首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Mucosal hypertonicity, produced by the addition of NaCl, KCl, mannitol, urea, sucrose or raffinose, reduced the electrical resistance of toad urinary bladder and induced bullous deformations (blisters) of the most apical junctions of the mucosal epithelium: the smaller solutes were most effective in eliciting both phenomena. Study of the effect of addition and subsequent removal of mannitol from the mucosal medium indicated that both the electrical and morphologic changes are reversible and follow the same time course. Mucosal hypertonicity induced comparable changes in the tissue in the presence or absence of inhibition of active sodium transport by replacement of sodium by choline, or by addition of ouabain or amiloride. Dilution of the tonicity of the serosal medium similarly reduced the tissue resistance and induced blisters within the epithelium, demonstrating that the osmotic gradient, rather than the mucosal hypertonicity itself is the cause of the osmotically-induced resistance change. The data indicate, therefore, that the osmotic gradient reduces the electrical resistance of the tissue primarily by deforming the apical junctions.The simplest interpretation of the data is that the apical tight junctions are considerably more permeable to water and small solutes than had previously been thought. Addition of solute to the mucosal medium leads to the diffusion of solute into the junctions: the subsequent transfer of water from the lateral intercellular spaces and/or the adjacent cellular cytoplasm, deforms these structures and reduces the resistance to the passage of ions across the tissue. The results suggest that the apical junctions constitute the rate-limiting permeability barrier of the putative parallel shunt pathway across toad bladder.  相似文献   

2.
The ion selectivity of the apical membrane Na channel in the toad urinary bladder was investigated. The electrical potential difference and resistance across the basal-lateral membrane were reduced using high concentrations of KCl in the serosal bathing medium, and gradients for various ions were imposed across the apical membrane by altering the composition of the mucosal bathing medium. Ion fluxes through the channel were measured as the transepithelial current inhibited by amiloride, a specific blocker of the channel's Na conductance. The selectivity sequence for alkali metal cations was H greater than Li greater than Na much greater than K. K permeability was barely detectable; the selectivity for Na over K was about 1000:1. Ammonium, hydroxyl ammonium and hydrazinium ions were, like K, virtually impermeant. The results suggest that the size of the unhydrated ion is an important factor in determining permeability in this channel.  相似文献   

3.
Evaporation of water from upper airway surfaces increases surface liquid osmolarity. We studied the effects of raised osmolarity of the solution bathing the luminal surface of excised canine tracheal epithelium. Osmolarity was increased by adding NaCl or mannitol. NaCl addition induced a concentration-dependent fall in short-circuit current and a rise in transepithelial conductance (-33% and +14% per 100 mosM, respectively). Unidirectional isotopic fluxes of 22Na, 36Cl, and [14C]mannitol were measured in short-circuited tissues in the base-line state and after addition of NaCl or mannitol to an isotonic mucosal solution. NaCl addition (75 mM) caused a 50% increase in conductance (G) and a parallel increase in [14C]mannitol permeability (Pmann), indicating an increase in paracellular permeability. Net Cl- secretion was reduced 50%, and net Na+ absorption was unchanged despite an increased chemical gradient for absorption, indicating an inhibition of active ion transport. Mannitol addition (150 mM) abolished net Na+ absorption but did not increase G or Pmann or change net Cl- secretion. These results suggest that responses to increased tracheal surface liquid osmolarity during spontaneous breathing may occur in both the cellular (inhibition of active Na+ and Cl- transport) and paracellular (increased [14C]mannitol permeability) compartments of the mucosa.  相似文献   

4.
Summary By the use of microelectrode techniques, the potential profile and the electrical resistances of the cellular and shunt pathways across the toad urinary bladder epithelium were measured under control conditions and after exposing the mucosal side to solutions of low and high NaCl concentrations and osmolatities. The resistance of the shunt pathway increases at low NaCl concentration (even if the osmolality is kept constant), and decreases at high NaCl concentration (by a nonspecific osmotic mechanism). The inverse relationship between mucosal NaCl concentration and shunt resistance suggests a regulatory mechanism of net sodium transport by reduction of the passive blood-to-urine sodium flux at low urinary sodium concentrations. In addition, the transepithelial potential and the potentials at both cell borders fall in both low and high mucosal NaCl, and the magnitude of these changes is such that they cannot be explained by changes in the shunt pathway alone.  相似文献   

5.
The electrical resistances of the transcellular and paracellular pathways across the toad urinary bladder epithelium (a typical "tight" sodium-transporting epithelium) were determined by two independent sets of electrophysiological measurements: (a) the measurement of the total transepithelial resistance, the ratio of resistance of the apical to the basal cell membrane, and cable analysis of the voltage spread into the epithelium; (b) the measurement of the total transepithelial resistance and the ratio of resistances of both cell membranes before and after replacing all mucosal sodium with potassium (thus, increasing selectively the resistance of the apical membrane). The results obtained with both methods indicate the presence of a finite transepithelial shunt pathway, whose resistance is about 1.8 times the resistance of the transcellular pathway. Appropriate calculations show that the resistance of the shunt pathway is almost exclusively determined by the zonula occludens section of the limiting junctions. The mean resistance of the apical cell membrane is 1.7 times that of the basal cell membrane. The use of nonconducting materials on the mucosal side allowed us to demonstrate that apparently all epithelial cells are electrically coupled, with a mean space constant of 460 µm, and a voltage spread consistent with a thin sheet model.  相似文献   

6.
Summary The ion selectivity of the apical membrane Na channel in the toad urinary bladder was investigated. The electrical potential difference and resistance across the basal-lateral membrane were reduced using high concentrations of KCl in the serosal bathing medium, and gradients for various ions were imposed across the apical membrane by altering the composition of the mucosal bathing medium. Ion fluxes through the channel were measured as the transepithelial current inhibited by amiloride, a specific blocker of the channel's Na conductance. The selectivity sequence for alkali metal cations was H>Li>NaK. K, permeability was barely detectable; the selectivity for Na over K was about 1000:1. Ammonium, hydroxyl ammonium and hydrazinium ions were, like K, virtually impermeant. The results suggest that the size of the unhydrated ion is an important factor in determining permeability in this channel.  相似文献   

7.
Dehydrated toads absorb water by pressing a specialized (seat patch) area of the skin to moist surfaces. This behavior, the water absorption response (WR), is preceded by periods of more limited skin contact (seat patch down, SPD) in which the suitability of the rehydration source is evaluated. WR and SPD behaviors were suppressed on 250 mM NaCl and 200 mM KCl solutions. Ten micromolar amiloride partially restored SPD and WR on NaCl solutions. The addition of 5 mM La(3+) also partially restored the initiation of WR and this effect was additive to the effect of amiloride, suggesting transcellular and paracellular pathways exist in parallel. Similarly, 5 mM La(3+) partially restored the initiation of WR on KCl solutions, to levels comparable to those with K(+)gluconate, suggesting a paracellular pathway for detection of K(+). Hyperosmotic (250 mM) NaCl solutions bathing the mucosal surface rapidly and reversibly increased the paracellular conductance of isolated skin and this increase was partially inhibited by 5 mM La(3+). These results suggest that the regulation of tight junctions has a chemosensory role in toad skin.  相似文献   

8.
Maximal flux responses after multiple challenges with vasopressin   总被引:1,自引:0,他引:1  
Antidiuretic hormone (ADH) increases transepithelial flux of water and particular solutes across the amphibian urinary bladder and mammalian collecting duct by increasing the permeability of the apical surface. We find that if each challenge with ADH is ended by replacing the medium bathing both the mucosal and serosal surfaces of the toad bladder, then rechallenge with the same supramaximal dose of ADH 36-100 min later produces flux equivalent to or greater than the original response, but rechallenge after 15 min produces only 68% of the original response. If the medium bathing the mucosal surface is neither replaced nor returned to its original volume, complete recovery of the osmotic flux response to ADH does not occur. Maximal restimulation by ADH occurs with transepithelial osmotic gradients between 119 and 180 mosmol/kg during both challenges (the serosal bath is always isotonic amphibian Ringers). In addition, ADH-containing serosal baths that have maximally activated transport across bladders for 30-60 min can be reused and again produce maximal activation of ADH responses in fresh bladders or in the original bladders after washing. These results are in contradistinction to reports of desensitization of transepithelial flux upon rechallenge with ADH after an initial stimulation under many conditions. Our findings suggest that desensitization in vitro may result from experimental design rather than intrinsic biological characteristics of the system.  相似文献   

9.
The amphibian skin, widely used for studying the transepithelial passage of electrolytes, exhibits anion pathways relatively specific for Cl(-). We studied the effect of HgCl(2), 1.0 x 10(-4) M on its electrical parameters and unidirectional anion fluxes. In the presence of Cl(-), the transepithelial conductance (G) of the isolated skin of the Bufo arenarum toad increased considerably following exposure to HgCl(2), whereas short-circuit current (SCC)--reflecting transepithelial Na(+) transport-underwent only slight stimulation. Following the blockade of Na(+) intake by amiloride, 1.0 x 10(-4) M, the removal of Cl(-) from the solution bathing the epidermal border of the skin brought about a decrease in G, and gave rise to a gradient-induced SCC (SCCg) consistent with transepithelial passage of Cl(-) along its gradient. Addition of mercaptoethanol, 5.0 x 10(-3) M to the bath containing Hg(2+) fully reversed these effects. The increase in G was accompanied by an increase in the unidirectional (epidermal to dermal) fluxes of (36)Cl(-) and (131)I(-), and a decrease in the passage of (99m)TcO(4)(-). These results show the effects of HgCl(2) to be similar to those of theophylline, although exhibiting a different selectivity. Our data suggest that anion passage following exposure to HgCl(2) is, like that stimulated by theophylline, predominantly if not exclusively transcellular, and does not involve a significant opening of the tight junctions.  相似文献   

10.
Net Cl- absorption in the mouse medullary thick ascending limb of Henle (mTALH) involves a furosemide-sensitive Na+:K+:2 Cl- apical membrane symport mechanism for salt entry into cells, which occurs in parallel with a Ba++-sensitive apical K+ conductance. The present studies, using the in vitro microperfused mouse mTALH, assessed the concentration dependence of blockade of this apical membrane K+-conductive pathway by Ba++ to provide estimates of the magnitudes of the transcellular (Gc) and paracellular (Gs) electrical conductances (millisiemens per square centimeter). These studies also evaluated the effects of luminal hypertonicity produced by urea on the paracellular electrical conductance, the electrical Na+/Cl- permselectivity ratio, and the morphology of in vitro mTALH segments exposed to peritubular antidiuretic hormone (ADH). Increasing luminal Ba++ concentrations, in the absence of luminal K+, produced a progressive reduction in the transcellular conductance that was maximal at 20 mM Ba++. The Ba++-sensitive transcellular conductance in the presence of ADH was 61.8 +/- 1.7 mS/cm2, or approximately 65% of the total transepithelial conductance. In phenomenological terms, the luminal Ba++-dependent blockade of the transcellular conductance exhibited negative cooperativity. The transepithelial osmotic gradient produced by luminal urea produced blebs on apical surfaces, a striking increase in shunt conductance, and a decrease in the shunt Na+/Cl- permselectivity (PNa/PCl), which approached that of free solution. The transepithelial conductance obtained with luminal 800 mM urea, 20 mM Ba++, and 0 K+ was 950 +/- 150 mS/cm2 and provided an estimate of the maximal diffusion resistance of intercellular spaces, exclusive of junctional complexes. The calculated range for junctional dilution voltages owing to interspace salt accumulation during ADH-dependent net NaCl absorption was 0.7-1.1 mV. Since the Ve accompanying ADH-dependent net NaCl absorption is 10 mV, lumen positive, virtually all of the spontaneous transepithelial voltage in the mouse mTALH is due to transcellular transport processes. Finally, we developed a series of expressions in which the ratio of net Cl- absorption to paracellular Na+ absorption could be expressed in terms of a series of electrical variables. Specifically, an analysis of paired measurement of PNa/PCl and Gs was in agreement with an electroneutral Na+:K+:2 Cl- apical entry step. Thus, for net NaCl absorption, approximately 50% of Na+ was absorbed via a paracellular route.  相似文献   

11.
Amphotericin B (AmB) increased unidirectional Na transport and net transcellular sodium movements across the skin of the frog, Rana pipiens, when added to the solution bathing the corium side, but not from the outer epidermal surface. The AmB response was prevented with pretreatment with amiloride, ouabain and mucosal sodium substitution. Alteration in pH markedly reduced the permeability changes induced by AmB. AmB did not interfere with the increase in sodium transport induced by antidiuretic hormone. The present study demonstrates that AmB interacts with the skin of the frog, Rana pipiens, from the corium side specifically increasing transepithelial sodium transport. The increase in transport apparently occurs through the existing sodium pathway.  相似文献   

12.
The mucosal cell surface of the toad urinary bladder was examined by scanning electron microscopy, and changes in the structure of the surface of the granular cell were correlated with specific physiological responses to vasopressin. Survey views of the mucosal surface demonstrated that there was no consistent repeating anatomical relationship between the granular cell and the mitochondria-rich cell that would support the concept of cooperativeness in the response to vasopressin. During base-line states of Na+-transport and water flux, the microvilli on the mucosal surface of the granular cell are arranged in a ridge-like network with occasional individual projections. When water flux is increased by exposing the tissue to vasopressin, in the presence of an osmotic gradient across the tissue the microvilli on the granular cell lose the ridge structure and appear, predominantly, as individual projection. Variability-of this appearance points out the necessity of examining large areas and many samples before the significance of any morphological change can be assessed. Blocking the simultaneously occurring natriferic response of the toad urinary bladder with 10(-2)M ouabain does not prevent these changes in the microvilli. When the hydro-osmotic response is blocked by eliminating the osmotic gradient, the granular cell shows no consistent change in mucosal surface morphology even when fixed at the height of the natriferic response. The mitochondria-rich and mucous cells did not show any change in morphology throughout these studies. We conclude that the changes in the mucosal surface morphology of the toad bladder seen after exposure to vasopressin are a result of the increased water flux that occurs when an osmotic gradient exists across the tissue, and are not related to the natriferic response or any specific alteration in the membrane properties.  相似文献   

13.
Summary In an attempt to quantify possible intracellular water activity gradients during ADH-induced osmotic water flow, we employed energy dispersive X-ray microanalysis to thin, freezedried cryosections obtained from fresh, shock-frozen tissue of the toad urinary bladder. The sum of all detectable small ions (Na + K + Cl) in the cellular water space was taken as an index of the intracellular osmolarity. Presuming that all ions are osmotically active, they comprise about 90% of the cellular solutes. When the cells were exposed to dilute serosal medium, the reduction in the sum of the ions agreed well with the expected reduction in osmolarity. After inducing water flow by addition of ADH and dilution of the mucosal medium, all epithelial cells showed a fall in osmolarity. The change was more pronounced in granular cells than in basal or mitochondria-rich cells, consistent with the notion that granular cells represent the main transport pathway. Most significantly, intracellular osmolarity gradients, largely caused by an uneven distribution of K and Na, were detectable in granular cells. The gradients were not observed after ADH or mucosal dilution alone, or when the direction of transepithelial water flow was reversed. We conclude from these results that there is a significant cytoplasmic resistance to water flow which may lead to intracellular gradients of water activity. Concentration gradients of diffusible cations can be explained by a flow-induced Donnan-type distribution of fixed negative charges. With regard to transepithelial Na transport, the data suggest that ADH stimulates transport by increasing the Na permeability of the apical membranes of granular cells specifically.  相似文献   

14.
The presence of Li in the solution bathing the outer surface of toad skin under short-circuit condition promotes an unspecific permeability increase characterized by a delayed and progressive increase in the effluxes of 24Na, 42K and 14C sucrose. The effect of Li upon sucrose permeability might indicate an increased permeability of the paracellular pathway. The Li effect is mediated by an intracellular action since blockade of Li entrance into the cell compartment by amiloride prevents the increase in Na, K and sucrose permeability. A possible mechanism of this effect is discussed in terms of a disturbance in the cellular Ca++ balance leading to an increase in cytosolic Ca++ concentration which perturbs the organization of the cytoskeleton and the interplay between cytoskeleton and tight junctions.  相似文献   

15.
The bee venom melittin, 10(-6) M, on the mucosal (urinary) side of the toad urinary bladder (in vitro), markedly decreased transepithelial potential difference, short-circuit current (Isc, sodium-dependent) and resistance. However, these effects were not seen when the toxin was placed on the opposite (serosal) side of the membrane preparation. The electrical effects were accompanied by a large increase in the transepithelial permeability to 22Na. The response was not changed by meclofenamic acid (which blocks formation of prostaglandins) but it was inhibited by La3+. In the presence of amiloride, which usually inhibits active Na transport and Isc, melittin, on the mucosal side, increased the Isc. The action of melittin appears to involve an interaction with anionic sites, which mediate its effects. Such sites appear to be present on the apical plasma membranes of the toad bladder epithelial cells, but they are not as abundant or they are inaccessible on the basal plasma membrane.  相似文献   

16.
Membrane potentials and the electrical resistance of the cell membranes and the shunt pathway of toad urinary bladder epithelium were measured using microelectrode techniques. These measurements were used to compute the equivalent electromotive forces (EMF) at both cell borders before and after reductions in mucosal Cl- concentration ([Cl]m). The effects of reduction in [Cl]m depended on the anionic substitute. Gluconate or sulfate substitutions increased transepithelial resistance, depolarized membrane potentials and EMF at both cell borders, and decreased cell conductance. Iodide substitutions had opposite effects. Gluconate or sulfate substitutions decreased apical Na conductance, where iodide replacements increased it. When gluconate or sulfate substitutions were brought about the presence of amiloride in the mucosal solution, apical membrane potential and EMF hyperpolarized with no significant changes in basolateral membrane potential or EMF. It is concluded that: (a) apical Na conductance depends, in part, on the anionic composition of the mucosal solution, (b) there is a Cl- conductance in the apical membrane, and (c) the electrical communication between apical and basolateral membranes previously described is mediated by changes in the size of the cell Na pool, most likely by a change in sodium activity.  相似文献   

17.
We have tested whether increased Ca++ and Mg++ concentrations have an effect on transepithelial voltage (PDte) and transepithelial resistance (Rte) in isolated perfused cortical thick ascending limbs (cTAL) of rabbit kidney. The divalent cations added at 2.5, 5.0 and 10.0 mmol.l-1 to the lumen or peritubular bath perfusate led to a concentration-dependent increase in Rte. The maximal response in Rte was observed between 5 and 10 mmol.l-1. No significant change in active transepithelial potential difference (PDte) was observed. The increase in Rte still occurred when the transcellular current was reduced by Ba++ (3 mmol.l-1) added to the lumen perfusate. This suggests that the increase in Rte caused by Ca++ and Mg++ is due to a modification of the paracellular shunt pathway. In the absence of active transport, i.e. when furosemide (5.10(-5) mol.l-1) was added to the lumen perfusate. Ca++ and Mg++ reduced the transepithelial diffusion potential generated by a NaCl gradient established across the epithelium, and thus produced a reduction of the relative permeability for Na+ over Cl- (PNa+/PCl-) of the paracellular shunt pathway. This indicates that divalent cations increase Rte by reducing the sodium permeability of the tight junctions. The observed Ca++ and Mg++ induced reduction of the sodium permeability of the paracellular pathway corresponds to a decrease in net Na+ reabsorption by 5-10%. Since it has been demonstrated that peptide hormones such as parathyrin (PTH) modulate divalent cation and NaCl reabsorptions, in a second series of experiments we tested the effects of PTH (2-20 USP.l-1) and dbcAMP (10(-3) mol.l-1) on PDte and Rte of isolated perfused cTAL segments of rabbit nephron. Neither Rte nor PDte were affected by PTH or dbcAMP.  相似文献   

18.
The principal anions transported by colonic epithelium are Cl-, HCO3- and organic anions (OA-), particularly acetate, butyrate and pyruvate, these last being formed by microbial degradation of carbohydrate. In the normal absorptive rat colon, Cl- is transported from lumen to plasma both by the transcellular and paracellular pathways. The transcellular route appears to depend on amiloride-insensitive coupling of Na+-Cl- at the mucosal (apical) membrane, the Na+ electrochemical gradient energizing Cl- uptake. Intraluminal [HCO3-] rises as Cl- as absorbed, and a mucosal Cl- -HCO3- exchange carrier has been postulated. In some species (and in distal colon of the rat when sodium-depleted), the putative Na+-Cl- carrier is absent so that Cl- absorption then depends largely on the paracellular electrochemical gradient. Absorption of OA- is independent of the transepithelial p.d., is associated with HCO3- secretion and is considerably reduced by acetazolamide. In the absence of Cl-, OA- supports Na+ absorption but does not depend on it continuing unchanged when the latter is blocked. Colonic epithelium can become secretory and an example of this state is congenital chloridorrhoea in which an elevated transepithelial p.d. is associated with excessive Cl- secretion. Here, it appears that the Na+-Cl- and Cl- -HCO3- carriers are lost and Cl- conductance of the mucosal membrane substantially increased. The transepithelial uphill movements of Cl- or HCO3- in the absorptive and secretory colon appear to depend on coupling to other ionic flows, and there seems to be no need to postulate active transport of these ions.  相似文献   

19.
The sulfhydryl reagent p-chloromercuribenzene sulfonate increased the ISC across substrate-replete toad urinary bladder when applied to the mucosal (apical) surface. This increase was accounted for by an increased mucosal to serosal net flux of Na+. In the absence of substrate, the rise in ISC was accompanied by an irreversible increase in tissue conductance which was not apparent in the replete preparation. These findings suggest that p-chloromercuribenzene sulfonate may be useful in marking mucosal functions associated with the Na+ transport apparatus.  相似文献   

20.
Summary The transepithelial conductance of toad bladder epithelia and the amplitude of the fluctuations of this conductance caused by the action of the underlying smooth muscle have been further investigated. In particular, amiloride was found to reduce both tissue conductance and its fluctuating component to the same extent. Analysis suggests that the steady-state conductance of the toad urinary bladder may be associated only with the paracellular pathway for ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号