首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 0 毫秒
1.
Histone phosphorylation is dynamically regulated during cell division, for example phosphorylation of histone H3 (H3)-Ser10, H3-Thr11 and H3-Ser28. Here we analyzed maize (Zea mays L) for Thr133-phosphorylated histone H2A, which is important for spindle checkpoint control and localization of the centromere cohesion protector Shugoshin in mammals and yeast. Immunostaining results indicate that phosphorylated H2A-Thr133 signals bridged those of the centromeric H3 histone variant CENH3 by using a plant displaying yellow fluorescent protein-CENH3 signals and H2A-Thr133 is phosphorylated in different cell types. During mitosis, H2A-Thr133 phosphorylation becomes strong in metaphase and is specific to centromere regions but drops during later anaphase and telophase. Immunostaining for several maize dicentric chromosomes revealed that the inactive centromeres have lost phosphorylation of H2A-Thr133. During meiosis in maize meiocytes, H2A phosphorylation becomes strong in the early pachytene stage and increases to a maximum at metaphase I. In the maize meiotic mutant afd1 (absence of first division), sister chromatids show equational separation at metaphase I, but there are no changes in H2A-Thr-133 phosphorylation during meiosis compared with the wild type. In sgo1 mutants, sister chromatids segregate randomly during meiosis II, and phosphorylation of H2A-Thr-133 is observed on the centromere regions during meiosis II. The availability of such mutants in maize that lack sister cohesion and Shugoshin indicate that the signals for phosphorylation are not dependent on cohesion but on centromere activity.  相似文献   

2.
Haspin‐mediated phosphorylation of histone H3 at threonine 3 (H3T3ph) promotes proper deposition of Aurora B at the inner centromere to ensure faithful chromosome segregation in metazoans. However, the function of H3T3ph remains relatively unexplored in plants. Here, we show that in maize (Zea mays L.) mitotic cells, H3T3ph is concentrated at pericentromeric and centromeric regions. Additional weak H3T3ph signals occur between cohered sister chromatids at prometaphase. Immunostaining on dicentric chromosomes reveals that an inactive centromere cannot maintain H3T3ph at metaphase, indicating that a functional centromere is required for H3T3 phosphorylation. H3T3ph locates at a newly formed centromeric region that lacks detectable CentC sequences and strongly reduced CRM and ZmBs repeat sequences at metaphase II. These results suggest that centromeric localization of H3T3ph is not dependent on centromeric sequences. In maize meiocytes, H3T3 phosphorylation occurs at the late diakinesis and extends to the entire chromosome at metaphase I, but is exclusively limited to the centromere at metaphase II. The H3T3ph signals are absent in the afd1 (absence of first division) and sgo1 (shugoshin) mutants during meiosis II when the sister chromatids exhibit random distribution. Further, we show that H3T3ph is mainly located at the pericentromere during meiotic prophase II but is restricted to the inner centromere at metaphase II. We propose that this relocation of H3T3ph depends on tension at the centromere and is required to promote bi‐orientation of sister chromatids.  相似文献   

3.
4.
Chromatin remodelling is thought to play a key role in gene regulation that underlies long-term synaptic plasticity and memory formation. The dynamic process of chromatin remodelling requires post-translational modifications of histones, a group of highly basic proteins that are tightly linked to DNA. In the present study, we investigated histone H3 modifications in response to glutamate stimulation leading to c-Fos and c-Jun induction in an in vitro model system of striatal neurons in culture. Intracellular signalling pathways implicated in these modifications were analysed. Histone H3 acetylation was strong in basal conditions and unmodified by glutamate treatment. By contrast, glutamate induced a strong phosphorylation of histone H3 that was inhibited by selective inhibitors of the extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (p38 MAPK) pathways, U0126 and SB203580, respectively. Blocking activation of mitogen- and stress-activated kinase 1 (MSK1), a kinase downstream ERK and p38 MAPK, by pharmacological approach or using striatal cells from MSK1 deficient mice, totally abolished H3 phosphorylation, as well as c-Fos and c-Jun induction. Chromatin immunoprecipitation assays confirmed increased levels of phosphorylated H3 at the c-jun promoter. Altogether, our data highlight the crucial role of MSK1 in the nucleosomal response necessary for gene induction in neuronal cells.  相似文献   

5.
6.
One of the mechanisms involved in chromatin remodelling is so-called 'histone replacement'. An example of such a mechanism is the substitution of canonical H2A histone by the histone variant H2A.Z. The ATP-dependent chromatin remodelling complex SWR1 is responsible for this action in yeast. We have previously proposed the existence of an SWR1-like complex in Arabidopsis by demonstrating genetic and physical interaction of the components SEF, ARP6 and PIE1, which are homologues of the yeast Swc6 and Arp6 proteins and the core ATPase Swr1, respectively. Here we show that histone variant H2A.Z, but not canonical H2A histone, interacts with PIE1. Plants mutated at loci HTA9 and HTA11 (two of the three Arabidopsis H2A.Z-coding genes) displayed developmental abnormalities similar to those found in pie1, sef and arp6 plants, exemplified by an early-flowering phenotype. Comparison of gene expression profiles revealed that 65% of the genes differentially regulated in hta9 hta11 plants were also mis-regulated in pie1 plants. Detailed examination of the expression data indicated that the majority of mis-regulated genes were related to salicylic acid-dependent immunity. RT-PCR and immunoblotting experiments confirmed constitutive expression of systemic acquired resistance (SAR) marker genes in pie1, hta9 hta11 and sef plants. Variations observed at the molecular level resulted in phenotypic alterations such as spontaneous cell death and enhanced resistance to the phytopathogenic bacteria Pseudomonas syringae pv. tomato. Thus, our results support the existence in Arabidopsis of an SWR1-like chromatin remodelling complex that is functionally related to that described in yeast and human, and attribute to this complex a role in maintaining a repressive state of the SAR response.  相似文献   

7.
8.
Previously, thunberginols A and B from the processed leaves of Hydrangeae macrophylla var. thunbergii (Hydrangea dulcis folium) substantially inhibited the degranulation caused by antigen and calcium ionophore A23187, and the release of tumor necrosis factor (TNF)-α and interleukin (IL)-4 by antigen in RBL-2H3 cells. In the present study, we examined the effect of thunberginol B on the expression of mRNA of several cytokines [ILs-2, 3, 4 and 13, TNF-α and granulocyte/macrophage-colony stimulating factor (GM-CSF)] and effects of thunberginols A and B on activator protein (AP)-1 composed of c-jun and c-fos, which is essential for the expression of the cytokine mRNA, in RBL-2H3 cells. Thunberginol B inhibited up-regulated genes of all cytokines, and thunberginols A and B (30 μM) inhibited the phosphorylation of c-jun and expression of c-fos mRNA and phosphorylation of extracellular signal-regulated kinases (ERK1/2). In addition, the profile of gene expression by thunberginol B was similar to that by luteolin, a natural flavone with a potent anti-allergic effect.  相似文献   

9.
The eukaryotic histone heterodimer H2A-H2B folds through an obligatory dimeric intermediate that forms in a nearly diffusion-limited association reaction in the stopped-flow dead time. It is unclear whether there is partial folding of the isolated monomers before association. To address the possible contributions of structure in the monomers to the rapid association, we characterized H2A and H2B monomers in the absence of their heterodimeric partner. By far-UV circular dichroism, the H2A and H2B monomers are 15% and 31% helical, respectively—significantly less than observed in X-ray crystal structures. Acrylamide quenching of the intrinsic Tyr fluorescence was indicative of tertiary structure. The H2A and H2B monomers exhibit free energies of unfolding of 2.5 and 2.9 kcal mol− 1, respectively; at 10 μM, the sum of the stability of the monomers is ∼ 60% of the stability of the native dimer. The helical content, stability, and m values indicate that H2B has a more stable, compact structure than H2A. The monomer m values are larger than expected for the extended histone fold motif, suggesting that the monomers adopt an overly collapsed structure. Stopped-flow refolding—initiated from urea-denatured monomers or the partially folded monomers populated at low denaturant concentrations—yielded essentially identical rates, indicating that monomer folding is productive in the rapid association and folding of the heterodimer. A series of Ala and Gly mutations were introduced into H2A and H2B to probe the importance of helix propensity on the structure and stability of the monomers. The mutational studies show that the central α-helix of the histone fold, which makes extensive intermonomer contacts, is structured in H2B but only partially folded in H2A.  相似文献   

10.
11.
It is widely accepted that the incidence of chromosomal aberration is 10–15.2% in the azoospermic male; however, the exact genetic damages are currently unknown for more than 40% of azoospermia. To elucidate the causative gene defects, we used the next generation sequencing (NGS) to map the breakpoints of a chromosome insertion from an azoospermic male who carries a balanced, maternally inherited karyotype 46, XY, inv ins (18,7) (q22.1; q36.2q21.11). The analysis revealed that the breakage in chromosome 7 disrupts two genes, dipeptidyl aminopeptidase-like protein 6 (DPP6) and contactin-associated protein-like 2 (CACNA2D1), the former participates in regulation of voltage-gated potassium channels, and the latter is one of the components in voltage-gated calcium channels. The deletion and duplication were not identified equal or beyond 100 kb, but 4 homologous DNA elements were verified proximal to the breakpoints. One of the proband's sisters inherited the same aberrant karyotype and experienced recurrent miscarriages and consecutive fetus death, while in contrast, another sister with a normal karyotype experienced normal labor and gave birth to healthy babies. The insertional translocation is confirmed with FISH and the Y-chromosome microdeletions were excluded by genetic testing. This is the first report describing chromosome insertion inv ins (18,7) and attributes DPP6 and CACNA2D1 to azoospermia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号