首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent genome-wide association studies (GWAS) identified genetic loci associated with pigmentation, nevi, and skin cancer. We performed a review and meta-analysis of GWAS results, grouping them into four categories: (i) loci associated with pigmentation (hair, eye, and/or skin color), cutaneous UV-response (sun sensitivity and/or freckling), and skin cancer; (ii) loci associated with nevi and melanoma; (iii) loci associated with pigmentation and/or cutaneous UV-response but not skin cancer; and (iv) loci associated distinctly with skin cancer, mostly basal cell carcinoma, but not pigmentation or cutaneous UV-response. These findings suggest at least two pathways for melanoma development (via pigmentation and via nevi), and two pathways for basal cell carcinoma development (via pigmentation and independent of pigmentation). However, further work is necessary to separate the association with skin cancer from the association with pigmentation. As with any GWAS, the identified loci may not include the causal variants and may need confirmation by direct genome sequencing.  相似文献   

2.
Recently, genome-wide association studies (GWAS) have led to the discovery of hundreds of susceptibility loci that are associated with complex metabolic diseases, such as type 2 diabetes and hyperthyroidism. The majority of the susceptibility loci are common across different races or populations; while some of them show ethnicity-specific distribution. Though the abundant novel susceptibility loci identified by GWAS have provided insight into biology through the discovery of new genes or pathways that were previously not known, most of them are in introns and the associated variants cumulatively explain only a small fraction of total heritability. Here we reviewed the genetic studies on the metabolic disorders, mainly type 2 diabetes and hyperthyroidism, including candidate genes-based findings and more recently the GWAS discovery; we also included the clinical relevance of these novel loci and the gene-environmental interactions. Finally, we discussed the future direction about the genetic study on the exploring of the pathogenesis of the metabolic diseases.  相似文献   

3.
Celiac disease is a common autoimmune disorder characterized by an intestinal inflammation triggered by gluten, a storage protein found in wheat, rye and barley. Similar to other autoimmune diseases such as type 1 diabetes, psoriasis and rheumatoid arthritis, celiac disease is the result of an immune response to self-antigens leading to tissue destruction and production of autoantibodies. Common diseases like celiac disease have a complex pattern of inheritance with inputs from both environmental as well as additive and non-additive genetic factors. In the past few years, Genome Wide Association Studies (GWAS) have been successful in finding genetic risk variants behind many common diseases and traits. To complement and add to the previous findings, we performed a GWAS including 206 trios from 97 nuclear Swedish and Norwegian families affected with celiac disease. By stratifying for HLA-DQ, we identified a new genome-wide significant risk locus covering the DUSP10 gene. To further investigate the associations from the GWAS we performed pathway analyses and two-locus interaction analyses. These analyses showed an over-representation of genes involved in type 2 diabetes and identified a set of candidate mechanisms and genes of which some were selected for mRNA expression analysis using small intestinal biopsies from 98 patients. Several genes were expressed differently in the small intestinal mucosa from patients with celiac autoimmunity compared to intestinal mucosa from control patients. From top-scoring regions we identified susceptibility genes in several categories: 1) polarity and epithelial cell functionality; 2) intestinal smooth muscle; 3) growth and energy homeostasis, including proline and glutamine metabolism; and finally 4) innate and adaptive immune system. These genes and pathways, including specific functions of DUSP10, together reveal a new potential biological mechanism that could influence the genesis of celiac disease, and possibly also other chronic disorders with an inflammatory component.  相似文献   

4.
5.
Parkinson's disease (PD) has had six genome-wide association studies (GWAS) conducted as well as several gene expression studies. However, only variants in MAPT and SNCA have been consistently replicated. To improve the utility of these approaches, we applied pathway analyses integrating both GWAS and gene expression. The top 5000 SNPs (p<0.01) from a joint analysis of three existing PD GWAS were identified and each assigned to a gene. For gene expression, rather than the traditional comparison of one anatomical region between sets of patients and controls, we identified differentially expressed genes between adjacent Braak regions in each individual and adjusted using average control expression profiles. Over-represented pathways were calculated using a hyper-geometric statistical comparison. An integrated, systems meta-analysis of the over-represented pathways combined the expression and GWAS results using a Fisher's combined probability test. Four of the top seven pathways from each approach were identical. The top three pathways in the meta-analysis, with their corrected p-values, were axonal guidance (p = 2.8E-07), focal adhesion (p = 7.7E-06) and calcium signaling (p = 2.9E-05). These results support that a systems biology (pathway) approach will provide additional insight into the genetic etiology of PD and that these pathways have both biological and statistical support to be important in PD.  相似文献   

6.
Capsaicinoids are unique compounds produced only in peppers (Capsicum spp.). Several studies using classical quantitative trait loci (QTLs) mapping and genomewide association studies (GWAS) have identified QTLs controlling capsaicinoid content in peppers; however, neither the QTLs common to each population nor the candidate genes underlying them have been identified due to the limitations of each approach used. Here, we performed QTL mapping and GWAS for capsaicinoid content in peppers using two recombinant inbred line (RIL) populations and one GWAS population. Whole‐genome resequencing and genotyping by sequencing (GBS) were used to construct high‐density single nucleotide polymorphism (SNP) maps. Five QTL regions on chromosomes 1, 2, 3, 4 and 10 were commonly identified in both RIL populations over multiple locations and years. Furthermore, a total of 109 610 SNPs derived from two GBS libraries were used to analyse the GWAS population consisting of 208 C. annuum‐clade accessions. A total of 69 QTL regions were identified from the GWAS, 10 of which were co‐located with the QTLs identified from the two biparental populations. Within these regions, we were able to identify five candidate genes known to be involved in capsaicinoid biosynthesis. Our results demonstrate that QTL mapping and GBS‐GWAS represent a powerful combined approach for the identification of loci controlling complex traits.  相似文献   

7.
Genome-wide association studies (GWAS) are widely applied to analyze the genetic effects on phenotypes. With the availability of high-throughput technologies for metabolite measurements, GWAS successfully identified loci that affect metabolite concentrations and underlying pathways. In most GWAS, the effect of each SNP on the phenotype is assumed to be additive. Other genetic models such as recessive, dominant, or overdominant were considered only by very few studies. In contrast to this, there are theories that emphasize the relevance of nonadditive effects as a consequence of physiologic mechanisms. This might be especially important for metabolites because these intermediate phenotypes are closer to the underlying pathways than other traits or diseases. In this study we analyzed systematically nonadditive effects on a large panel of serum metabolites and all possible ratios (22,801 total) in a population-based study [Cooperative Health Research in the Region of Augsburg (KORA) F4, N = 1,785]. We applied four different 1-degree-of-freedom (1-df) tests corresponding to an additive, dominant, recessive, and overdominant trait model as well as a genotypic model with two degree-of-freedom (2-df) that allows a more general consideration of genetic effects. Twenty-three loci were found to be genome-wide significantly associated (Bonferroni corrected P ≤ 2.19 × 10−12) with at least one metabolite or ratio. For five of them, we show the evidence of nonadditive effects. We replicated 17 loci, including 3 loci with nonadditive effects, in an independent study (TwinsUK, N = 846). In conclusion, we found that most genetic effects on metabolite concentrations and ratios were indeed additive, which verifies the practice of using the additive model for analyzing SNP effects on metabolites.  相似文献   

8.
The major mental disorders, schizophrenia and bipolar disorder are substantially heritable. Recent genomic studies have identified a small number of common and rare risk genes contributing to both disorders and support epidemiological evidence that genetic susceptibility overlaps between them. Prompted by the question of whether risk genes cluster in specific molecular pathways or implicate discrete mechanisms we and others have developed hypothesis-free methods of investigating genome-wide association datasets at a pathway-level. The application of our method to the 212 experimentally-derived pathways in the Kyoto Encycolpaedia of Genes and Genomes (KEGG) database identified significant association between the cell adhesion molecule (CAM) pathway and both schizophrenia and bipolar disorder susceptibility across three GWAS datasets. Interestingly, a similar approach applied to an autistic spectrum disorders (ASDs) sample identified a similar pathway and involved many of the same genes. Disruption of a number of these genes (including NRXN1, CNTNAP2 and CASK) are known to cause diverse neurodevelopmental brain disorder phenotypes including schizophenia, autism, learning disability and specific language disorder. Taken together these studies bring the CAM pathway sharply into focus for more comprehensive DNA sequencing to identify the critical genes, and investigate their relationships and interaction with environmental risk factors in the expression of many seemingly different neurodevelopmental disorders.  相似文献   

9.
冠心病全基因组关联研究进展   总被引:2,自引:0,他引:2  
杨英  鲁向锋 《遗传》2010,32(2):97-104
近年来全基因组关联研究在世界范围内发展迅猛,研究者应用全基因组关联研究策略发现了一系列疾病的相关基因或变异,将疾病的基因组研究推向一个新的阶段。冠心病是一种由环境因素和遗传因素共同作用导致的复杂疾病,且是世界范围内死亡和致残的首要原因之一,世界各地的研究者应用此策略发现了候选基因关联研究未曾发现的多个冠心病相关易感区域。文章对近年来世界范围内针对冠心病的全基因组关联研究取得的重要进展进行简要总结,然后就现阶段全基因组关联研究所面临的挑战以及对未来研究的发展趋势进行分析阐述,为进一步探究冠心病的遗传机制提供指导。  相似文献   

10.
11.
Colorectal cancer is the second leading cause of cancer death in developed countries. Genome-wide association studies (GWAS) have successfully identified novel susceptibility loci for colorectal cancer. To follow up on these findings, and try to identify novel colorectal cancer susceptibility loci, we present results for GWAS of colorectal cancer (2,906 cases, 3,416 controls) that have not previously published main associations. Specifically, we calculated odds ratios and 95% confidence intervals using log-additive models for each study. In order to improve our power to detect novel colorectal cancer susceptibility loci, we performed a meta-analysis combining the results across studies. We selected the most statistically significant single nucleotide polymorphisms (SNPs) for replication using ten independent studies (8,161 cases and 9,101 controls). We again used a meta-analysis to summarize results for the replication studies alone, and for a combined analysis of GWAS and replication studies. We measured ten SNPs previously identified in colorectal cancer susceptibility loci and found eight to be associated with colorectal cancer (p value range 0.02 to 1.8?×?10(-8)). When we excluded studies that have previously published on these SNPs, five SNPs remained significant at p?相似文献   

12.
在过去的几年中,人们应用全基因组关联研究(genomewide association studies,GWAS)对多种人类复杂性疾病及性状进行研究,如糖尿病、肿瘤、心血管疾病、神经精神系统疾病、自身免疫性疾病等,且已经鉴定出大量与之密切相关的遗传变异,为进一步探索人类复杂性疾病的遗传特征提供重要线索。但是,由于影响复杂性疾病的因素较多,许多已发现遗传变异对疾病贡献较小,作用机制尚不清楚,现全基因组关联研究亦存在许多问题。今本文就GWAS在复杂性疾病中的应用做一综述,并就其前景做一展望。  相似文献   

13.
Kashin–Beck disease (KBD) is a serious osteoarthropathia, mainly characterized by excessive chondrocyte necrosis and apoptosis. The molecular signaling pathways underlying KBD excessive chondrocyte apoptosis remain unclear, leading to a lack of effective medical interventions now. To clarify whether expression quantitative trait loci (eQTLs) contribute to excessive chondrocyte apoptosis of Kashin–Beck disease through regulating the expression of apoptosis pathways. We conducted a genome-wide eQTLs based pathway association analysis of KBD using Affymetrix Human SNP Array 6.0 in 1717 Chinese Han subjects. PLINK software was used for genome-wide association study (GWAS) of KBD. A modified gene set enrichment algorithm was applied for pathway association analysis based on GWAS results. The KBD-associated pathways were compared with abnormally expressed pathways in KBD articular cartilage, identified by microarray study of KBD. We identified 4 eQTLs pathways, which were not only significantly associated with KBD, but also abnormally expressed in KBD articular cartilage, including REACTOME_INTRINSIC_PATHWAY_FOR_APOPTOSIS (P = 0.008), MAHAJAN _RESPONSE_TO_IL1A_UP (P = 0.010), KEGG_PEROXISOME (P = 0.005) and MARKS_HDAC_TARGETS_UP (P = 0.006). Our results suggest that eQTLs contributed to KBD excessive chondrocyte apoptosis through regulating the expression of apoptosis related pathways. This study provides novel insight into the genetic susceptibility and therapeutic rationale of KBD.  相似文献   

14.
Late-onset Alzheimer''s disease (LOAD) is a multifactorial disorder with over twenty loci associated with disease risk. Given the number of genome-wide significant variants that fall outside of coding regions, it is possible that some of these variants alter some function of gene expression rather than tagging coding variants that alter protein structure and/or function. RegulomeDB is a database that annotates regulatory functions of genetic variants. In this study, we utilized RegulomeDB to investigate potential regulatory functions of lead single nucleotide polymorphisms (SNPs) identified in five genome-wide association studies (GWAS) of risk and age-at onset (AAO) of LOAD, as well as SNPs in LD (r2≥0.80) with the lead GWAS SNPs. Of a total 614 SNPs examined, 394 returned RegulomeDB scores of 1–6. Of those 394 variants, 34 showed strong evidence of regulatory function (RegulomeDB score <3), and only 3 of them were genome-wide significant SNPs (ZCWPW1/rs1476679, CLU/rs1532278 and ABCA7/rs3764650). This study further supports the assumption that some of the non-coding GWAS SNPs are true associations rather than tagged associations and demonstrates the application of RegulomeDB to GWAS data.  相似文献   

15.
Multiple prostate cancer (PCa) risk-related loci have been discovered by genome-wide association studies (GWAS) based on case-control designs. However, GWAS findings may be confounded by population stratification if cases and controls are inadvertently drawn from different genetic backgrounds. In addition, since these loci were identified in cases with predominantly sporadic disease, little is known about their relationships with hereditary prostate cancer (HPC). The association between seventeen reported PCa susceptibility loci was evaluated with a family-based association test using 1,979 hereditary PCa families of European descent collected by members of the International Consortium for Prostate Cancer Genetics, with a total of 5,730 affected men. The risk alleles for 8 of the 17 loci were significantly over-transmitted from parents to affected offspring, including SNPs residing in 8q24 (regions 1, 2 and 3), 10q11, 11q13, 17q12 (region 1), 17q24 and Xp11. In subgroup analyses, three loci, at 8q24 (regions 1 and 2) plus 17q12, were significantly over-transmitted in hereditary PCa families with five or more affected members, while loci at 3p12, 8q24 (region 2), 11q13, 17q12 (region 1), 17q24 and Xp11 were significantly over-transmitted in HPC families with an average age of diagnosis at 65?years or less. Our results indicate that at least a subset of PCa risk-related loci identified by case-control GWAS are also associated with disease risk in HPC families.  相似文献   

16.
Intracranial aneurysm (IA) is a complex genetic disease for which, to date, 10 loci have been identified by linkage. Identification of the risk-conferring genes in the loci has proven difficult, since the regions often contain several hundreds of genes. An approach to prioritize positional candidate genes for further studies is to use gene expression data from diseased and nondiseased tissue. Genes that are not expressed, either in diseased or nondiseased tissue, are ranked as unlikely to contribute to the disease. We demonstrate an approach for integrating expression and genetic mapping data to identify likely pathways involved in the pathogenesis of a disease. We used expression profiles for IAs and nonaneurysmal intracranial arteries (IVs) together with the 10 reported linkage intervals for IA. Expressed genes were analyzed for membership in Kyoto Encyclopedia of Genes and Genomes (KEGG) biological pathways. The 10 IA loci harbor 1,858 candidate genes, of which 1,561 (84%) were represented on the microarrays. We identified 810 positional candidate genes for IA that were expressed in IVs or IAs. Pathway information was available for 294 of these genes and involved 32 KEGG biological function pathways represented on at least 2 loci. A likelihood-based score was calculated to rank pathways for involvement in the pathogenesis of IA. Adherens junction, MAPK, and Notch signaling pathways ranked high. Integration of gene expression profiles with genetic mapping data for IA provides an approach to identify candidate genes that are more likely to function in the pathology of IA.  相似文献   

17.
18.
Genome-wide association studies (GWAS) have identified loci reproducibly associated with pulmonary diseases; however, the molecular mechanism underlying these associations are largely unknown. The objectives of this study were to discover genetic variants affecting gene expression in human lung tissue, to refine susceptibility loci for asthma identified in GWAS studies, and to use the genetics of gene expression and network analyses to find key molecular drivers of asthma. We performed a genome-wide search for expression quantitative trait loci (eQTL) in 1,111 human lung samples. The lung eQTL dataset was then used to inform asthma genetic studies reported in the literature. The top ranked lung eQTLs were integrated with the GWAS on asthma reported by the GABRIEL consortium to generate a Bayesian gene expression network for discovery of novel molecular pathways underpinning asthma. We detected 17,178 cis- and 593 trans- lung eQTLs, which can be used to explore the functional consequences of loci associated with lung diseases and traits. Some strong eQTLs are also asthma susceptibility loci. For example, rs3859192 on chr17q21 is robustly associated with the mRNA levels of GSDMA (P = 3.55×10−151). The genetic-gene expression network identified the SOCS3 pathway as one of the key drivers of asthma. The eQTLs and gene networks identified in this study are powerful tools for elucidating the causal mechanisms underlying pulmonary disease. This data resource offers much-needed support to pinpoint the causal genes and characterize the molecular function of gene variants associated with lung diseases.  相似文献   

19.
Soybean cyst nematode (SCN) (Heterodera glycines Ichinohe) is a highly recalcitrant endoparasite of soybean roots, causing more yield loss than any other pest. To identify quantitative trait loci (QTL) controlling resistance to SCN (HG type 2.5.7, race 1), a genome-wide association study (GWAS) was performed. The association panel, consisting of 120 Chinese soybean cultivars, was genotyped with 7189 single nucleotide polymorphism (SNPs). A total of 6204 SNPs with minor allele frequency >0.05 were used to estimate linkage disequilibrium (LD) and population structure. The mean level of LD measured by r 2 declined very rapidly to half its maximum value (0.51) at 220 kb. The overall population structure was approximately coincident with geographic origin. The GWAS results identified 13 SNPs in 7 different genomic regions significantly associated with SCN resistance. Of these, three SNPs were localized in previously mapped QTL intervals, including rhg1 and Rhg4. The GWAS results also detected 10 SNPs in 5 different genomic regions associated with SCN resistance. The identified loci explained an average of 95.5% of the phenotypic variance. The proportion of phenotypic variance was due to additive genetic variance of the validated SNPs. The present study identified multiple new loci and refined chromosomal regions of known loci associated with SCN resistance. The loci and trait-associated SNPs identified in this study can be used for developing soybean cultivars with durable resistance against SCN.  相似文献   

20.
Multiple Sclerosis (MS) is the most common progressive and disabling neurological condition affecting young adults in the world today. From a genetic point of view, MS is a complex disorder resulting from the combination of genetic and non-genetic factors. We aimed to identify previously unidentified loci conducting a new GWAS of Multiple Sclerosis (MS) in a sample of 296 MS cases and 801 controls from the Spanish population. Meta-analysis of our data in combination with previous GWAS was done. A total of 17 GWAS-significant SNPs, corresponding to three different loci were identified:HLA, IL2RA, and 5p13.1. All three have been previously reported as GWAS-significant. We confirmed our observation in 5p13.1 for rs9292777 using two additional independent Spanish samples to make a total of 4912 MS cases and 7498 controls (ORpooled = 0.84; 95%CI: 0.80-0.89; p = 1.36 × 10-9). This SNP differs from the one reported within this locus in a recent GWAS. Although it is unclear whether both signals are tapping the same genetic association, it seems clear that this locus plays an important role in the pathogenesis of MS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号