首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although most deoxyribonucleic acid (DNA) lesions are accurately repaired before replication, replication across unrepaired lesions is the main source of point mutations. The lesion tolerance processes, which allow damaged DNA to be replicated, entail two branches, error-prone translesion synthesis (TLS) and error-free damage avoidance (DA). While TLS pathways are reasonably well established, DA pathways are poorly understood. The fate of a replication-blocking lesion is generally explored by means of plasmid-based assays. Although such assays represent efficient tools to analyse TLS, we show here that plasmid-borne lesions are inappropriate models to study DA pathways due to extensive replication fork uncoupling. This observation prompted us to develop a method to graft, site-specifically, a single lesion in the genome of a living cell. With this novel assay, we show that in Escherichia coli DA events massively outweigh TLS events and that in contrast to plasmid, chromosome-borne lesions partially require RecA for tolerance.  相似文献   

2.
During bacterial replication, DNA polymerases may encounter DNA lesions that block processive DNA synthesis. Uncoupling the replicative helicase from the stalled DNA polymerase results in the formation of single-stranded DNA (ssDNA) gaps, which are repaired by postreplication repair (PRR), a process that involves at least three mechanisms that collectively remove, circumvent or bypass lesions. RecA mediated excision repair (RAMER) and homologous recombination (HR) are strand-exchange mechanisms that appear to be the predominant strategies for gap repair in the absence of prolonged SOS induction. During RAMER, RecA mediates pairing of damaged ssDNA with an undamaged homologous duplex and subsequent exchange of strands between the damaged and undamaged DNA. Repair of the lesion occurs in the context of the strand-exchange product and is initiated by UvrABC excinuclease; the resulting patch is filled by DNA synthesis using the complementary strand of the homologous duplex as a template. HR uses a complementary strand of an undamaged homologous duplex as a transient template for DNA synthesis. HR requires the formation and resolution of Holliday junctions, and is a mechanism to circumvent the lesion; lesions persisting in one of the daughter DNA duplexes will normally be repaired prior to subsequent rounds of replication/cell division. Translesion DNA Synthesis (TLS) does not involve strand-exchange mechanisms; it is carried out by specialized DNA polymerases that are able to catalyze nucleotide incorporation opposite lesions that cannot be bypassed by high-fidelity replicative polymerases. Maximum levels of TLS occur during prolonged SOS induction generally associated with increased mutagenesis. RAMER, HR and TLS are alternative mechanisms for processing a common intermediate-the ssDNA gap containing a RecA nucleofilament. The actual pathway that is utilized will be strongly influenced by multiple factors, including the blocking/coding capacity of the lesion, the nature of the gene products that can be assembled at the ssDNA gap, the availability of a homologous partner for RAMER and HR, and protein:protein interactions and post-translational modifications that modulate the mutagenic activity of Pol-IV and Pol-V.  相似文献   

3.
Fujii S  Isogawa A  Fuchs RP 《The EMBO journal》2006,25(24):5754-5763
When the replication fork moves through the template DNA containing lesions, daughter-strand gaps are formed opposite lesion sites. These gaps are subsequently filled-in either by translesion synthesis (TLS) or by homologous recombination. RecA filaments formed within these gaps are key intermediates for both of the gap-filling pathways. For instance, Pol V, the major lesion bypass polymerase in Escherichia coli, requires a functional interaction with the tip of the RecA filament. Here, we show that all three recombination mediator proteins RecFOR are needed to build a functionally competent RecA filament that supports efficient Pol V-mediated TLS in the presence of ssDNA-binding protein (SSB). A positive contribution of RecF protein to Pol V lesion bypass is demonstrated. When Pol III and Pol V are both present, Pol III imparts a negative effect on Pol V-mediated lesion bypass that is counteracted by the combined action of RecFOR and SSB. Mutations in recF, recO or recR gene abolish induced mutagenesis in E. coli.  相似文献   

4.
DNA damage tolerance relies on homologous recombination (HR) and translesion synthesis (TLS) mechanisms to fill in the ssDNA gaps generated during passing of the replication fork over DNA lesions in the template. Whereas TLS requires specialized polymerases able to incorporate a dNTP opposite the lesion and is error‐prone, HR uses the sister chromatid and is mostly error‐free. We report that the HR protein Rad52—but not Rad51 and Rad57—acts in concert with the TLS machinery (Rad6/Rad18‐mediated PCNA ubiquitylation and polymerases Rev1/Pol ζ) to repair MMS and UV light‐induced ssDNA gaps through a non‐recombinogenic mechanism, as inferred from the different phenotypes displayed in the absence of Rad52 and Rad54 (essential for MMS‐ and UV‐induced HR); accordingly, Rad52 is required for efficient DNA damage‐induced mutagenesis. In addition, Rad52, Rad51, and Rad57, but not Rad54, facilitate Rad6/Rad18 binding to chromatin and subsequent DNA damage‐induced PCNA ubiquitylation. Therefore, Rad52 facilitates the tolerance process not only by HR but also by TLS through Rad51/Rad57‐dependent and ‐independent processes, providing a novel role for the recombination proteins in maintaining genome integrity.  相似文献   

5.
Many DNA lesions cause pausing of replication forks at lesion sites; thus, generating gaps in the daughter strands that are filled‐in by post‐replication repair (PRR) pathways. In Saccharomyces cerevisiae, PRR involves translesion synthesis (TLS) mediated by Polη or Polζ, or Rad5‐dependent gap filling through a poorly characterized error‐free mechanism. We have developed an assay to monitor error‐free and mutagenic TLS across single DNA lesions in Schizosaccharomyces pombe. For both main UV photolesions, we have delineated a major error‐free pathway mediated by a distinct combination of TLS polymerases. Surprisingly, these TLS pathways require enzymes needed for poly‐ubiquitination of proliferating cell nuclear antigen (PCNA) as well as those required for mono‐ubiquitination. For pathways that require several TLS polymerases the poly‐ubiquitin chains of PCNA may facilitate their recruitment through specific interactions with their multiple ubiquitin‐binding motifs. These error‐free TLS pathways may at least partially account for the previously described poly‐ubiquitination‐dependent error‐free branch of PRR. This work highlights major differences in the control of lesion tolerance pathways between S. pombe and S. cerevisiae despite the homologous sets of PRR genes these organisms share.  相似文献   

6.
DNA helicases of the RecD2 family are ubiquitous. Bacillus subtilis RecD2 in association with the single-stranded binding protein SsbA may contribute to replication fork progression, but its detailed action remains unknown. In this work, we explore the role of RecD2 during DNA replication and its interaction with the RecA recombinase. RecD2 inhibits replication restart, but this effect is not observed in the absence of SsbA. RecD2 slightly affects replication elongation. RecA inhibits leading and lagging strand synthesis, and RecD2, which physically interacts with RecA, counteracts this negative effect. In vivo results show that recD2 inactivation promotes RecA–ssDNA accumulation at low mitomycin C levels, and that RecA threads persist for a longer time after induction of DNA damage. In vitro, RecD2 modulates RecA-mediated DNA strand-exchange and catalyzes branch migration. These findings contribute to our understanding of how RecD2 may contribute to overcome a replicative stress, removing RecA from the ssDNA and, thus, it may act as a negative modulator of RecA filament growth.  相似文献   

7.
Escherichia coli RecA mediates homologous recombination, a process essential to maintaining genome integrity. In the presence of ATP, RecA proteins bind a single-stranded DNA (ssDNA) to form a RecA-ssDNA presynaptic nucleoprotein filament that captures donor double-stranded DNA (dsDNA), searches for homology, and then catalyzes the strand exchange between ssDNA and dsDNA to produce a new heteroduplex DNA. Based upon a recently reported crystal structure of the RecA-ssDNA nucleoprotein filament, we carried out structural and functional studies of the N-terminal domain (NTD) of the RecA protein. The RecA NTD was thought to be required for monomer-monomer interaction. Here we report that it has two other distinct roles in promoting homologous recombination. It first facilitates the formation of a RecA-ssDNA presynaptic nucleoprotein filament by converting ATP to an ADP-Pi intermediate. Then, once the RecA-ssDNA presynaptic nucleoprotein filament is stably assembled in the presence of ATPγS, the NTD is required to capture donor dsDNA. Our results also suggest that the second function of NTD may be similar to that of Arg243 and Lys245, which were implicated earlier as binding sites of donor dsDNA. A two-step model is proposed to explain how a RecA-ssDNA presynaptic nucleoprotein filament interacts with donor dsDNA.  相似文献   

8.
Bacillus subtilis RecA is important for spore resistance to DNA damage, even though spores contain a single non-replicating genome. We report that inactivation of RecA or its accessory factors, RecF, RecO, RecR and RecX, drastically reduce survival of mature dormant spores to ultrahigh vacuum desiccation and ionizing radiation that induce single strand (ss) DNA nicks and double-strand breaks (DSBs). The presence of non-cleavable LexA renders spores less sensitive to DSBs, and spores impaired in DSB recognition or end-processing show sensitivities to X-rays similar to wild-type. In vitro RecA cannot compete with SsbA for nucleation onto ssDNA in the presence of ATP. RecO is sufficient, at least in vitro, to overcome SsbA inhibition and stimulate RecA polymerization on SsbA-coated ssDNA. In the presence of SsbA, RecA slightly affects DNA replication in vitro, but addition of RecO facilitates RecA-mediated inhibition of DNA synthesis. We propose that repairing of the DNA lesions generates a replication stress to germinating spores, and the RecA·ssDNA filament might act by preventing potentially dangerous forms of DNA repair occurring during replication. RecA might stabilize a stalled fork or prevent or promote dissolution of reversed forks rather than its cleavage that should require end-processing.  相似文献   

9.
In Escherichia coli, the filament of RecA formed on single-stranded DNA (ssDNA) is essential for recombinational DNA repair. Although ssDNA-binding protein (SSB) plays a complicated role in RecA reactions in vivo, much of our understanding of the mechanism is based on RecA binding directly to ssDNA. Here we investigate the role of SSB in the regulation of RecA polymerization on ssDNA, based on the differential force responses of a single 576-nucleotide-long ssDNA associated with RecA and SSB. We find that SSB outcompetes higher concentrations of RecA, resulting in inhibition of RecA nucleation. In addition, we find that pre-formed RecA filaments de-polymerize at low force in an ATP hydrolysis- and SSB-dependent manner. At higher forces, re-polymerization takes place, which displaces SSB from ssDNA. These findings provide a physical picture of the competition between RecA and SSB under tension on the scale of the entire nucleoprotein SSB array, which have broad biological implications particularly with regard to competitive molecular binding.  相似文献   

10.
The RarA protein, homologous to human WRNIP1 and yeast MgsA, is a AAA+ ATPase and one of the most highly conserved DNA repair proteins. With an apparent role in the repair of stalled or collapsed replication forks, the molecular function of this protein family remains obscure. Here, we demonstrate that RarA acts in late stages of recombinational DNA repair of post-replication gaps. A deletion of most of the rarA gene, when paired with a deletion of ruvB or ruvC, produces a growth defect, a strong synergistic increase in sensitivity to DNA damaging agents, cell elongation, and an increase in SOS induction. Except for SOS induction, these effects are all suppressed by inactivating recF, recO, or recJ, indicating that RarA, along with RuvB, acts downstream of RecA. SOS induction increases dramatically in a rarA ruvB recF/O triple mutant, suggesting the generation of large amounts of unrepaired ssDNA. The rarA ruvB defects are not suppressed (and in fact slightly increased) by recB inactivation, suggesting RarA acts primarily downstream of RecA in post-replication gaps rather than in double strand break repair. Inactivating rarA, ruvB and recG together is synthetically lethal, an outcome again suppressed by inactivation of recF, recO, or recJ. A rarA ruvB recQ triple deletion mutant is also inviable. Together, the results suggest the existence of multiple pathways, perhaps overlapping, for the resolution or reversal of recombination intermediates created by RecA protein in post-replication gaps within the broader RecF pathway. One of these paths involves RarA.  相似文献   

11.
Using molecular modeling techniques we have built the full atomic structure and performed molecular dynamics simulations for the complexes formed by Escherichia coli RecX protein with a single-stranded oligonucleotide and with RecA presynaptic filament. Based on the modeling and SANS experimental data a sandwich-like filament structure formed two chains of RecX monomers bound to the opposite sides of the single stranded DNA is proposed for RecX::ssDNA complex. The model for RecX::RecA::ssDNA include RecX binding into the grove of RecA::ssDNA filament that occurs mainly via Coulomb interactions between RecX and ssDNA. Formation of RecX::RecA::ssDNA filaments in solution was confirmed by SANS measurements which were in agreement with the spectra computed from the molecular dynamics simulations.  相似文献   

12.
The repair of single-stranded gaps in duplex DNA by homologous recombination requires the proteins of the RecF pathway. The assembly of RecA protein onto gapped DNA (gDNA) that is complexed with the single-stranded DNA-binding protein is accelerated by the RecF, RecO, and RecR (RecFOR) proteins. Here, we show the RecFOR proteins specifically target RecA protein to gDNA even in the presence of a thousand-fold excess of single-stranded DNA (ssDNA). The binding constant of RecF protein, in the presence of the RecOR proteins, to the junction of ssDNA and dsDNA within a gap is 1–2 nm, suggesting that a few RecF molecules in the cell are sufficient to recognize gDNA. We also found that the nucleation of a RecA filament on gDNA in the presence of the RecFOR proteins occurs at a faster rate than filament elongation, resulting in a RecA nucleoprotein filament on ssDNA for 1000–2000 nucleotides downstream (5′ → 3′) of the junction with duplex DNA. Thus, RecA loading by RecFOR is localized to a region close to a junction. RecFOR proteins also recognize RNA at the 5′-end of an RNA-DNA junction within an ssDNA gap, which is compatible with their role in the repair of lagging strand gaps at stalled replication forks.  相似文献   

13.
Single-stranded (ss) gapped regions in bacterial genomes (gDNA) are formed on W- and C-strands during replication, repair, and recombination. Using non-denaturing bisulfite treatment to convert C to U on ssDNA, combined with deep sequencing, we have mapped gDNA gap locations, sizes, and distributions in Escherichia coli for cells grown in mid-log phase in the presence and absence of UV irradiation, and in stationary phase cells. The fraction of ssDNA on gDNA is similar for W- and C-strands, ∼1.3% for log phase cells, ∼4.8% for irradiated log phase cells, and ∼8.5% for stationary phase cells. After UV irradiation, gaps increased in numbers and average lengths. A monotonic reduction in ssDNA occurred symmetrically between the DNA replication origin of (OriC) and terminus (Ter) for log phase cells with and without UV, a hallmark feature of DNA replication. Stationary phase cells showed no OriC → Ter ssDNA gradient. We have identified a spatially diverse gapped DNA landscape containing thousands of highly enriched ‘hot’ ssDNA regions along with smaller numbers of ‘cold’ regions. This analysis can be used for a wide variety of conditions to map ssDNA gaps generated when DNA metabolic pathways have been altered, and to identify proteins bound in the gaps.  相似文献   

14.
In Escherichia coli, cell survival and genomic stability after UV radiation depends on repair mechanisms induced as part of the SOS response to DNA damage. The early phase of the SOS response is mostly dominated by accurate DNA repair, while the later phase is characterized with elevated mutation levels caused by error-prone DNA replication. SOS mutagenesis is largely the result of the action of DNA polymerase V (pol V), which has the ability to insert nucleotides opposite various DNA lesions in a process termed translesion DNA synthesis (TLS). Pol V is a low-fidelity polymerase that is composed of UmuD′2C and is encoded by the umuDC operon. Pol V is strictly regulated in the cell so as to avoid genomic mutation overload. RecA nucleoprotein filaments (RecA*), formed by RecA binding to single-stranded DNA with ATP, are essential for pol V-catalyzed TLS both in vivo and in vitro. This review focuses on recent studies addressing the protein composition of active DNA polymerase V, and the role of RecA protein in activating this enzyme. Based on unforeseen properties of RecA*, we describe a new model for pol V-catalyzed SOS-induced mutagenesis.  相似文献   

15.
Damages in the DNA template inhibit the progression of replication, which may cause single-stranded gaps. Such situations can be tolerated by translesion DNA synthesis (TLS), or by homology-dependent repair (HDR), which is based on transfer or copying of the missing information from the replicated sister chromatid. Whereas it is well established that TLS plays an important role in DNA damage tolerance in mammalian cells, it is unknown whether HDR operates in this process. Using a newly developed plasmid-based assay that distinguishes between the three mechanisms of DNA damage tolerance, we found that mammalian cells can efficiently utilize HDR to repair DNA gaps opposite an abasic site or benzo[a]pyrene adduct. The majority of these events occurred by a physical strand transfer (homologous recombination repair; HRR), rather than a template switch mechanism. Furthermore, cells deficient in either the human RAD51 recombination protein or NBS1, but not Rad18, exhibited decreased gap repair through HDR, indicating a role for these proteins in DNA damage tolerance. To our knowledge, this is the first direct evidence of gap-lesion repair via HDR in mammalian cells, providing further molecular insight into the potential activity of HDR in overcoming replication obstacles and maintaining genome stability.  相似文献   

16.
Bacillus subtilis RecN appears to be an early detector of breaks in double-stranded DNA. In vivo, RecN forms discrete nucleoid-associated structures and in vitro exhibits Mg2+-dependent single-stranded (ss) DNA binding and ssDNA-dependent ATPase activities. In the presence of ATP or ADP, RecN assembles to form large networks with ssDNA molecules (designated complexes CII and CIII) that involve ATP binding and requires a 3′-OH at the end of ssDNA molecule. Addition of dATP–RecA complexes dissociates RecN from these networks, but this is not observed following addition of an ssDNA binding protein. Apparently, ATP modulates the RecN–ssDNA complex for binding to ssDNA extensions and, in vivo, RecN–ATP bound to 3′-ssDNA might sequester ssDNA ends within complexes that protect the ssDNA while the RecA accessory proteins recruit RecA. With the association of RecA to ssDNA, RecN would dissociate from the DNA end facilitating the subsequent steps in DNA repair.  相似文献   

17.
Escherichia coli RecA protein catalyzes the central DNA strand-exchange step of homologous recombination, which is essential for the repair of double-stranded DNA breaks. In this reaction, RecA first polymerizes on single-stranded DNA (ssDNA) to form a right-handed helical filament with one monomer per 3 nt of ssDNA. RecA generally binds to any sequence of ssDNA but has a preference for GT-rich sequences, as found in the recombination hot spot Chi (5′-GCTGGTGG-3′). When this sequence is located within an oligonucleotide, binding of RecA is phased relative to it, with a periodicity of three nucleotides. This implies that there are three separate nucleotide-binding sites within a RecA monomer that may exhibit preferences for the four different nucleotides. Here we have used a RecA coprotease assay to further probe the ssDNA sequence specificity of E.coli RecA protein. The extent of self-cleavage of a λ repressor fragment in the presence of RecA, ADP-AlF4 and 64 different trinucleotide-repeating 15mer oligonucleotides was determined. The coprotease activity of RecA is strongly dependent on the ssDNA sequence, with TGG-repeating sequences giving by far the highest coprotease activity, and GC and AT-rich sequences the lowest. For selected trinucleotide-repeating sequences, the DNA-dependent ATPase and DNA-binding activities of RecA were also determined. The DNA-binding and coprotease activities of RecA have the same sequence dependence, which is essentially opposite to that of the ATPase activity of RecA. The implications with regard to the biological mechanism of RecA are discussed.  相似文献   

18.
imuABC (imuAB dnaE2) genes are responsible for SOS-mutagenesis in Caulobacter crescentus and other bacterial species devoid of umuDC. In this work, we have constructed operator-constitutive mutants of the imuABC operon. We used this genetic tool to investigate the effect of SOS-induced levels of these genes upon both spontaneous and damage-induced mutagenesis. We showed that constitutive expression of imuABC does not increase spontaneous or damage-induced mutagenesis, nor increases cellular resistance to DNA-damaging agents. Nevertheless, the presence of the operator-constitutive mutation rescues mutagenesis in a recA background, indicating that imuABC are the only genes required at SOS-induced levels for translesion synthesis (TLS) in C. crescentus. Furthermore, these data also show that TLS mediated by ImuABC does not require RecA, unlike umuDC-dependent mutagenesis in E. coli.  相似文献   

19.
Recombinases of the RecA family play vital roles in homologous recombination, a high-fidelity mechanism to repair DNA double-stranded breaks. These proteins catalyze strand invasion and exchange after forming dynamic nucleoprotein filaments on ssDNA. Increasing evidence suggests that stabilization of these dynamic filaments is a highly conserved function across diverse species. Here, we analyze the presynaptic filament formation and DNA binding characteristics of the Sulfolobus solfataricus recombinase SsoRadA in conjunction with the SsoRadA paralog SsoRal1. In addition to constraining SsoRadA ssDNA-dependent ATPase activity, the paralog also enhances SsoRadA ssDNA binding, effectively influencing activities necessary for presynaptic filament formation. These activities result in enhanced SsoRadA-mediated strand invasion in the presence of SsoRal1 and suggest a filament stabilization function for the SsoRal1 protein.  相似文献   

20.
RecA is central to maintaining genome integrity in bacterial cells. Despite the near-ubiquitous conservation of RecA in eubacteria, the pathways that facilitate RecA loading and repair center assembly have remained poorly understood in Bacillus subtilis. Here, we show that RecA rapidly colocalizes with the DNA polymerase complex (replisome) immediately following DNA damage or damage-independent replication fork arrest. In Escherichia coli, the RecFOR and RecBCD pathways serve to load RecA and the choice between these two pathways depends on the type of damage under repair. We found in B. subtilis that the rapid localization of RecA to repair centers is strictly dependent on RecO and RecR in response to all types of damage examined, including a site-specific double-stranded break and damage-independent replication fork arrest. Furthermore, we provide evidence that, although RecF is not required for RecA repair center formation in vivo, RecF does increase the efficiency of repair center assembly, suggesting that RecF may influence the initial stages of RecA nucleation or filament extension. We further identify single-stranded DNA binding protein (SSB) as an additional component important for RecA repair center assembly. Truncation of the SSB C terminus impairs the ability of B. subtilis to form repair centers in response to damage and damage-independent fork arrest. With these results, we conclude that the SSB-dependent recruitment of RecOR to the replisome is necessary for loading and organizing RecA into repair centers in response to DNA damage and replication fork arrest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号