首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Immobilized angiotensin-converting enzyme (ACE) was utilized as an affinity ligand to isolate a naturally occurring ACE binding protein from normal human serum. The enzyme was isolated from solubilized bovine lung membrane preparations by lisinopril affinity chromatography. It had an estimated molecular weight of 180 000 and was recognized by the anti-ACE antibody for the rabbit testicular ACE in immunoblots. ACE was immobilized onto epoxy Sepharose as well as Affi-Gel 15. Immobilized ACE on Affi-Gel 15 had higher catalytic activity (0.176 U/mL) compared with the enzyme immobilized on epoxy Sepharose (0.00005 U/mL). Immobilized ACE served as the affinity ligand for the identification of the ACE binding protein in human serum with an estimated molecular weight of 14 000 as observed by SDS polyacrylamide gel electrophoresis. The identification and further characterization of ACE binding proteins in serum and tissues may facilitate the greater understanding of the endogenous regulation of this key enzyme, which is involved in blood pressure homeostasis.  相似文献   

2.
The hybridoma producing monoclonal antibody (IgG1) to human angiotensin-converting enzyme (ACE) has been prepared by fusion of murine myeloma P3O1 with spleen cells of BALB/c mice immunised with a purified human lung ACE preparation. A high specificity of monoclonal antibody (MAb) binding to immobilized ACE has been demonstrated by ELISA; that of soluble ACE--by immunoadsorption test. The latter technique permits the use of impure ACE preparations for the screening procedure. This MAb did not effect ACE activity. This antibody is believed useful not only for immunoassay and immunopurification of ACE, but also as a tool for investigation of enzyme distribution in tissue as well as for studying the structure and mechanism of ACE action.  相似文献   

3.
Binding constants were determined for the activator fructose-6-phosphate (F6P) and substrate adenosine 5'-triphosphate (ATP) (in the presence and absence of F6P) to the recombinant wild-type (WT) Rhodobacter sphaeroides adenosine 5'-diphosphate-(ADP)-glucose pyrophosphorylase (ADPGlc PPase) using affinity capillary electrophoresis (ACE). In these binding studies, the capillary is initially injected with a plug of sample containing ADPGlc PPase and noninteracting standards. The sample is then subjected to increasing concentrations of F6P or ATP in the running buffer and electrophoresed. Analysis of the change in the migration times of ADPGlc PPase, relative to those of the noninteracting standards, as a function of the varying concentration of F6P or ATP yields a binding constant. The values obtained were in good agreement with kinetic parameters obtained from steady state activity assays. The method was extended to examine the F6P binding constants for the R33A and R22A enzymes and the ATP binding constants for the R8A enzyme in the presence and absence of F6P. The R33A enzyme has been shown by activity assays to be insensitive to F6P activation, indicating a defect in binding or in downstream transmission of the allosteric signal required for full activation. ACE indicated no apparent binding of F6P, supporting the former hypothesis. The R22A enzyme was shown by activity assays to have a approximately 15-fold decrease in apparent affinity for F6P compared to that of WT while ACE indicated an affinity comparable to that of WT; potential reasons for this discrepancy are discussed. The R8A enzyme as measured by activity assays exhibits reduced fold-activation by F6P compared to that of WT but increased apparent affinity for ATP in the presence of F6P. The ACE results were in good agreement with the activity assay data, confirming the increased affinity for ATP in the presence of F6P. This method demonstrates the quantitative ability of ACE to study different binding sites/ligand interactions in allosteric enzymes.  相似文献   

4.
Angiotensin I-converting enzyme (ACE), a key enzyme in cardiovascular pathophysiology, consists of two homologous domains (N- and C-), each bearing a Zn-dependent active site. ACE inhibitors are among the most prescribed drugs in the treatment of hypertension and cardiac failure. Fine epitope mapping of two monoclonal antibodies (mAb), 1G12 and 6A12, against the N-domain of human ACE, was developed using the N-domain 3D-structure and 21 single and double N-domain mutants. The binding of both mAbs to their epitopes on the N-domain of ACE is significantly diminished by the presence of the C-domain in the two-domain somatic tissue ACE and further diminished by the presence of sialic acid residues on the surface of blood ACE. The binding of these mAbs to blood ACE, however, increased dramatically (5-10-fold) in the presence of ACE inhibitors or EDTA, whereas the effect of these compounds on the binding of the mAbs to somatic tissue ACE was less pronounced and even less for truncated N-domain. This implies that the binding of ACE inhibitors or removal of Zn2+ from ACE active centers causes conformational adjustments in the mutual arrangement of N- and C-domains in the two-domain ACE molecule. As a result, the regions of the epitopes for mAb 1G12 and 6A12 on the N-domain, shielded in somatic ACE by the C-domain globule and additionally shielded in blood ACE by sialic acid residues in the oligosaccharide chains localized on Asn289 and Asn416, become unmasked. Therefore, we demonstrated a possibility to employ these mAbs (1G12 or 6A12) for detection and quantification of the presence of ACE inhibitors in human blood. This method should find wide application in monitoring clinical trials with ACE inhibitors as well as in the development of the approach for personalized medicine by these effective drugs.  相似文献   

5.
Angiotensin-I-converting enzyme (EC 3.4.15.1; ACE) plays an important physiological role in the regulation of blood pressure by converting angiotensin I to angiotensin II, a potent vasoconstrictor. Therefore, ACE inhibition has become a major target control for hypertension. Pipefish, or hailong, is an essential traditional Chinese medicine that is widely used in anti-fatigue and anti-cancer. A recent study has found two ACE-inhibitory peptides (TFPHGP and HWTTQR) purified from the seaweed pipefish by Alcalase enzymatic hydrolysis. Two peptides exhibited different ACE-inhibitory activities; however, the molecular mechanism involved is poorly understood. Further investigations are necessary to elucidate the relationship between the inhibition mechanism and the peptides. The current study is focused on investigating the interactions between each ACE-inhibitory peptide and ACE by performing molecular docking and molecular dynamics (MD) simulations. ACE protein remained stable throughout the simulations. Furthermore, ACE-TFPHGP complex showed lower binding energy as compared to ACE-HWTTQR complex, which is in good agreement with the experimental results. Glu384 and Glu411 of ACE are key residues upon the ACE-inhibitory peptides binding. Molecular basis generated by this attempt could provide valuable information towards designing new medicine for ACE inhibitor.  相似文献   

6.
The angiotensin I-converting enzyme (ACE; EC.3.4.15.1) is a dipeptidyl carboxypeptidase that plays a central role in blood pressure regulation. The somatic form of the enzyme is composed of two highly similar domains, usually referred to as N and C domains, each containing one active site. Nevertheless, a 1:1 stoichiometry for the binding of lisinopril, captopril or enalaprilat to somatic pig lung ACE is shown by isothermal titration calorimetry (ITC) and enzymatic assays. The binding of the three inhibitors at neutral pH is very tight and the enthalpy changes are positive, indicating that the binding is entropically driven. The origin of this thermodynamic signature is discussed under the new structural information available.  相似文献   

7.
M R Ehlers  J F Riordan 《Biochemistry》1991,30(29):7118-7126
The blood pressure regulating somatic isozyme of angiotensin-converting enzyme (ACE) consists of two homologous, tandem domains each containing a putative metal-binding motif (HEXXH), while the testis isozyme consists of just a single domain that is identical with the C-terminal half of somatic ACE. Previous metal analyses of somatic ACE have indicated a zinc stoichiometry of 1 mol of Zn2+/mol of ACE and inhibitor-binding studies have found 1 mol of inhibitor bound/mol of enzyme. These and other data have indicated that only one of the two domains of somatic ACE is catalytically active. We have repeated the metal and inhibitor-binding analyses of ACE from various sources and have determined protein concentration by quantitative amino acid analysis on the basis of accurate polypeptide molecular weights that are now available. We find that the somatic isozyme in fact contains 2 mol of Zn2+ and binds 2 mol of lisinopril (an ACE inhibitor) per mol of enzyme, whereas the testis isozyme contains 1 mol of Zn2+ and binds 1 mol of lisinopril. In the case of somatic ACE, the second equivalent of inhibitor binds to a second zinc-containing site as evidenced by the ability of a moderate excess of inhibitor to protect both zinc ions against dissociation. However, active site titration with lisinopril assayed by hydrolysis of furanacryloyl-Phe-Gly-Gly revealed that 1 mol of inhibitor/mol of enzyme abolished the activity of either isozyme, indicating that the principal angiotensin-converting site likely resides in the C-terminal (testicular) domain of somatic ACE and that binding of inhibitor to this site is stronger than to the second site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
9.

Background

The pattern of binding of monoclonal antibodies (mAbs) to 16 epitopes on human angiotensin I-converting enzyme (ACE) comprise a conformational ACE fingerprint and is a sensitive marker of subtle protein conformational changes.

Hypothesis

Toxic substances in the blood of patients with uremia due to End Stage Renal Disease (ESRD) can induce local conformational changes in the ACE protein globule and alter the efficacy of ACE inhibitors.

Methodology/Principal Findings

The recognition of ACE by 16 mAbs to the epitopes on the N and C domains of ACE was estimated using an immune-capture enzymatic plate precipitation assay. The precipitation pattern of blood ACE by a set of mAbs was substantially influenced by the presence of ACE inhibitors with the most dramatic local conformational change noted in the N-domain region recognized by mAb 1G12. The “short” ACE inhibitor enalaprilat (tripeptide analog) and “long” inhibitor teprotide (nonapeptide) produced strikingly different mAb 1G12 binding with enalaprilat strongly increasing mAb 1G12 binding and teprotide decreasing binding. Reduction in S-S bonds via glutathione and dithiothreitol treatment increased 1G12 binding to blood ACE in a manner comparable to enalaprilat. Some patients with uremia due to ESRD exhibited significantly increased mAb 1G12 binding to blood ACE and increased ACE activity towards angiotensin I accompanied by reduced ACE inhibition by inhibitory mAbs and ACE inhibitors.

Conclusions/Significance

The estimation of relative mAb 1G12 binding to blood ACE detects a subpopulation of ESRD patients with conformationally changed ACE, which activity is less suppressible by ACE inhibitors. This parameter may potentially serve as a biomarker for those patients who may need higher concentrations of ACE inhibitors upon anti-hypertensive therapy.  相似文献   

10.
A model of the ACE2 structure and function as a SARS-CoV receptor   总被引:19,自引:0,他引:19  
The angiotensin-converting enzyme 2 (ACE2) is an important regulator of the renin-angiotensin system and was very recently identified as a functional receptor for the SARS virus. The ACE2 sequence is similar (sequence identities 43% and 35%, and similarities 61% and 55%, respectively) to those of the testis-specific form of ACE (tACE) and the Drosophila homolog of ACE (AnCE). The high level of sequence similarity allowed us to build a robust homology model of the ACE2 structure with a root-mean-square deviation from the aligned crystal structures of tACE and AnCE less than 0.5A. A prominent feature of the model is a deep channel on the top of the molecule that contains the catalytic site. Negatively charged ridges surrounding the channel may provide a possible binding site for the positively charged receptor-binding domain (RBD) of the S-glycoprotein, which we recently identified [Biochem. Biophys. Res. Commun. 312 (2003) 1159]. Several distinct patches of hydrophobic residues at the ACE2 surface were noted at close proximity to the charged ridges that could contribute to binding. These results suggest a possible binding region for the SARS-CoV S-glycoprotein on ACE2 and could help in the design of experiments to further elucidate the structure and function of ACE2.  相似文献   

11.
Zinc, the catalytically essential metal of angiotensin converting enzyme (ACE), has been replaced by cobalt(II) to give an active, chromophoric enzyme that is spectroscopically responsive to inhibitor binding. Visible absorption spectroscopy and magnetic circular dichroic spectropolarimetry have been used to characterize the catalytic metal binding site in both the cobalt enzyme and in several enzyme-inhibitor complexes. The visible absorption spectrum of cobalt ACE exhibits a single broad maximum (525 nm) of relatively low absorptivity (epsilon = 75 M-1 cm-1). In contrast, the spectra of enzyme-inhibitor complexes display more clearly defined maxima at longer wavelengths (525-637 nm) and of markedly higher absorptivities (130-560 M-1 cm-1). The large spectral response indicates that changes in the cobalt ion coordination sphere occur on inhibitor binding. Magnetic circular dichroic spectropolarimetry has shown that the metal coordination geometry in the inhibitor complexes is tetrahedral and of higher symmetry than in cobalt ACE alone. The presence of sulfur----cobalt charge-transfer bands in both the visible absorption and magnetic circular dichroic spectra of the cobalt ACE-Captopril complex confirm direct ligation of the thiol group of the inhibitor to the active-site metal.  相似文献   

12.
Angiotensin I-converting enzyme (ACE, peptidyl dipeptidase, EC 3.4.15.2) is a key enzyme in cardiovascular pathophysiology. A wide spectrum of monoclonal antibodies to different epitopes on the N and C domains of human ACE has been used to study different aspects of ACE biology. In this study we characterized the monoclonal antibody (mAb) 5F1, developed against the N domain of human ACE, which recognizes both the catalytically active and the denatured forms of ACE. The epitope for mAb 5F1 was defined using species cross-reactivity, synthetic peptide (PepScan technology) and phage display library screening, Western blotting, site-directed mutagenesis, and protein modeling. The epitope for mAb 5F1 shows no overlap with the epitopes of seven other mAbs to the N domain described previously and is localized on the other side of the N domain globule. The binding of mAb 5F1 to ACE is carbohydrate-dependent and increased significantly as a result of altered glycosylation after treatment with alpha-glucosidase-1 inhibitor, N-butyldeoxynojirimycin (NB-DNJ), or neuraminidase. Out of 17 species tested, mAb 5F1 showed strict primate ACE specificity. In addition, mAb 5F1 recognized human ACE in Western blots and on paraffin-embedded sections. The sequential part of the epitope for mAb 5F1 is created by the N-terminal part of the N domain, between residues 1 and 141. A conformational region of the epitope was also identified, including the residues around the glycan attached to Asn117, which explains the sensitivity to changes in glycosylation state, and another stretch localized around the motif 454TPPSRYN460. Site-directed mutagensis and inhibition assays revealed that mAb 5F1 inhibits ACE activity at high concentrations due to binding of residues on both sides of the active site cleft, thus supporting a hinge-bending mechanism for substrate binding of ACE.  相似文献   

13.
The hybridoma producing monoclonal antibody (IgG1) to human angiotensin-converting enzyme (ACE) has been prepared by fusion of murine myeloma P3O1 with spleen cells of BALB/c mice immunized with a purified human lung ACE preparation. A high specificity of monoclonal antibody (MAb) binding to immobilized ACE has been demonstrated by enzyme-linked immunosorbent assay and that of soluble ACE by an immunoadsorption test. The latter technique permits the use of impure ACE preparations for the screening procedure. This MAb did not affect ACE activity. We believe this antibody will be useful not only for immunoassay and immunopurification of ACE, but also as a tool for the investigation of the tissue distribution of the enzyme as well as for the study of the structure and mechanism of action of ACE.  相似文献   

14.
Severe acute respiratory syndrome (SARS) is caused by the SARS coronavirus (CoV). The spike protein of SARS-CoV consists of S1 and S2 domains, which are responsible for virus binding and fusion, respectively. The receptor-binding domain (RBD) positioned in S1 can specifically bind to angiotensin-converting enzyme 2 (ACE2) on target cells, and ACE2 regulates the balance between vasoconstrictors and vasodilators within the heart and kidneys. Here, a recombinant fusion protein containing 193-amino acid RBD (residues 318–510) and glutathione S-transferase were prepared for binding to target cells. Additionally, monoclonal RBD antibodies were prepared to confirm RBD binding to target cells through ACE2. We first confirmed that ACE2 was expressed in various mouse cells such as heart, lungs, spleen, liver, intestine, and kidneys using a commercial ACE2 polyclonal antibody. We also confirmed that the mouse fibroblast (NIH3T3) and human embryonic kidney cell lines (HEK293) expressed ACE2. We finally demonstrated that recombinant RBD bound to ACE2 on these cells using a cellular enzyme-linked immunosorbent assay and immunoassay. These results can be applied for future research to treat ACE2-related diseases and SARS.  相似文献   

15.
Angiotensin-converting enzyme-2 (ACE2) may play an important role in cardiorenal disease and it has also been implicated as a cellular receptor for the severe acute respiratory syndrome (SARS) virus. The ACE2 active-site model and its crystal structure, which was solved recently, highlighted key differences between ACE2 and its counterpart angiotensin-converting enzyme (ACE), which are responsible for their differing substrate and inhibitor sensitivities. In this study the role of ACE2 active-site residues was explored by site-directed mutagenesis. Arg273 was found to be critical for substrate binding such that its replacement causes enzyme activity to be abolished. Although both His505 and His345 are involved in catalysis, it is His345 and not His505 that acts as the hydrogen bond donor/acceptor in the formation of the tetrahedral peptide intermediate. The difference in chloride sensitivity between ACE2 and ACE was investigated, and the absence of a second chloride-binding site (CL2) in ACE2 confirmed. Thus ACE2 has only one chloride-binding site (CL1) whereas ACE has two sites. This is the first study to address the differences that exist between ACE2 and ACE at the molecular level. The results can be applied to future studies aimed at unravelling the role of ACE2, relative to ACE, in vivo.  相似文献   

16.
Angiotensin I-converting enzyme (ACE), a key enzyme in cardiovascular pathophysiology, consists of two homologous domains (N and C), each bearing a Zn-dependent active site. We modeled the 3D-structure of the ACE N-domain using known structures of the C-domain of human ACE and the ACE homologue, ACE2, as templates. Two monoclonal antibodies (mAb), 3A5 and i2H5, developed against the human N-domain of ACE, demonstrated anticatalytic activity. N-domain modeling and mutagenesis of 21 amino acid residues allowed us to define the epitopes for these mAbs. Their epitopes partially overlap: amino acid residues K407, E403, Y521, E522, G523, P524, D529 are present in both epitopes. Mutation of 4 amino acid residues within the 3A5 epitope, N203E, R550A, D558L, and K557Q, increased the apparent binding of mAb 3A5 with the mutated N-domain 3-fold in plate precipitation assay, but abolished the inhibitory potency of this mAb. Moreover, mutation D558L dramatically decreased 3A5-induced ACE shedding from the surface of CHO cells expressing human somatic ACE. The inhibition of N-domain activity by mAbs 3A5 and i2H5 obeys similar kinetics. Both mAbs can bind to the free enzyme and enzyme-substrate complex, forming E.mAb and E.S.mAb complexes, respectively; however, only complex E.S can form a product. Kinetic analysis indicates that both mAbs bind better with the ACE N-domain in the presence of a substrate, which, in turn, implies that binding of a substrate causes conformational adjustments in the N-domain structure. Independent experiments with ELISA demonstrated better binding of mAbs 3A5 and i2H5 in the presence of the inhibitor lisinopril as well. This effect can be attributed to better binding of both mAbs with the "closed" conformation of ACE, therefore, disturbing the hinge-bending movement of the enzyme, which is necessary for catalysis.  相似文献   

17.
Angiotensin converting enzyme (ACE) plays a critical role in the circulating or endocrine renin-angiotensin system (RAS) as well as the local regulation that exists in tissues such as the myocardium and skeletal muscle. Here we report the high-resolution crystal structures of testis ACE (tACE) in complex with the first successfully designed ACE inhibitor captopril and enalaprilat, the Phe-Ala-Pro analogue. We have compared these structures with the recently reported structure of a tACE-lisinopril complex [Natesh et al. (2003) Nature 421, 551-554]. The analyses reveal that all three inhibitors make direct interactions with the catalytic Zn(2+) ion at the active site of the enzyme: the thiol group of captopril and the carboxylate group of enalaprilat and lisinopril. Subtle differences are also observed at other regions of the binding pocket. These are compared with N-domain models and discussed with reference to published biochemical data. The chloride coordination geometries of the three structures are discussed and compared with other ACE analogues. It is anticipated that the molecular details provided by these structures will be used to improve the binding and/or the design of new, more potent domain-specific inhibitors of ACE that could serve as new generation antihypertensive drugs.  相似文献   

18.
Somatic angiotensin-converting enzyme (ACE) contains two homologous domains, each bearing a functional active site. Studies on the selectivity of these ACE domains towards either substrates or inhibitors have mostly relied on the use of mutants or isolated domains of ACE. To determine directly the selectivity properties of each ACE domain, working with wild-type enzyme, we developed an approach based on the combined use of N-domain-selective and C-domain-selective ACE inhibitors and fluorogenic substrates. With this approach, marked differences in substrate selectivity were revealed between rat, mouse and human somatic ACE. In particular, the fluorogenic substrate Mca-Ala-Ser-Asp-Lys-DpaOH was shown to be a strict N-domain-selective substrate of mouse ACE, whereas with rat ACE it displayed marked C-domain selectivity. Similar differences in selectivity between these ACE species were also observed with a new fluorogenic substrate of ACE, Mca-Arg-Pro-Pro-Gly-Phe-Ser-Pro-DpaOH. In support of these results, changes in amino-acid composition in the binding site of these three ACE species were pinpointed. Together these data demonstrate that the substrate selectivity of the N-domain and C-domain depends on the ACE species. These results raise concerns about the interpretation of functional studies performed in animals using N-domain and C-domain substrate selectivity data derived only from human ACE.  相似文献   

19.
It has been recently proposed that the second extracellular loop of the human bradykinin (BK) B1 receptor (B1R) contains a conserved HExxH motif also present in peptidases possessing a Zn2+ prosthetic group, such as angiotensin converting enzyme (ACE), and that ACE inhibitors directly activate B1R signaling in endothelial cells. However, the binding of ACE inhibitors to the B1Rs has never been directly evaluated. Information about binding of a radiolabeled inhibitor to natural or recombinant ACE in intact cells (physiologic ionic composition) was also collected. We used the tritiated form of an ACE inhibitor previously proposed to activate the B1R, enalaprilat, to address these questions using recombinant human B1Rs and naturally expressed or recombinant ACE. [3H]Lys-des-Arg9-BK bound to the human recombinant B1Rs with high affinity (KD 0.35 nM) in HEK 293a cells. [3H]Enalaprilat (0.25-10 nM) did not bind to cells expressing recombinant human B1R, but bound with a subnanomolar affinity to recombinant ACE or to naturally expressed ACE in human umbilical vein endothelial cells. The radioligand was further validated using a binding competition assay that involved unlabeled ACE inhibitors or their prodrug forms in endothelial cells. Membranes of HEK 293a cells that expressed B1Rs did not hydrolyze hippuryl-glycylglycine (an ACE substrate). Enalaprilat did not stimulate calcium signaling in HEK 293a cells that expressed B1Rs. A typical ACE inhibitor did not bind to nor stimulate the human B1Rs; nevertheless, several other indirect mechanisms could connect ACE inhibition to B1R stimulation in vivo.  相似文献   

20.
Binding of a panel of eight monoclonal antibodies (mAbs) with the C domain of angiotensin converting enzyme (ACE) to human testicular ACE (tACE) (corresponding to the C domain of the somatic enzyme) was studied and the inhibition of the enzyme by the mAb 4E3 was found. The dissociation constants of complexes of two mAbs, IB8 and 2H9, with tACE were 2.3 +/- 0.4 and 2.5 +/- 0.4 nM, respectively, for recombinant tACE and 1.6 +/- 0.3 nM for spermatozoid tACE. Competition parameters of mAb binding with tACE were obtained and analyzed. As a result, the eight mAbs were divided into three groups, whose binding epitopes did not overlap: (1) 1E10, 2B11, 2H9, 3F11, and 4E3; (2) 1B8 and 3F10; and (3) IB3. A diagram demonstrating mAb competitive binding with tACE was proposed. Comparative analysis of mAb binding to human and chimpanzee ACE was carried out, which resulted in revealing of two amino acid residues, Lys677 and Pro730, responsible for binding of three antibodies, 1E10, 1B8, and 3F10. It was found by mutation of Asp616 located close to Lys677 that the mAb binding epitope 1E10 contains Asp616 and Lys677, whereas mAbs 1B8 and 3F10 contain Pro730.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号