首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cellular interactions with extracellular matrices (ECM) through the application of mechanical forces mediate numerous biological processes including developmental morphogenesis, wound healing and cancer metastasis. They also play a key role in the cellular repopulation and/or remodeling of engineered tissues and organs. While 2-D studies can provide important insights into many aspects of cellular mechanobiology, cells reside within 3-D ECMs in vivo, and matrix structure and dimensionality have been shown to impact cell morphology, protein organization and mechanical behavior. Global measurements of cell-induced compaction of 3-D collagen matrices can provide important insights into the regulation of overall cell contractility by various cytokines and signaling pathways. However, to understand how the mechanics of cell spreading, migration, contraction and matrix remodeling are regulated at the molecular level, these processes must also be studied in individual cells. Here we review the evolution and application of techniques for imaging and assessing local cell–matrix mechanical interactions in 3-D culture models, tissue explants and living animals.  相似文献   

2.
Members of the Paracoccidioides complex are human pathogens that infect different anatomic sites in the host. The ability of Paracoccidioides spp. to infect host niches is putatively supported by a wide range of virulence factors, as well as fitness attributes that may comprise the transition from mycelia/conidia to yeast cells, response to deprivation of micronutrients in the host, expression of adhesins on the cell surface, response to oxidative and nitrosative stresses, as well as the secretion of hydrolytic enzymes in the host tissue. Our understanding of how those molecules can contribute to the infection establishment has been increasing significantly, through the utilization of several models, including in vitro, ex vivo and in vivo infection in animal models. In this review we present an update of our understanding on the strategies used by the pathogen to establish infection. Our results were obtained through a comparative proteomic analysis of Paracoccidioides spp. in models of infection.  相似文献   

3.
The distribution of ketone bodies between oxidation and lipid synthesis was analysed in homogenates of developing rat brain. The capacity for lipid synthesis of homogenized or minced brain preparations was compared with rates of lipid synthesis in vivo, assessed by incorporation of 3H from 3H2O into fatty acids and cholesterol. Brain homogenates of suckling rats (but not those of adults) incorporated label from [3-14C]ketone bodies into lipids, but this process was slow as compared to 14CO2 production (< 5%) and much slower than the total rate of ketone-body utilization (< 0.5%). Study of 3H2O incorporation demonstrated that the rates of lipogenesis and cholesterogenesis are at least one order of magnitude higher in vivo than in vitro. Maximal rates of 3H incorporation into fatty acids (3 μmol/g brain . h) and into cholesterol (0.6 μmol/g brain . h) were found during the third postnatal week. Adult rats still incorporated 3H into brain fatty acids at an appreciable rate (1 μmol/g brain . h), whereas cholesterogenesis was very low. It is concluded that in vitro measurements of lipid synthesis severely underestimate the rates that occur in developing rat brain in vivo. The high rate of 3H incorporation into lipids by developing and adult rat brain as compared to the amounts of these lipids present in the brain suggests an important contribution of endogenous lipid synthesis during brain development and an appreciable rate of fatty acid turnover during brain growth, but also in the adult brain.  相似文献   

4.
5.
Bromodomain-containing protein 4 (BRD4) and phosphatidylinositol 3-kinase (PI3K) are both key oncogenic proteins in human prostate cancer. In the current study, we examined the anti-prostate cancer cell activity by SF2523, a BRD4 and PI3K dual inhibitor. We showed that SF2523 potently inhibited survival and proliferation of the primary human prostate cancer cells. SF2523 induced profound apoptosis activation in prostate cancer cells. The dual inhibitor was yet non-cytotoxic to the prostate epithelial cells. At the molecular level, SF2523 downregulated BRD4-regulated genes (cyclin D1, c-Myc and androgen receptor) and almost blocked AKT-S6K1 activation in prostate cancer cells. In vivo, SF2523 intraperitoneal administration at the well-tolerated dose inhibited human prostate cancer xenograft growth in severe combined immunodeficient (SCID) mice. BRD4-regulated genes (cyclin D1, c-Myc and androgen receptor) and AKT-S6K1 activation were inhibited in SF2523-treated tumors. Together, dual inhibition of BRD4 and PI3K by SF2523 suppresses human prostate cancer cell growth in vitro and in vivo.  相似文献   

6.
R-(-)-β-O-methylsynephrine (OMe-Syn) is an active compound isolated from a plant of the Rutaceae family. We conducted cell proliferation assays on various cell lines and found that OMe-Syn more strongly inhibited the growth of human umbilical vein endothelial cells (HUVECs) than that of other normal and cancer cell lines tested. In angiogenesis assays, it inhibited vascular endothelial growth factor (VEGF)-induced invasion and tube formation of HUVECs with no toxicity. The anti-angiogenic activity of OMe-Syn was also validated in vivo using the chorioallantonic membrane (CAM) assay in growing chick embryos. Expression of the growth factors VEGF, hepatocyte growth factor, and basic fibroblast growth factor was suppressed by OMe-Syn in a dose-dependent manner. Taken together, our results indicate that this compound could be a novel basis for a small molecule targeting angiogenesis.  相似文献   

7.
8.
SUMOylation is a posttranslational process that attaches a small ubiquitin-like modifier (SUMO) to its target proteins covalently. SUMOylation controls multiple cellular processes through the recognition of SUMO by a SUMO-interacting motif (SIM). In this study, we developed assay systems for detecting noncovalent interactions between SUMO and SIM in cells using split-luciferase complementation. We applied a version of this assay to the detection of in vitro SUMO–SIM interactions using a bacterial expression system. These novel assays enable screening of inhibitors of SUMO-dependent protein–protein interactions, either in vivo or in vitro, in a high-throughput manner.  相似文献   

9.
10.
A novel series of chromone-isatin derivatives 6a6p were designed, synthesized and characterized by 1H NMR, 13C NMR and HRMS. These novel synthetic compounds were evaluated for inhibitory activity against yeast α-glucosidase enzyme. The results of biological test have shown that all tested compounds exhibited excellent to potent inhibitory activity in the range of IC50?=?3.18?±?0.12–16.59?±?0.17?μM as compared to the standard drug acarbose (IC50?=?817.38?±?6.27?μM). Compound 6j (IC50?=?3.18?±?0.12?μM) with a hydroxyl group at the 7-position of chromone and a 4-bromobenzyl group at the N1-positions of isatin, was found to be the most active compound among the series. Furthermore, molecular docking study was performed to help understand binding interactions of the most active analogs with α-glucosidase enzyme. These results indicated that this class of compounds had potential for the development of anti-diabetic agents.  相似文献   

11.
12.
Glioblastoma, an aggressive brain tumor, has a poor prognosis and a high risk of recurrence. An improved chemotherapeutic approach is required to complement radiation therapy. Gold(I) complexes bearing phosphole ligands are promising agents in the treatment of cancer and disturb the redox balance and proliferation of cancer cells by inhibiting disulfide reductases. Here, we report on the antitumor properties of the gold(I) complex 1-phenyl-bis(2-pyridyl)phosphole gold chloride thio-β-d-glucose tetraacetate (GoPI-sugar), which exhibits antiproliferative effects on human (NCH82, NCH89) and rat (C6) glioma cell lines. Compared to carmustine (BCNU), an established nitrosourea compound for the treatment of glioblastomas that inhibits the proliferation of these glioma cell lines with an IC50 of 430 μM, GoPI-sugar is more effective by two orders of magnitude. Moreover, GoPI-sugar inhibits malignant glioma growth in vivo in a C6 glioma rat model and significantly reduces tumor volume while being well tolerated. Both the gold(I) chloro- and thiosugar-substituted phospholes interact with DNA albeit more weakly for the latter. Furthermore, GoPI-sugar irreversibly and potently inhibits thioredoxin reductase (IC50 4.3 nM) and human glutathione reductase (IC50 88.5 nM). However, treatment with GoPI-sugar did not significantly alter redox parameters in the brain tissue of treated animals. This might be due to compensatory upregulation of redox-related enzymes but might also indicate that the antiproliferative effects of GoPI-sugar in vivo are rather based on DNA interaction and inhibition of topoisomerase I than on the disturbance of redox equilibrium. Since GoPI-sugar is highly effective against glioblastomas and well tolerated, it represents a most promising lead for drug development. This article is part of a Special Issue entitled: Thiol-Based Redox Processes.  相似文献   

13.
Herein we report a study of novel arylchromene derivatives as analogs of naturally occurring flavonoids with prominent α-glucosidase inhibitory properties. Novel inhibitors were identified via simple stepwise in silico screening, efficient synthesis, and biological evaluation. It is shown that 2-aryl-4H-chromene core retains pharmacophore properties while being readily available synthetically. A lead compound identified through screening inhibits yeast α-glucosidase with IC50 of 62.26?µM and prevents postprandial hyperglycemia in rats at 2.2?mg/kg dose.  相似文献   

14.
Pilosocereus robinii is a rare species which is experiencing sudden population collapse. Identifying and developing effective conservation and management strategies to halt the forestall extinction of this species is crucial. The present study was conducted to assess the best conditions for in vitro propagation of this plant in regard to its morphogenic, genetic as well as the chemical potentials. A successful in vitro propagation system of P. robinii has been developed. MS hormone-free medium induced the best root morphogenic potential. The plants were acclimatized in the greenhouse at 100% survival rate. Besides, the somaclonal variations between the in vitro raised plants were analyzed using PCR-ISSR markers and SDS–PAGE protein, where the regenerated explants on MS medium supplemented with TDZ were the highest in inducing new specific marker bands. Sh6 ISSR primer showed the highest polymorphism value, 81.8% with 33 total amplified fragments, while Sh3 ISSR primer showed the lowest value with polymorphic percentage of 14.3%. Furthermore, SDS–PAGE protein analysis showed no variation in protein pattern of the studied treatments. On the other side, HPLC analysis of the in vitro plantlets extracts has shown that 2iP based treatments were the highest in organic acids accumulation, while the phenolic constituents' accumulation was found to reach its peak in the BA based treatments.  相似文献   

15.
Cellular systems implanted into an injured nerve may produce growth factors or extracellular matrix molecules, modulate the inflammatory process and eventually improve nerve regeneration. In the present study, we evaluated the therapeutic value of human umbilical cord matrix MSCs (HMSCs) on rat sciatic nerve after axonotmesis injury associated to Vivosorb® membrane. During HMSCs expansion and differentiation in neuroglial-like cells, the culture medium was collected at 48, 72 and 96 h for nuclear magnetic resonance (NMR) analysis in order to evaluate the metabolic profile. To correlate the HMSCs ability to differentiate and survival capacity in the presence of the Vivosorb® membrane, the [Ca2+]i of undifferentiated HMSCs or neuroglial-differentiated HMSCs was determined by the epifluorescence technique using the Fura-2AM probe. The Vivosorb® membrane proved to be adequate and used as scaffold associated with undifferentiated HMSCs or neuroglial-differentiated HMSCs. In vivo testing was carried out in adult rats where a sciatic nerve axonotmesis injury was treated with undifferentiated HMSCs or neuroglial differentiated HMSCs with or without the Vivosorb® membrane. Motor and sensory functional recovery was evaluated throughout a healing period of 12 weeks using sciatic functional index (SFI), extensor postural thrust (EPT), and withdrawal reflex latency (WRL).  相似文献   

16.

Background aims

On the basis of previous studies, exosomes secreted by human umbilical cord mesenchymal stromal cell (hucMSC-ex) could prevent and repair acute kidney injury induced by cisplatin in rats. However, its potential mechanism is still unclear. In the present study, the model with hucMSC-ex pretreated human renal tubular epithelial cell lines HK-2 that could prevent the injury of cisplatin was successfully established.

Methods

First, we pretreated the HK-2 cells with hucMSC-ex for 24?h. Cisplatin was then used to injure HK-2 cells. Gain and loss of function study were used to explore the role of 14-3-3ζ. The expression level of proliferating cell nuclear antigen (PCNA) was analyzed by immunofluorescence assay and Western blot. The number of apoptotic cells was detected by terminal deoxynucleotidyl transferase dUTP nick end labeling assay and flow cytometry analysis. The formation of autophagosomes was observed under super-resolution optical microscope. Western blot was used to analyze the expression levels of LC3B, P62, 14-3-3ζ and Bax.

Results

Pretreating cells with hucMSC-ex could prevent the injury of cisplatin by reducing the number of apoptotic cells and increasing the expression level of PCNA. Simultaneously, the autophagic level was up-regulated. The application of autophagic inhibitor 3-methyladenine (3-MA) could reverse the protective effect of hucMSC-ex. The overexpression of 14-3-3ζ enhanced the autophagic level and protected the injury of cisplatin. The knock-down of 14-3-3ζ could reduce the autophagic level and enhance the disadvantage of cisplatin. The enhanced injury of cisplatin was reversed when the knock-down of 14-3-3ζ was replenished with hucMSC-ex.

Conclusions

14-3-3ζ transported by hucMSC-ex may up-regulate autophagic level in HK-2 cells, which can prevent the injury of cisplatin. This discovery provides the new theoretical basis for the prevention of cisplatin-induced nephrotoxicity by hucMSC-ex.  相似文献   

17.
λCII is the key protein that influences the lysis/lysogeny decision of λ by activating several phage promoters. The effect of CII is modulated by a number of phage and host proteins including Escherichia coli HflK and HflC. These membrane proteins copurify as a tightly bound complex ‘HflKC’ that inhibits the HflB (FtsH)-mediated proteolysis of CII both in vitro and in vivo. Individual purification of HflK and HflC has not been possible so far, since each requires the presence of the other for proper folding. We report the first purification of HflK and HflC separately as active and functional proteins and show that each can interact with HflB on its own and each inhibits the proteolysis of CII. They also inhibit the proteolysis of E. coli σ32 by HflB. We show that at low concentrations each protein is dimeric, based on which we propose a scheme for the mutual interactions of HflB, HflK and HflC in a supramolecular HflBKC protease complex.  相似文献   

18.
Twenty three fused carbazole–imidazoles 6a–w were designed, synthesized, and screened as new α-glucosidase inhibitors. All the synthesized fused carbazole-imidazoles 6a-w were found to be more active than acarbose (IC50?=?750.0?±?1.5?µM) against yeast α-glucosidase with IC50 values in the range of 74.0?±?0.7–298.3?±?0.9?µM. Kinetic study of the most potent compound 6v demonstrated that this compound is a competitive inhibitor for α-glucosidase (Ki value?=?75?µM). Furthermore, the in silico studies of the most potent compounds 6v and 6o confirmed that these compounds interacted with the key residues in the active site of α-glucosidase.  相似文献   

19.
[6-3H1] (24S)-24-Ethylcholesta-5,22,25-trien-3β-ol added to the growth medium of a culture of Trebouxia sp. 213/3 was efficiently taken-up by the cells and converted into (24R)-24-ethylcholesta-5,22-dien-3β-ol (poriferasterol) which is one of the major sterols of this alga. A cell-free homogenate was obtained from Trebouxia which catalysed the NADPH-dependent reduction of [6-3H1] (24S)-24-ethylcholesta-5,22,25-trien-3β-ol to yield poriferasterol. The δ25-sterol reductase was found to be mainly localized in the microsomal fraction of the homogenate.  相似文献   

20.

Background

Osteosarcoma (OS) is the most frequent pediatric malignant bone tumor. OS patients have not seen any major therapeutic progress in the last 30 years, in particular in the case of metastatic disease, which requires new therapeutic strategies. The pro-apoptotic cytokine Tumor necrosis factor (TNF)–Related Apoptosis Inducing Ligand (TRAIL) can selectively kill tumor cells while sparing normal cells, making it a promising therapeutic tool in several types of cancer. However, many OS cell lines appear resistant to recombinant human (rh)TRAIL-induced apoptosis. We, therefore, hypothesized that TRAIL presentation at the membrane level of carrier cells might overcome this resistance and trigger apoptosis.

Methods

To address this, human adipose mesenchymal stromal cells (MSCs) transfected in a stable manner to express membrane-bound full-length human TRAIL (mbTRAIL) were co-cultured with several human OS cell lines.

Results

This induced apoptosis by cell-to-cell contact even in cell lines initially resistant to rhTRAIL. In contrast, mbTRAIL delivered by MSCs was not able to counteract tumor progression in this OS orthotopic model.

Discussion

This was partly due to the fact that MSCs showed a potential to support tumor development. Moreover, the expression of mbTRAIL did not show caspase activation in adjacent tumor cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号