首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Growing evidence indicates N6-methyladenosine (m6A) has biological function in oncogenesis. METTL3, the catalytic component, is the most important part of methyltransferase complex and plays a crucial role in cancers. However, the biological function of circRNAs derived from METTL3 in breast cancer and the underlying molecular mechanism remains unclear. Herein, we report circMETTL3, which has not been explored in breast cancer, and it is markedly upregulated in breast cancer. Moreover, we uncovered that circMETTL3 could facilitate cell proliferation, migration and invasion in breast cancer. Mechanism investigation showed that circMETTL3 might act as a competing endogenous RNA (ceRNA) of miR-31-5p and upregulate its target cyclin-dependent kinases (CDK1). Moreover, m6A modification of circMETTL3 might affect its expression. Taken together, our results elucidate that circMETTL3 promotes breast cancer progression through circMETTL3/miR-31-5p/CDK1 axis. Moreover, METTL3, the host gene of circMETTL3, may regulate circMETTL3 expression in an m6A-dependent manner, while circMETTL3 has no effect on METTL3 expression, providing a new relationship between the circRNA and the corresponding host gene. Thus, it may serve as a new therapeutic target for breast cancer.  相似文献   

2.
3.
BackgroundRBP-J is involved in number of cellular processes. However, the potential mechanisms of RBP-J on colorectal cancer (CRC) development have not been clearly defined. In this study, we aimed to investigate the role and molecular mechanism of RBP-J in CRC.MethodsThe expression levels of RBP-J and Tiam1 in CRC tissues and cells were evaluated by RT-qPCR or western blot. RBP-J was knocked down with sh-RBP-J or overexpressed by pcDNA3.1-RBP-J in CRC cells. Cell proliferation, migration and invasion abilities were analyzed by MTT, wound healing, and transwell assay, respectively. CHIP-qPCR, RIP and dual luciferase reporter assays were performed to confirm the interaction between miR-182-5p and RBP-J or Tiam1. Expression levels of p-p38 MAPK, p38 MAPK, Slug-1, Twist1 and MMP-9 were analyzed by western blot. G-LISA test was used to detect Rac1 activity.ResultsOur results showed that the expression of RBP-J and Tiam1 was significantly up-regulated in CRC tissues and cells. RBP-J overexpression promoted proliferation, migration and invasion of CRC cells. Moreover, RBP-J was found to directly target miR-182-5p promoter and positively regulate the Tiam1/Rac1/p38 MAPK signaling pathway in CRC cells. It was also proved that miR-182-5p can bind Tiam1 directly. Furthermore, experiments revealed that RBP-J could promote CRC cell proliferation, migration and invasion via miR-182-5p-mediated Tiam1/Rac1/p38 MAPK axis. In addition, knockdown of RBP-J reduced tumor growth and metastasis in CRC mice.ConclusionRBP-J regulates CRC cell growth and metastasis through miR-182-5p mediated Tiam1/Rac1/p38 MAPK signaling pathway, implying potential novel therapeutic targets for CRC patients.  相似文献   

4.
5.
Colorectal cancer (CRC) is a common digestive tract malignancy, which is characterized by high mortality, morbidity, and poor prognosis. Replication factor C subunit 2 (RFC2), one RFC family member, was reported to be related to various malignancies and plays an important role in proliferation, invasion, and metastasis. Nonetheless, the RFC2 biological role within CRC is still unknown. RFC2 expression profiles in CRC tissues were collected based on The Cancer Genome Atlas database, whereas miR-744 and RFC2 expression levels were detected in human CRC tissues. miR-744 and RFC2 effects on the proliferation of CRC were assessed both in vivo and in vitro. RFC2 was recognized to be a direct miR-744 target through luciferase reporter assay. RFC2 upregulation was observed within CRC tissues, and a high RFC2 level showed a correlation with poor clinicopathological symptoms. RFC2 knockdown inhibited CRC cell proliferation through promoting cell cycle arrest at the G1 phase, which was achieved by cyclin E2 (CCNE2) downregulation in vivo and in vitro. miR-744 was identified to be the tumor suppressor microRNA, which targeted RFC2 directly for inhibiting the proliferation of CRC cells both in vivo and in vitro. miR-744 downregulation was detected within CRC tissue, and messenger RNA expression showed a negative correlation with RFC2 expression within CRC tissues. Our study demonstrates that the miR-744/RFC2/CCNE2 axis potentially provides a candidate for a treatment strategy for CRC.  相似文献   

6.
Fu  Qianfeng  Jiang  Yuling  Zhang  Daxin  Liu  Xiuli  Guo  Junfeng  Zhao  Jinlong 《Molecular and cellular biochemistry》2016,413(1-2):189-198

Valosin-containing protein (VCP) was previously shown to exhibit high expression in colorectal cancer (CRC) tissues as compared with that in normal tissues; however, the role of VCP in human CRC cells has remained to be elucidated. Two colorectal cancer cell lines HCT116 and RKO were used in the experiment. We introduced lentiviral constructs expressing VCP to infect RKO cells and lenti-shRNA targeting VCP into HCT116 cells, respectively. Cell proliferation, invasion, apoptosis, and cell cycle arrest were subsequently examined by MTT assay, transwell chamber assay, flow cytometry, and western blot analysis, respectively. Furthermore, a subcutaneous tumor mouse model and lung metastasis model was used to investigate the effects of VCP on the growth and metastasis of CRC cells in vivo. VCP knockdown was shown to inhibit cell proliferation, chemoresistance and invasion, and induce apoptosis in the HCT116 CRC cells, whereas VCP over-expression suppressed apoptosis and chemoresponse, promoted proliferation and invasion of the RKO CRC cells. In addition, in the subcutaneous tumor and lung metastasis mouse model, VCP knockdown in HCT116 cells suppressed carcinogenesis and metastasis in vivo. The findings of the present study indicated that VCP is very important for the proliferation and metastasis of CRC; therefore, targeting VCP and its downstream targets may represent novel therapies for the treatment of CRC.

  相似文献   

7.
8.
Cervical cancer (CC) is a highly fatal gynecological malignancy due to its high metastasis and recurrence rate. Circular RNA (circRNA) has been regarded as a regulator of CC. However, the underlying molecular mechanism of circ_0005615 in CC remains unclear. The levels of circ_0005615, miR-138-5p, and lysine demethylase 2A (KDM2A) were measured using qRT-PCR or western blot. Cell proliferation was assessed by Cell Counting Kit-8, 5-ethynyl-2′-deoxyuridine, and colony formation experiments. Cell invasion and migration were tested by transwell assay and wound healing assay. Flow cytometry and Caspase-Glo 3/7 Assay kit were used to analyze cell apoptosis. The expression of proliferation-related and apoptosis-related markers was detected by western blot. The binding relationships among circ_0005615, miR-138-5p, and KDM2A were verified by dual-luciferase reporter assay or RNA immunoprecipitation assay. Xenograft assay was applied to detect the effect of circ_0005615 in vivo. Circ_0005615 and KDM2A were upregulated, while miR-138-5p was downregulated in CC tissues and cells. Circ_0005615 knockdown retarded cell proliferation, migration, and invasion, while promoting apoptosis. Besides, circ_0005615 sponged miR-138-5p, and miR-138-5p could target KDM2A. miR-138-5p inhibitor reversed the regulation of circ_0005615 knockdown on CC cell growth and metastasis, and KDM2A overexpression also abolished the inhibitory effect of miR-138-5p on CC cell growth and metastasis. In addition, we also discovered that circ_0005615 silencing inhibited CC tumor growth in vivo. Circ_0005615 acted as a tumor promoter in CC by regulating the miR-138-5p/KDM2A pathway.  相似文献   

9.
10.
Several studies have brought about increasing evidence to support the hypothesis that miRNAs play a pivotal role in multiple processes of carcinogenesis, including cell growth, apoptosis, differentiation, and metastasis. In this study, we investigated the potential role of miR-31 in colorectal cancer (CRC) aggressiveness and its underlying mechanisms. We found that miR-31 increased in CRC cells originated from metastatic foci and human primary CRC tissues with lymph node metastases. Furthermore, the high-level expression of miR-31 was significantly associated with a more aggressive and poor prognostic phenotype of patients with CRC (p < 0.05). The stable over-expression of miR-31 in CRC cells was sufficient to promote cell proliferation, invasion, and migration in vitro. It facilitated tumor growth and metastasis in vivo too. Further studies showed that miR-31 can directly bind to the 3’untranslated region (3’UTR) of SATB2 mRNA and subsequently repress both the mRNA and protein expressions of SATB2. Ectopic expression of SATB2 by transiently transfected with pCAG-SATB2 vector encoding the entire SATB2 coding sequence could reverse the effects of miR-31 on CRC tumorigenesis and progression. In addition, ectopic over-expression of miR-31 in CRC cells induced epithelial-mesenchymal transition (EMT). Our results illustrated that the up-regulation of miR-31 played an important role in CRC cell proliferation, invasion, and metastasis in vitro and in vivo through direct repressing SATB2, suggesting a potential application of miR-31 in prognosis prediction and therapeutic application in CRC.  相似文献   

11.
12.
Colorectal cancer has become the third most common cancer and leads to high mortality worldwide. Although colorectal cancer has been studied widely, the underlying molecular mechanism remains unclear. PER3 is related to tumor differentiation and the progression of colorectal cancer. High expression of miR-103 is associated with poor prognosis in patients with colorectal cancer. However, the relationship between miR-103 and PER3 in CRC cells remains unclear. In this study, we found that PER3 was downregulated in CRC tissues and CRC cell lines, whereas miR-103 was upregulated in CRC cell lines. We also found that PER3 promoted CRC cells apoptosis. These results indicate that PER3 plays a suppressive role in CRC cells. Moreover, we found that PER3 was targeted, at least partially, by miR-103. Taken together, we provide evidence to characterize the role of PER3 in CRC, which may be a new therapeutic target for CRC. [BMB Reports 2014;47(9): 500-505]  相似文献   

13.
This investigation was intended to elucidate whether long noncoding RNA (lncRNA)-activated by transforming growth factor-β (ATB) interacting with miR-200c could mediate colorectal cancer (CRC) progression, offering potential strategies for diagnosing and treating CRC. Here totally 315 patients with CRC were recruited, and their CRC tissues and adjacent normal tissues were gathered. Concurrently, four colon cancer cell lines (ie, SW620, Lovo, HCT116, and SW480) and the human colon mucosal epithelial cell line (NCM460) were also purchased. Moreover, si-ATB, si-NC, miR-200c mimic, miR-200c inhibitor, and miR-NC were prepared for transfection into the CRC cells, and their effects on CRC cell lines were evaluated based on the conduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, colony formation assay, and flow cytometry assay. Eventually, the Luciferase reporter gene assay was carried out to judge if there existed a targeted relationship between ATB and miR-200c. The results of Cox regression analyses suggested that overexpressed lncRNA ATB, underexpressed miR-200c, poor tumor differentiation, lymph-vascular invasion, and perineural invasion were symbolic of shortened survival of the patients with CRC (all P < .05). Besides, transfection of pcDNA3.1-ATB and miR-200c inhibitor could boost the viability and proliferation of Lovo and SW620 cell lines (all P < .05). Meanwhile, the expressions of p53 and p21 were also reduced under treatments of pcDNA3.1-ATB and miR-200c inhibitor (P < .05). In addition, CDK2 seemed to reverse the contribution of miR-200c to intensifying viability and proliferation of Lovo and SW420 cell lines (P < .05). Furthermore, ATB might downregulate miR-200c expression by targeting it (P < .05), and CDK2 was subjected to dual regulation of both ATB and miR-200c (P < .05). In conclusion, the lncRNA ATB/miR-200c/CDK2 signaling was responsible for intensified proliferation and prohibited apoptosis of CRC cells, which might provide effective approaches for diagnosing and treating CRC.  相似文献   

14.
MicroRNA-125a (miR-125a) is related to the occurrence, development, and prognosis of various cancers according to relevant reports. However, its function role and mechanism in non–small cell lung cancer (NSCLC) is yet to be explored. Herein, we investigated the role and preliminary mechanism of miR-125a in NSCLC. First, miR-125a was noticeably downregulated in NSCLC tissues in contrast to adjacent normal tissues through the real-time quantitative polymerase chain reaction (RT-qPCR) assay. The inverted result was observed on the STAT3 and HAS1 expressions. Moreover, miR-125a was expressed at highest level in A549 among four human NSCLC cell lines. Second, functional studies indicated miR-125a restrained proliferation, invasion, migration, metastasis, and advocated apoptosis of NSCLC cells, but had no obvious effect on cell cycle. Next, results indicated that a target of miR-125a was STAT3 on the basis of prediction and confirmation by the dual-luciferase reporter assay. RT-qPCR and Western blot assays displayed that miR-125a overexpression conspicuously constrained STAT3 expression at messenger RNA and protein levels. Finally, the binding between HAS1 promoter region and STAT3 was predicted by PROMO database analysis and verified by chromatin immunoprecipitation assay, suggesting that STAT3 was bound with the HAS1 promoter regions. STAT3 overexpression exerted positive effects on HAS1 expression at protein and mRNA levels. Additionally, HAS1-related functional studies illustrated HAS1 pronouncedly suppressed the proliferative, invasive, and migratory potential of NSCLC cells in vitro. Collectively, our findings demonstrated that miR-125a prohibited the proliferation, invasion, and migration of NSCLC cells by HAS1 expression reduction as a result of inhibiting STAT3 expression in NSCLC. This study indicated that miR-125a might be of potential or value for NSCLC treatment.  相似文献   

15.
16.
Hypopharyngeal squamous cell carcinoma (HSCC) accounts 95% of hypopharyngeal cancer, which is characterized by high early metastasis rate and poor prognosis. It is reported that circular RNA is involved in the occurrence and development of cancer; however, the role of circRNA in hypopharyngeal cancer has little been investigated. We performed hypopharyngeal carcinoma circRNA microarray and qRT-PCR verification. The results showed circ_0058106 expression level was significantly upregulated in tumor tissues than in corresponding normal tissues. We found that circ_0058106 upregulation promoted proliferation, migration and invasion of HSCC cells, while knockdown of circ_0058106 inhibited proliferation, migration and invasion of HSCC cells both in vitro and in vivo. Bioinformatics predicted circ_0058106 may interact with miR-185-3p. We verified circ_0058106 directly bound miR-185-3p and downregulated miR-185-3p expression by using dual-luciferase reporter assay and qRT-PCR. Moreover, we proved circ_0058106 promoted HSCC cells tumorigenesis and EMT process by regulating Wnt2b/β-catenin/c-Myc pathway via miR-185-3p. In conclusion, our findings firstly confirmed the carcinogenic effect of circ_0058106 in promoting HSCC cells tumorigenesis, metastasis, invasion and EMT process by regulating Wnt2b/β-catenin/c-Myc pathway through sponging miR-185-3p, indicating that circ_0058106 may be a new therapeutic target and prognostic marker for HSCC.Subject terms: Head and neck cancer, Head and neck cancer  相似文献   

17.
This study was aimed to figure out whether long noncoding RNA MEG3/miR-361-5p/FoxM1 signaling would contribute to improved proliferation and metastasis of osteosarcoma cells. We altogether collected 204 pairs of osteosarcoma tissues and adjacent normal tissues, and obtained four human osteosarcoma cell lines. Then pcDNA3.1-MEG3, si-MEG3, miR-361-5p mimic, miR-361-5p inhibitor, pcDNA3.1-FoxM1, si-FoxM1, and negative control (NC) were, respectively, transfected into the osteosarcoma cells. Furthermore, real time polymerase chain reaction was utilized to determine the mRNA expressions of maternally expressed gene 3 (MEG3) and miR-361-5p, and western blot analysis was applied for determining the FoxM1 expression. Besides, dual luciferase reporter gene assay was adopted to verify if MEG3 can be directly targeted by miR-361-5p. Finally, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide, colony formation assay, flow cytometry, wound healing assay, and transwell assay were conducted to investigate the influence of MEG3, miR-361-5p, and FoxM1 expressions on the viability, proliferation, apoptosis, migration, and invasion of osteosarcoma cells. MEG3 and miR-361-5p were observed to be significantly downregulated within both osteosarcoma tissues and cell lines, whereas FoxM1 was upregulated in osteosarcoma tissues and cell lines (p < 0.05). MEG3 directly bound to miR-361-5p, and significantly upgraded its expression (p < 0.05). The upregulated MEG3 and miR-361-5p or the downregulated FoxM1 appeared to substantially inhibit proliferation, migration, and invasion of osteosarcoma cells (p < 0.05). Finally, the proliferation, migration, invasion, and motility of osteosarcoma cells within the miR-NC + pcDNA3.1-FoxM1 group and pcDNA + pcDNA-FoxM1 group were markedly promoted when compared with the miR-361-5p mimic group and pcDNA3.1-MEG3 group (p < 0.05). The MEG3/miR-361-5p/FoxM1 axis could potentially serve as therapeutic targets or diagnostic biomarkers for osteosarcoma.  相似文献   

18.
Overexpression of enhancer of zeste homologue 2 (EZH2) occurs in various malignancies and is associated with a poor prognosis, especially because of increased cancer cell proliferation. In this study we found an inverse correlation between EZH2 and RUNX3 gene expression in five cancer cell lines, i.e. gastric, breast, prostate, colon, and pancreatic cancer cell lines. Chromatin immunoprecipitation assay showed an association between EZH2 bound to the RUNX3 gene promoter, and trimethylated histone H3 at lysine 27, and HDAC1 (histone deacetylase 1) bound to the RUNX3 gene promoter in cancer cells. RNA interference-mediated knockdown of EZH2 resulted in a decrease in H3K27 trimethylation and unbound HDAC1 and an increase in expression of the RUNX3 gene. Restoration of RUNX3 expression was not associated with any change in DNA methylation status in the RUNX3 promoter region. RUNX3 was repressed by histone deacetylation and hypermethylation of a CpG island in the promoter region and restored by trichostatin A or/and 5-aza-2'-deoxycytidine. Immunofluorescence staining confirmed restoration of expression of the RUNX3 protein after knockdown of EZH2 and its restoration resulted in decreased cell proliferation. In vivo, an inverse relationship between expression of the EZH2 and RUNX3 proteins was observed at the individual cell level in gastric cancer patients in the absence of DNA methylation in the RUNX3 promoter region. The results showed that RUNX3 is a target for repression by EZH2 and indicated an underlying mechanism of the functional role of EZH2 overexpression on cancer cell proliferation.  相似文献   

19.
BackgroundChemoresistance is one of the main obstacles in the therapy of human cancers, including colorectal cancer (CRC). Long non-coding RNA heart and neural crest derivatives expressed 2-antisense RNA 1 (lncRNA HAND2-AS1) has been demonstrated to be associated with CRC. However, the function of HAND2-AS1 in 5-Fluorouracil (5-FU) resistance of CRC remains unclear.MethodsQuantitative real-time polymerase chain reaction (qRT-PCR) was performed to detect the expression of HAND2-AS1, miR-20a and programmed cell death factor 4 (PDCD4) mRNA. 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT) assay was conducted to evaluate IC50 of 5-FU and cell proliferation. Flow cytometry analysis was used to determine cell apoptosis. Transwell assay was carried out to measure cell migration and invasion. Western blot assay was conducted to examine the protein levels of B-cell lymphoma-2 (Bcl-2), BCL2-Associated X (Bax), matrix metalloprotein 2 (MMP2), MMP9 and PDCD4. Dual-luciferase reporter assay, RNA immunoprecipitation (RIP) assay and RNA pull down assay were utilized to verify the combination between miR-20a and HAND2-AS1. Dual-luciferase reporter assay was used to analyze the association between miR-20a and PDCD4. Murine xenograft assay was used to confirm the function of HAND2-AS1 in vivo.ResultsHAND2-AS1 and PDCD4 were downregulated and miR-20a was upregulated in 5-FU-resistant CRC tissues and cells. HAND2-AS1 suppressed 5-FU resistance, cell proliferation, migration and invasion and promoted cell apoptosis in 5-FU-resistant CRC cells. HAND2-AS1 acted as a sponge of miR-20a to regulate PDCD4 expression. Moreover, HAND2-AS1 suppressed cell progression and 5-FU resistance by upregulating PDCD4 via sponging miR-20a in 5-FU-resistant CRC cells. Besides, HAND2-AS1 inhibited tumor growth in vivo.ConclusionHAND2-AS1/miR-20a/PDCD4 axis inhibited cell progression and 5-FU resistance in 5-FU-resistant CRC cells.  相似文献   

20.
Circular RNAs (circRNAs) have been demonstrated to be important regulators in human malignant tumors, including colorectal cancer (CRC). While the role circ-ZEB1 played in CRC remains unclear. In this study, we aim to explore the biological function and the underlying mechanism of circ-ZEB1 in CRC. RNAscope was used to analyze the expression and localization of circ-ZEB1 in CRC tissues. Loss of function experiments were conducted, including CCK-8, transwell assays, flow cytometry analysis, and murine xenograft models, so as to detect the effect of circ-ZEB1 on CRC cells. IC50 assay was used to evaluate the influence of circ-ZEB1 on the chemoresistance of CRC cells. Epithelial-mesenchymal transition (EMT) related markers were detected. The relationship between circ-ZEB1 and miR-200c-5p was investigated by FISH, dual-luciferase reporter assay, and RIP assay. We found in our study that circ-ZEB1 was significantly upregulated in CRC tissues. Downregulation of circ-ZEB1 inhibited cell proliferation, colony formation, as well as cell migration and invasion abilities of CRC cell lines. In vivo experiments indicated that knockdown of circ-ZEB1 suppressed tumorigenesis and distant metastasis of CRC cells in nude mice. What's more, EMT and chemoresistance of CRC cells were also attenuated following circ-ZEB1 knockdown. Mechanistically, we proved that circ-ZEB1 could directly bind with miR-200c and functioned as miR-200c sponge to exert its biological functions in CRC cells. In conclusion, circ-ZEB1 could promote CRC cells progression, EMT, and chemoresistance via acting on miR-200c, elucidating a potential therapeutic target to inhibit CRC progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号