1.5, and NbDef1.6, and class II were Nbdef2.1 and NbDef2.2. Relative RT-PCR showed that NbDef1.1, NbDef1.2, and NbDef1.4 had relatively similar expression levels in healthy leaves, stems, roots, flowers, and seeds. However, Nbdef1.3, NbDef1.5, and NbDef1.6 had varying degrees of tissue specific expression, and Nbdef2.1 and NbDef2.2 had strictly flower-specific expression. None of the defensins were significantly induced by infection by Colletotrichum destructivum or C. orbiculare. However, infection by Pseudomonas syringae pv. tabaci resulted in increased expression of Nbdef1.2 and Nbdef2.2, and decreased expression of NbDef1.1, NbDef1.4, and NbDef1.6. In the hypersensitive response of N. benthamiana containing Pto with P. syringae pv. tabaci containing AvrPto, only NbDef2.2 was significantly up-regulated. Expression of the genes was also affected by abiotic treatments. Both wounding and ethylene treatments resulted in a strong induction of NbDef2.2 and a moderate to weak induction of NbDef1.1, NbDef1.2, and NbDef1.4. Only weak or no induction was observed with treatment with benzothiadiazole. The expression of these eight defensin genes demonstrates that only a small fraction of the members of a defensin gene family will respond to a particular hemibiotrophic pathogen as well as to abiotic stress or signaling molecules. An erratum to this article can be found at  相似文献   

4.
A barley (Hordeum vulgare) plasma membrane type aquaporin, HvPIP2;5, was identified as an H2O2 permeable aquaporin among 21 barley and rice PIPs examined in the heterologous expression system using Saccharomyces cerevisiae. Four TIPs were also detected as H2O2‐transporting aquaporins among 15 barley and rice TIPs. Influx of H2O2 into yeast cells expressing HvPIP2;5 was determined with a florescent‐dye‐based assay. Indirect immunofluorescence indicated that the expression of HvPIP2;5 protein was ubiquitous in root tissues, and was also weakly observed in leaf epidermal cells and cells in the vascular bundle. Point mutated variants of HvPIP2;5 were generated by the site‐directed mutagenesis. Growth assays of yeast cells expressing these mutated HvPIP2;5 proteins suggested that Ser‐126 in HvPIP2;5 has a large impact on H2O2 transport with a minor influence on the HvPIP2;5‐mediated water transport.  相似文献   

5.
Wall-associated receptor-like kinases (WAKs) are important candidates for directly linking the extracellular matrix with intracellular compartments and are involved in developmental processes and stress response. WAK gene family has been identified in plants such as Arabidopsis and rice. Here, we present a detailed analysis of the WAK1 gene from barley cv. Golden Promise, mapped to chromosome 5H. Three BAC clones corresponding to the WAK fragment were sequenced and the full-length WAK1 gene was characterized. The gene has three exons and two short introns with a coding region of 2,178 bp encoding a protein of 725 amino acids. A regulatory region was analyzed in ?1,000 bp sequence upstream to start codon. Using conserved domains database and SMART, various conserved domains such as GUB WAK Bind, epidermal growth factor CA, and protein kinase C as well as other regions like signal peptides, active sites, and transmembrane domains were identified. The gene organization of HvWAK1 was compared with wheat (TaWAK1) and Arabidopsis (AtWAK1), suggesting that the WAK1 gene organization has remained highly conserved. Nonetheless, WAK1 was found to be highly divergent when compared with sequences available from barley cv. Haruna Nijo (50 %), rice (46 %), wheat (21 %), Arabidopsis (25 %), and maize (19 %). This divergence may have facilitated a better adaptation to surrounding environments due to its role in communication between the extracellular matrix, cell, and outer environment. Semiquantitative RT-PCR-based expression analysis indicates HvWAK1 expression is specific to roots. Significant differences in root growth between GP wild type and GP-Ds mutant seedlings were observed under control and salt stress conditions.  相似文献   

6.
This study reconstructed the phylogeny of the Coluteoid clade using nrDNA ITS and plastid matK and rpl32-trnL(UAG) sequences data. The analyses resolve a well-supported Coluteoid clade, as sister to Astragalus s.str. + Oxytropis, nested within the larger, strongly supported Astragalean clade. The Coluteoid clade is now composed of 12 genera including Podlechiella, Swainsona, Carmichaelia, Clianthus, Montigena, Phyllolobium, Lessertia, Sutherlandia, Sphaerophysa, Smirnowia, Eremosparton and Colutea. Within this clade, Podlechiella is the first diverging lineage followed by successive subclades of Carmichaelia + Clianthus + Swainsona, Phyllolobium, Lessertia + Sutherlandia, Sphaerophysa + Smirnowia + Eremosparton, and Colutea. We assigned the formal tribal name to this clade and redefined the tribe Coluteae. A diagnostic key to the genera of the tribe is presented. Astragalus cysticalyx and A. sinicus have no relationship with the Coluteoid clade, instead, they are nested in Astragalus s. str. Resolution within Colutea is rather low, but several smaller subclades with low to high supports are found in the genus. None of the large sections in Colutea are monophyletic. Divergence time estimates revealed that the Coluteoid clade originated in the Early Miocene (20.4 Mya). Most of its members were diverged during the Late Miocene to Pliocene. Colutea and Podlechiella form the youngest lineages where the diversification occurred in the Pliocene-Pleistocene.  相似文献   

7.
Difference in isozymes and activities of peroxidase (POD) and superoxide dismutase (SOD) in two barley (Hordeum vulgare L.) genotypes differing in salt tolerance (Gebeina, tolerant; Quzhou, sensitive) was investigated using a hydroponic experiment. The activities of both enzymes were significantly increased when the plants of the two barley genotypes were exposed to salt stress, with salt-tolerant genotype being generally higher than the sensitive one. The variation in the POD and SOD isozymes was dependent on barley genotype, salt level and exposure time. When the plants were exposed to salt stress for 10 days, two new POD isozymes were found, R m0.26 (R m, relative mobility of enzyme to dye) in Gebeina and R m0.45 in Quzhou. Both isozymes disappeared after 20 days of salt stress, but R m0.26 appeared again 30 days after the stress. Two new SOD isozymes of R m0.19 and R m0.46 were found in Gebeina when exposed to NaCl for 10 days, but only R m0.46 in Quzhou. As the time of salt stress extended, more new SOD isozymes were detected, R m0.35 in both genotypes in all different salt treatments and R m0.48 in Gebeina under 200 mM NaCl stress. At 30 days after the stress, all the new SOD isozymes disappeared except for R m0.48 in Gebeina under 200 mM NaCl stress. The results suggest that the increased POD and SOD activities could be partly due to the formation of some new isozymes and the tolerant variety had better ability to form new isozymes to overcome salt stress.  相似文献   

8.
植物质膜水通道蛋白(plasma membrane intrinsic proteins,PIPs)是位于细胞质膜上具有选择性、高效转运水分的一类膜内在蛋白,参与植物生长发育的多个生理活动。本研究以大麦‘Haruna—nijo’为材料,对水培幼苗进行4℃冷胁迫,采用实时荧光定量PCR技术对胁迫期(4℃,48h)和温度恢复期(16℃,48h)两个过程的水通道蛋白PIPSs基因表达进行了分析;同期测定了根水导度(Lpr)、根长和苗高,分析冷胁迫下大麦根mF基因的表达与水分生理的关系。结果表明:大麦幼苗经4℃低温胁迫48h后,苗的生长明显受抑,根的生长无显著变化;温度恢复48h后,苗恢复生长,根的生长无显著变化;根水导度在胁迫期下降,恢复期急剧升高,均无显著差异。实时荧光定量PCR结果显示,根中表达量最高的是HvPIP1;2和HvPIP1;3,最低的是HvPIP1;1和HvPIP2;3;冷处理后HvPIPs表达童与对照比较总体百降,其HvPIP1;2、HvPIP1;3、HvPIP1;4、HvPIP1;5、HvPIP2;1、HvPIP2;2明显下调。恢复后大多数HvPIPS表达童增加.HvPIP1;1、HvPIP1;2、HvPIP1;5、HvPIP2;3显砉增如,HvPIP1;4、mPIP2;5表达量降低,但无显著轰异,研菀发现,冷弼迫后夫菱粮HvPIPs的表达情况总体下调,恢复生长大部分HvPIPs上调,结合根水导度的变化,推测大麦HvPIPs在抗冷反应中的作用复杂,冷害的不同阶段HvPIPs对水分吸收所起的作用不同。  相似文献   

9.
DNA cassette containing an AtDREB1A cDNA and a nos terminator, driven by a cauliflower mosaic 35S promoter, or a stress-inducible rd29A promoter, was transformed into the ground cover chrysanthemum (Dendranthema grandiflorum) ‘Fall Color’ genome. Compared with wild type plants, severe growth retardation was observed in 35S:DREB1A plants, but not in rd29A:DREB1A plants. RT-PCR analysis revealed that, under stress conditions, the DREB1A gene was over-expressed constitutively in 35S:DREB1A plants, but was over-expressed inductively in rd29A:DREB1A plants. The transgenic plants exhibited tolerance to drought and salt stress, and the tolerance was significantly stronger in rd29A:DREB1A plants than in 35S:DREB1A plants. Proline content and SOD activity were increased inductively in rd29A:DREB1A plants than in 35S:DREB1A plants under stress conditions. These results indicate that heterologous AtDREB1A can confer drought and salt tolerance in transgenic chrysanthemum, and improvement of the stress tolerance may be related to enhancement of proline content and SOD activity.  相似文献   

10.
DNA cassette containing an AtDREB1A cDNA and a nos terminator, driven by a cauliflower mosaic 35S promoter, or a stress-inducible rd29A promoter, was transformed into the ground cover chrysanthemum (Dendranthema grandiflorum) ‘Fall Color’ genome. Compared with wild type plants, severe growth retardation was observed in 35S:DREB1A plants, but not in rd29A:DREB1A plants. RT-PCR analysis revealed that, under stress conditions, the DREB1A gene was over-expressed constitutively in 35S:DREB1A plants, but was over-expressed inductively in rd29A:DREB1A plants. The transgenic plants exhibited tolerance to drought and salt stress, and the tolerance was significantly stronger in rd29A:DREB1A plants than in 35S:DREB1A plants. Proline content and SOD activity were increased inductively in rd29A:DREB1A plants than in 35S:DREB1A plants under stress conditions. These results indicate that heterologous AtDREB1A can confer drought and salt tolerance in transgenic chrysanthemum, and improvement of the stress tolerance may be related to enhancement of proline content and SOD activity.  相似文献   

11.
12.
13.
Salinity is a major yield-reducing factor in coastal and arid irrigated rice production systems. Rice seedlings (Oryza sativa cv. Tarom Atri) were exposed to different NaCl concentrations for 8 days after germination. Plants height, fresh and dry weight, relative water content, pigment and carbohydrate content, photosynthetic efficiency and lipid peroxidase and antioxidant enzyme activity of rice seedlings grown under salt stress were investigated. Seedling grown under 25and 50 mM salt were shorter than the control. They could, however, develop their secondary leaves. Seedlings grown in the nutrient solution supplied with 100 and 200 mM extra salt could not develop their secondary leaves. Fresh weight ofseedlings grown under salt stress reduced up to 42.2% of the non-treated seedlings. Chlorophylls and carotenoids contents decreased significantly in the salt-treated seedlings. Carotenoid contents in NaCl-treated seedlings were decreased to 39.3%. No significant changes occurred in the photochemical efficiency of control and stressed plants. Increasing concentrations of NaCl resulted in increase and decrease of Na+ and K+ ions, respectively. NaCl salinity caused an increase in both peroxide content and lipid peroxidation. Seedlings which recovered for 24 h showed lower peroxide and malondialdehyde content.  相似文献   

14.
15.
16.
A hydroponic experiment was conducted to elucidate the difference in growth and cell ultrastructure between Tibetan wild and cultivated barley genotypes under moderate (150 mM NaCl) and high (300 mM NaCl) salt stress. The growth of three barley genotypes was reduced significantly under salt stress, but the wild barley XZ16 (tolerant) was less affected relative to cultivated barley Yerong (moderate tolerant) and Gairdner (sensitive). Meanwhile, XZ16 had lower Na+ and higher K+ concentrations in leaves than other two genotypes. In terms of photosynthetic and chlorophyll fluorescence parameters, salt stress reduced maximal photochemical efficiency (F v/F m), net photosynthetic rate (Pn), stomatal conductance (Gs), and intracellular CO2 concentration (Ci). XZ16 showed relatively smaller reduction in comparison with the two cultivated barley genotypes. The observation of transmission electron microscopy found that fundamental cell ultrastructure changes happened in both leaves and roots of all barley genotypes under salt NaCl stress, with chloroplasts being most changed. Moreover, obvious difference could be detected among the three genotypes in the damage of cell ultrastructure under salt stress, with XZ16 and Gairdner being least and most affected, respectively. It may be concluded that high salt tolerance in XZ16 is attributed to less Na+ accumulation and K+ reduction in leaves, more slight damage in cell ultrastructure, which in turn caused less influence on chloroplast function and photosynthesis.  相似文献   

17.
18.
19.
20.
OsAMT is a high-affinity ammonium transporter responsible for NH 4 + uptake by rice plants. To investigate the expression patterns of OsAMT in different genotypes in relation to nitrogen accumulation, we measured the expression of OsAMT1.1, OsAMT1.2, and OsAMT1.3 using Real-Time PCR (RT-PCR) in GD (higher N accumulation) and NG (lower N accumulation) seedlings of the Oryza sativa L. cultivar treated with 0.1 mM NH4NO3 and 2 mM NH4NO3. We found that the expression level of OsAMT1.1 was significantly higher than those of OsAMT1.2 and OsAMT1.3 in the roots treated with 0.1 mM NH4NO3, suggesting that OsAMT1.1 contributed the most to N accumulation among the three genes. In GD root, OsAMT1.1 had significantly higher expression levels when it was up-regulated by 0.1 mM NH4NO3 than when down-regulated by 2 mM NH4NO3. OsAMT1.1 was mainly found in GD roots treated with 0.1 mM NH4NO3. We conclude that the OsAMT1.1 in GD roots, which was significantly up-regulated by low N and down-regulated by high N, was the dominating factor in determining the higher N acquisition in GD than in NG at 0.1 mM NH4NO3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号