首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 245 毫秒
1.
Purines are important modulators of bone cell biology. ATP is metabolized into adenosine by human primary osteoblast cells (HPOC); due to very low activity of adenosine deaminase, the nucleoside is the end product of the ecto-nucleotidase cascade. We, therefore, investigated the expression and function of adenosine receptor subtypes (A(1) , A(2A) , A(2B) , and A(3) ) during proliferation and osteogenic differentiation of HPOC. Adenosine A(1) (CPA), A(2A) (CGS21680C), A(2B) (NECA), and A(3) (2-Cl-IB-MECA) receptor agonists concentration-dependently increased HPOC proliferation. Agonist-induced HPOC proliferation was prevented by their selective antagonists, DPCPX, SCH442416, PSB603, and MRS1191. CPA and NECA facilitated osteogenic differentiation measured by increases in alkaline phosphatase (ALP) activity. This contrasts with the effect of CGS21680C which delayed HPOC differentiation; 2-Cl-IB-MECA was devoid of effect. Blockade of the A(2B) receptor with PSB603 prevented osteogenic differentiation by NECA. In the presence of the A(1) antagonist, DPCPX, CPA reduced ALP activity at 21 and 28 days in culture. At the same time points, blockade of A(2A) receptors with SCH442416 transformed the inhibitory effect of CGS21680C into facilitation. Inhibition of adenosine uptake with dipyridamole caused a net increase in osteogenic differentiation. The presence of all subtypes of adenosine receptors on HPOC was confirmed by immunocytochemistry. Data show that adenosine is an important regulator of osteogenic cell differentiation through the activation of subtype-specific receptors. The most abundant A(2B) receptor seems to have a consistent role in cell differentiation, which may be balanced through the relative strengths of A(1) or A(2A) receptors determining whether osteoblasts are driven into proliferation or differentiation.  相似文献   

2.
The effects of adenosine and subtype-specific activators of adenosine receptors (A1, A2A, A2B and A3) were studied on the release of interleukin-1beta (IL-1beta) from peripheral mononuclear cells, monocytes and lymphocytes. In the cells activated by the protein kinase C specific phorbol ester (phorbol 12-myristate 13-acetate) and Ca(2+) ionophore (A23187) both adenosine and the subtype-specific receptor agonists, CPA (A1), CGS 21680 (A2A) and IB-MECA (A3) induced a concentration-dependent inhibition of IL-1beta release. The rank order of potency in the inhibition of IL-1beta release was CPA=CGS 21680>IB-MECA>adenosine>NECA (in the presence of A1, A2A and A3 receptor inhibitors). The inhibitory actions of CPA, CGS 21680 or IB-MECA were significantly reduced in the presence of DPCPX, ZM 243185 or MRS 1191 as subtype-specific antagonists on A1, A2A and A3 adenosine receptors, respectively. It can be concluded that adenosine inhibits the release of IL-1beta from the activated human peripheral mononuclear cells. In this process A1, A2A and A3 receptors are involved.  相似文献   

3.
Adenosine, a neuromodulator of the CNS, activates inhibitory-A1 receptors and facilitatory-A2A receptors; its synaptic levels are controlled by the activity of bi-directional equilibrative nucleoside transporters. To study the relationship between the extracellular formation/inactivation of adenosine and the activation of adenosine receptors, we investigated how A1 and A2A receptor activation modifies adenosine transport in hippocampal synaptosomes. The A2A receptor agonist, CGS 21680 (30 nm), facilitated adenosine uptake through a PKC-dependent mechanism, but A1 receptor activation had no effect. CGS 21680 (30 nm) also increased depolarization-induced release of adenosine. Both effects were prevented by A2A receptor blockade. A2A receptor-mediated enhancement of adenosine transport system is important for formatting adenosine neuromodulation according to the stimulation frequency, as: (1) A1 receptor antagonist, DPCPX (250 nm), facilitated the evoked release of [(3)H]acetylcholine under low-frequency stimulation (2 Hz) from CA3 hippocampal slices, but had no effect under high-frequency stimulation (50 Hz); (2) either nucleoside transporter or A2A receptor blockade revealed the facilitatory effect of DPCPX (250 nm) on [3H]acetylcholine evoked-release triggered by high-frequency stimulation. These results indicate that A2A receptor activation facilitates the activity of nucleoside transporters, which have a preponderant role in modulating the extracellular adenosine levels available to activate A1 receptors.  相似文献   

4.
A new radiolabeled adenosine receptor agonist, 2-[p-(2-carboxyethyl)phenethylamino]-5'-N-ethylcarboxamidoadeno sin e (CGS 21680), apparently specific for high-affinity binding sites of the A2 subtype in rat brain, was used to identify and pharmacologically characterize adenosine receptors in human brain. The binding of [3H]CGS 21680, as determined by standard radioligand binding technique in the presence of exogenously added adenosine deaminase, reached equilibrium after 40 min at 25 degrees C. In saturation studies, a single class of high-affinity binding sites with values for KD of 22 +/- 0.5 nM and Bmax of 444 +/- 63 fmol/mg of protein were observed. Similar binding characteristics were observed regardless of whether rapid filtration or centrifugation was used to separate bound versus free ligand. Of the 14 brain regions examined, [3H]CGS 21680 binding was highest in putamen, followed by globus pallidus and caudate nucleus. The level of [3H]CGS 21680 binding in these areas of basal ganglia was identical to 5'-N-[3H]ethylcarboxamidoadenosine ([3H]NECA) binding in the presence of 50 nM N6-cyclopentyladenosine (CPA). The rank order of agonist potencies as determined by a series of competition experiments was NECA greater than or equal to CGS 21680 greater than 2-chloroadenosine greater than N6-(R)-phenylisopropyladenosine greater than N6-cyclohexyladenosine greater than N6-(S)-phenylisopropyladenosine. This potency order was the same for the binding of [3H]CGS 21680 to rat, and of [3H]NECA in the presence of 50 nM CPA to rat and human, brain membranes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The absence of adenosine A2A receptors, or its pharmacological inhibition, has neuroprotective effects. Experimental data suggest that glial A2A receptors participate in neurodegeneration induced by A2A receptor stimulation. In this study we have investigated the effects of A2A receptor stimulation on control and activated glial cells. Mouse cortical mixed glial cultures (75% astrocytes, 25% microglia) were treated with the A2A receptor agonist CGS21680 alone or in combination with lipopolysaccharide (LPS). CGS21680 potentiated lipopolysaccharide-induced NO release and NO synthase-II expression in a time- and concentration-dependent manner. CGS21680 potentiation of lipopolysaccharide-induced NO release was suppressed by the A2A receptor antagonist ZM-241385 and did not occur on mixed glial cultures from A2A receptor-deficient mice. In mixed glial cultures treated with LPS + CGS21680, the NO synthase-II inhibitor 1400W abolished NO production, and NO synthase-II immunoreactivity was observed only in microglia. Binding experiments demonstrated the presence of A2A receptors on microglial but not on astroglial cultures. However, the presence of astrocytes was necessary for CGS21680 potentiating effect. In light of the reported neurotoxicity of microglial NO synthase-II and the neuroprotection of A2A receptor inhibition, these data suggest that attenuation of microglial NO production could contribute to the neuroprotection afforded by A2A receptor antagonists.  相似文献   

6.
Binding properties of the subtypes of adenosine A2 receptors in membrane preparations and the effects of adenosine receptor ligands on cAMP accumulation in slices from the optic tectum of neonatal chicks have been investigated. [3H]2-[4-(2-p-carboxyethyl)phenylamino]-5'-N-ethylcarboxaminoadenosine (CGS 21680), a selective ligand for adenosine A2a receptors, did not bind to optic tectal membranes, as observed with rat striatal membranes. CGS 21680 also did not induce cyclic AMP accumulation in optic tectum slices. However, 5'-N-ethylcarboxamidoadenosine (NECA), 2-chloro-adenosine or adenosine induced a 2.5- to 3-fold increase on cyclic AMP accumulation in this preparation. [3H]NECA binds to fresh non-washed-membranes obtained from optic tectum of chicks, displaying one population of binding sites, which can be displaced by NECA, 8-phenyltheophylline, 2-chloro-adenosine, but is not affected by CGS 21680. The estimated KD value was 400.90 ± 80.50 nM and the Bmax was estimated to be 2.51 ± 0.54 pmol/mg protein. Guanine nucleotides, which modulate G-proteins activity intracellularly, are also involved in the inhibition of glutamate responses by acting extracellularly. Moreover, we have previously reported that guanine nucleotides potentiate, while glutamate inhibits, adenosine-induced cyclic AMP accumulation in slices from optic tectum of chicks. However, the guanine nucleotides, GMP or GppNHp and the metabotropic glutamate receptors agonist, 1S,3R-ACPD did not alter the [3H]NECA binding observed in fresh non-washed-membranes. Therefore, the adenosine A2 receptor found in the optic tectum must be the adenosine A2b receptor which is available only in fresh membrane preparations, and its not modulated by guanine nucleotides or glutamate analogs.  相似文献   

7.
Adenosine modulates a variety of cellular functions including calcium-dependent exocytosis. Activation of adenosine A(2A) receptor (A(2A)-R) facilitates neurotransmitter release in some cell types, although the underlying mechanisms are not fully understood. In this study, we found that treatment of PC12 cells with the A(2A)-R agonist CGS21680 promotes calcium-evoked secretion of the fusion protein between neuropeptide Y and modified yellow fluorescence protein (NPY-Venus). CGS21680 treatment of PC12 cells transiently increased the phosphorylation of p38 and JNK MAP kinases and Akt, as well as that of ATF2 and CREB, reaching maximal levels at around 10-15 min of CGS21680 treatment. Importantly, pretreatment of PC12 cells with the PI3K inhibitor LY294002, together with the protein kinase A (PKA) inhibitor KT5720, significantly inhibited CGS21680 enhancement of calcium-dependent NPY-Venus release. Moreover, expression of a dominant-negative form of Akt and the PKA inhibitory polypeptide protein kinase inhibitor (PKI) co-operatively inhibited the facilitating effect of CGS21680 on secretion of NPY-Venus. These data suggest that the PI3K-Akt and PKA pathways play a critical role in A(2A)-R-mediated facilitation of calcium-dependent secretion. We also found that CGS21680 treatment promoted recruitment of the NPY-Venus-containing vesicles to the proximity of the plasma membrane at around 10-15 min of CGS21680 treatment, which may in part account for the facilitated secretion by A(2A)-R activation.  相似文献   

8.
The effects of adenosinergic antagonists caffeine and DPCPX, and of the adenosinergic agonists L-PIA, CPA and CGS 21680 were investigated on fully and partially reversible hypoxia-induced electrophysiological changes in rat hippocampal slices. The influence of a high potassium solution and of the N-methyl-D-aspartate antagonist dizocilpine (MK 801) was also tested. The latency to obtain a 50% decrease in the amplitude of the CA1 population spike (CA1 PS) during a short- (5-10 min) lasting hypoxic period was significantly increased (P less than 0.01) by slice perfusion with caffeine (50 microM), DPCPX (0.2 microM), and by increasing (from 3 to 4 mM) the potassium concentration in the medium bathing the hippocampal slices. The latency was significantly decreased (P less than 0.01) by slice perfusion with L-PIA (0.2 microM) and CPA (0.05 microM). It was not significantly modified by CGS 21680 (5 microM). The incidence of reappearance of the CA1 PS during reoxygenation after long- (45 min) lasting hypoxia was significantly increased (P less than 0.05) by slice perfusion with MK 801 (50 microM), while it was not significantly affected by slice perfusion with caffeine (50 microM) or DPCPX (0.2 microM) or L-PIA (0.2 microM) or CPA (0.05 microM) or CGS 21680 (5 microM). The results indicate a prevalent involvement of the A1 adenosine receptors in the early mechanisms underlying hypoxia-induced reversible changes. Adenosine seems to have a limited role in the late mechanisms occurring after a long-lasting hypoxic period.  相似文献   

9.
To test the hypothesis that adenosine improves skeletal muscle cell function, we exposed curarized mouse soleus and extensor digitorum longus (EDL) to a range of concentrations of adenosine (10(-9) M to 10(-5) M). Muscles contracted in Krebs-Henseleit bicarbonate buffer (27 degrees C, 95% O2 and 5% CO2) for 500 ms at 50 Hz once every 90 s. Soleus fatigued significantly less with adenosine present at concentrations of 10(-8) M and higher than with the Krebs-Henseleit vehicle control. Adenosine significantly improved force generation or delayed fatigue of EDL only with the initial adenosine challenge. To investigate the receptor population involved, we exposed soleus to agonists specific for A1 receptors (N6-cyclopentyladenosine, CPA), or A2 receptors (CGS 21680 hydrochloride, CGS), or A3 receptors (N6-benzyl-5'-N-ethylcarboxamidoadenosine, BNECA). CPA (A1) significantly decreased fatigue compared with the Krebs-Henseleit vehicle control at concentrations of 10(-9) M and higher. Muscles exposed to the A2 and A3 agonists did not differ from a Krebs-Henseleit plus methanol control. Phenylephrine (10(-6) M), an alpha-adrenergic agonist that increases the concentration of inositol triphosphate (IP3), significantly improved developed force in soleus. Neither a permeable cAMP analog, 8-bromo-cAMP (10(-5) M), nor a beta, agonist, isoproterenol (10(-6) M), had an effect on force generation in the soleus when compared with a saline control. Thus adenosine slowed fatigue in slow-twitch skeletal muscle through A1 receptors.  相似文献   

10.
The modulation of adenosine receptor with K+(ATP) channel blocker, glibenclamide, was investigated using the radiolabeled A2A-receptor selective agonist [3H]CGS 21680. Radioligand binding studies in bovine brain striatal membranes (BBM) indicated that unlabeled CGS 21680 displaced the bound [3H]CGS 21680 in a concentration-dependent manner with a maximum displacement being approximately 65% at 10(-4) M. In the presence of 10(-5) M glibenclamide, unlabeled CGS 21680 increased the displacement of bound [3H]CGS 21860 by approximately 28% at 10(-4) M. [3H]CGS 21680 bound to BBM in a saturable manner to a single binding site (Kd = 10.6+/-1.71 nM; Bmax = 221.4+/-6.43 fmol/mg of protein). In contrast, [3H]CGS 21680 showed saturable binding to two sites in the presence of 10(-5) M glibenclamide; (Kd = 1.3+/-0.22 nM; Bmax = 74.3+/-2.14 fmol/mg protein; and Kd = 8.9+/-0.64 nM; Bmax = 243.2+/-5.71 fmol/mg protein), indicating modulation of adenosine A2A receptors by glibenclamide. These studies suggest that the K+(ATP) channel blocker, glibenclamide, modulated the adenosine A2A receptor in such a manner that [3H]CGS 21680 alone recognizes a single affinity adenosine receptor, but that the interactions between K+(ATP) channels and adenosine receptors.  相似文献   

11.
Adenosine is a neuromodulator that can control brain damage through activation of A(1), A(2A) and A(3) receptors, which are located in both neurons and other brain cells. We took advantage of cultured neurons to investigate the role of neuronal adenosine receptors in the control of neurotoxicity caused by kainate and cyclothiazide. Both A(1), A(2A) and A(3) receptors were immunocytochemically identified in cortical neurons. Activation of A(1) receptors with 100 nM CPA did not modify the extent of neuronal death whereas the A(1) receptor antagonist, DPCPX (50 nM), attenuated neurotoxicity by 28 +/- 5%, and effect similar to that resulting from the removal of endogenous adenosine with 2U/ml of adenosine deaminase (27 +/- 3% attenuation of neurotoxicity). In the presence of adenosine deaminase, DPCPX had no further effect and CPA now exacerbated neurotoxicity by 42 +/- 4%. Activation of A(2A) receptor with 30 nM CGS21680 attenuated neurotoxicity by 40 +/- 8%, an effect prevented by the A(2A) receptor antagonists, SCH58261 (50 nM) or ZM241385 (50 nM), which by themselves were devoid of effect. Finally, neither A(3) receptor activation with Cl-IB-MECA (100-500 nM) nor blockade with MRS1191 (5 microM) modified neurotoxicity. These results show that A(1) receptor activation enhances and A(2A) receptor activation attenuates neurotoxicity in cultured cortical neurons, indicating that these two neuronal adenosine receptors directly control neurodegeneration. Interestingly, the control by adenosine of neurotoxicity in cultured neurons is similar to that observed in vivo in newborn animals and is the opposite of what is observed in adult brain preparations where A(1) receptor activation and A(2A) receptor blockade are neuroprotective.  相似文献   

12.
The theoretical possibility of bivalent binding of a dendrimer, covalently appended with multiple copies of a small ligand, to a homodimer of a G protein-coupled receptor was investigated with a molecular modeling approach. A molecular model was constructed of a third generation (G3) poly(amidoamine) (PAMAM) dendrimer condensed with multiple copies of the potent A2A adenosine receptor agonist CGS21680. The dendrimer was bound to an A2A adenosine receptor homodimer. Two units of the nucleoside CGS21680 could occupy the A2A receptor homodimer simultaneously. The binding mode of CGS21680 moieties linked to the PAMAM dendrimer and docked to the A2A receptor was found to be similar to the binding mode of a monomeric CGS21680 ligand.  相似文献   

13.
Li XX  Nomura T  Aihara H  Nishizaki T 《Life sciences》2001,68(12):1343-1350
The present study investigated the effect of adenosine on glial glutamate efflux. Adenosine (from 1 nM to 100 microM) enhanced the release from cultured rat glial cells in a bell-shaped dose-responsive manner for the hippocampus and in a dose-dependent manner for the superior colliculus, and a similar increase was obtained with the A2a adenosine receptor agonist, 2-p-(2-carboxyethyl) phenethylamino-5'-N-ethylcarboxamidoadenosine hydrochloride (CGS21680), but not with the A1 adenosine receptor agonist, N6-cyclohexyladenosine (CHA). Adenosine and CGS21680 also enhanced glutamate efflux from Xenopus oocytes injected with the poly (A)+ mRNAs derived from cultured glial cells for the hippocampus and the superior colliculus together with and without the A2a adenosine receptor mRNA, but instead such increase was not found in oocytes expressing A2a adenosine receptors alone. The results of the present study thus suggest that adenosine enhances glutamate efflux from glial cells via A2a adenosine receptors, and this may represent a mechanism underlying the facilitatory action of adenosine on hippocampal and superior colliculus neurotransmissions.  相似文献   

14.
Guanine nucleotides (GN) have been implicated in many intracellular mechanisms. Extracellular actions, probably as glutamate receptor antagonists, have also been recently attributed to these compounds. GN may have a neuroprotective role by inhibiting excitotoxic events evoked by glutamate. Effects of extracellular GN on adenosine-evoked cellular responses have also been reported. However, the exact mechanism of such interaction is not known. In the present study, we showed that GN potentiated adenosine-induced cAMP accumulation in slices of hippocampus from young rats. However, neither GMP nor the metabotropic glutamate receptor agonist, 1S,3R-ACPD, inhibited the binding of the adenosine receptor agonist [3H]NECA (when binding to adenosine A2 receptors), or the binding of the adenosine A2a receptor agonist [3H]CGS 21680 in hippocampal membrane preparations. GppNHp, probably by interacting with G-proteins, decreased [3H]CGS 21680 binding. [3H]GMP binding was assayed in order to evaluate the GN sites which are not G-proteins. [3H]GMP binding was inhibited by GMP and GppNHp, but not by 1S,3R-ACPD. The interaction of endogenous adenosine with the GMP-binding sites was determined by incubating membranes in the presence or absence of adenosine deaminase (ADA). NECA, CADO, CGS 21680 and CPA (only at the highest concentration used) increased GMP binding in the presence of ADA. However, in the absence of ADA, the control levels of GMP binding were as high as in the presence of added ADA plus adenosine agonists, indicating that endogenous adenosine modulates the binding of GMP. If this site has a neuroprotective role, adenosine may be increasing its neuromodulator and proposed protective action.  相似文献   

15.
Summary Whole-cell patch clamp experiments were carried out in rat striatal brain slices. In a subset of striatal neurons (70–80%), NMDA-induced inward currents were inhibited by the adenosine AZA receptor selective agonist CGS 21680. The non-selective adenosine receptor antagonist 8-(p-sulphophenyl)-theophylline and the AZA receptor selective antagonist 8-(3chlorostyryl) caffeine abolished the inhibitory action of CGS 21680. Intracellular GDP--S, which is known to prevent G protein-mediated reactions, also eliminated the effect of CGS 21680. Extracellular dibutyryl cAMP, a membrane permeable analogue of cAMP, and intracellular Sp-cAMPS, an activator of cAMP-dependent protein kinases (PKA), both abolished the CGS 21680-induced inhibition. By contrast, Rp-cAMPS and PKI 14–24 amide, two inhibitors of PKA had no effect. Intracellular U-73122 (a phospholipase C inhibitor) and heparin (an inositoltriphosphate antagonist) prevented the effect of CGS 21680. Finally, a more efficient buffering of intracellular Ca2+ by a substitution of EGTA (11 mM) by BAPTA (5.5 mM) acted like U-73122 or heparin. Hence, AZA receptors appear to negatively modulate NMDA receptor channel conductance via the phospholipase C/inositoltriphosphate/Ca2+ pathway rather than the adenylate cyclase/PKA pathway.  相似文献   

16.
In this study we evaluated the role of adenosine receptor activation on the K+-evoked D-[3H]aspartate release in cultured chick retina cells exposed to oxidant conditions. Oxidative stress, induced by ascorbate (3.5 mM)/Fe2+ (100 microM), increased by about fourfold the release of D-[3H]aspartate, evoked by KCl 35 mM in the presence and in the absence of Ca2+. The agonist of A1 adenosine receptors, N6-cyclopentyladenosine (CPA; 10 nM), inhibited the K+-evoked D-[3H]aspartate release in control in oxidized cells. The antagonist of A1 adenosine receptor, 1,3-dipropyl-8-cyclopentylxanthine (DPCPX; 50 nM), potentiated the release of D-[3H]aspartate in oxidized cells, and reverted the effect observed in the presence of CPA 10 nM. However, in oxidized cells, when DPCPX was tested together with CPA 100 nM the total release of D-[3H]aspartate increased from 5.1 +/- 0.4% to 11.4 +/- 1.0%, this increase being reverted by 3,7-dimethyl-1-propargylxanthine (DMPX; 100 nM), an antagonist of A2A adenosine receptors. In cells of both experimental conditions, the K+-evoked release of D-[3H]aspartate was potentiated by the selective agonist of A2A adenosine receptors, 2-[4-(2-carboxyethyl)phenethylamino]-5'-N-ethylcarboxamidoadenosin e (CGS 21680; 10 nM), whereas the antagonist of these receptors, DMPX (100 nM), inhibited the release of D-[3H]aspartate in oxidized cells, but not in control cells. Adenosine deaminase (ADA; 1 U/ml), which is able to remove adenosine from the synaptic space, reduced the K+-evoked D-[3H]aspartate release, from 5.1 +/- 0.4% to 3.1 +/- 0.3% in oxidized cells, and had no significant effect in control cells. The extracellular accumulation of endogenous adenosine, upon K+-depolarization, was higher in oxidized cells than in control cells, and was reduced by the inhibitors of adenosine transporter (NBTI) and of ecto-5'-nucleotidase (AOPCP). This suggests that adenosine accumulation resulted from the outflow of adenosine mediated by the transporter, and from extracellular degradation of adenine nucleotide. Our data show that both inhibitory A1 and excitatory A2A adenosine receptors are present in cultured retina cells, and that the K+-evoked D-[3H]aspartate release is modulated by the balance between inhibitory and excitatory responses. Under oxidative stress conditions, the extracellular accumulation of endogenous adenosine seems to reach levels enough to potentiate the release of D-[3H]aspartate by the tonic activation of A2A adenosine receptors.  相似文献   

17.
18.
Abstract: The role of the A2A adenosine receptor in regulating voltage-sensitive calcium channels (VSCCs) was investigated in PC12 cells. Ca2+ influx induced by membrane depolarization with 70 m M K+ could be inhibited with CGS21680, an A2A receptor-specific agonist. Both L- and N-type VSCCs were inhibited by CGS21680 treatment. Effects of adenosine receptor agonists and antagonists indicate that the typical A2A receptor mediates inhibition of VSCCs. Cholera toxin (CTX) treatment for 24 h completely eliminated the CGS21680 potency. Similar inhibitory effects on VSCCs were obtained by membrane-permeable activators of protein kinase A (PKA). These effects were blocked by Rp -adenosine-3',5'-cyclic monophosphothioate, a PKA inhibitor. The data suggest that activation of the A2A receptor leads to inhibition of VSCCs via a CTX-sensitive G protein and PKA. ATP pretreatment caused a reduction in subsequent rise in cytosolic free Ca2+ concentration induced by 70 m M K+, presumably by inactivation of VSCCs. Simultaneous treatment with ATP and CGS21680 produced significantly greater inhibition of VSCCs than treatment with CGS21680 or ATP alone. Furthermore, the CGS21680-induced inhibition of VSCCs was not affected by the presence of reactive blue 2. CGS21680 still significantly inhibited ATP-evoked Ca2+ influx without VSCC activity after cobalt or 70 m M K+ pretreatment. These data suggest that the A2A receptor-sensitive VSCCs differ from those activated by ATP treatment. Although A2A receptors induce inhibition of VSCCs as well as ATP-induced Ca2+ influx, the two inhibitory effects are clearly distinct from each other.  相似文献   

19.
In the present study, we determined whether the immunomodulatory effect of adenosine receptor stimulation depends on the Toll-like Receptor (TLR) used for stimulation of cytokine release. Therefore, human mononuclear cells were stimulated by different TLR agonists in the absence and presence of A1 (CPA), A2a (CGS21680), and A3 (Cl-IB-MECA) adenosine receptor agonists. Effects of these agonists on Il-6, Il-10, IFN-gamma, TNF-alpha, and Il-1beta production were expressed as percentage inhibition/stimulation after TLR stimulation. CGS21680 inhibited TLR4-mediated TNF-alpha release and potentiated TLR3- and TLR5-mediated IL-6 release. Cl-IB-MECA inhibited TLR4-agonist-induced IFN-gamma release. Interestingly, CPA en Cl-IB-MECA tended to inhibit cytokine release only after TLR4 stimulation. In more detail, CPA potentiated TLR5-mediated IL-6 production, TLR3-mediated IFN-gamma production and TLR3-mediated Il-1beta-production compared to TLR4-mediated stimulation. Cl-IB-MECA potentiated TLR5-mediated IL-6 and Il-1beta formation as compared to TLR4-mediated stimulation. Finally, CGS21680 potentiated TLR5-mediated IL-6 production compared to TLR1-2 stimulation, and potentiated TLR3- and TLR5-mediated IL-10 production compared to TLR1-2-mediated stimulation. In conclusion, the effect of adenosine agonists on cytokine production depends on the specific TLR agonist used for stimulation. These findings suggest that well-known anti-inflammatory effects of adenosine agonists on LPS-induced inflammation cannot be extrapolated to situations in which stimulation of other TLR subtypes is involved.  相似文献   

20.
It has been detected that hepatic adenosine A(2A) receptors play an active role in the pathogenesis of hepatic fibrosis and suggest a novel therapeutic target in the treatment and prevention of hepatic cirrhosis. In this paper we examined if our new triazine derivative (IMT) can inhibit ethanol-induced activation of HSCs measured as increased α-SMA, collagen synthesis and enhanced oxidative stress in rat liver stellate cells. We also investigated its influence on cytokines (TGF-β, TNF-α) synthesis, MMP-2 and TIMP-1 production and ethanol-induced intracellular signal transduction. Moreover, with using of known adenosine A(2A) receptor agonist (CGS 21680), and antagonist (SCH 58261) we examined if this triazine derivative acts on adenosine receptors. We detected a strong antagonistic action of new triazine derivative (IMT) on ethanol-induced rat liver stellate cells activation, observed as a significant decrease in α-SMA, collagen synthesis, reactive oxygen species production, TGF-β, TNF-α, MMP-2 and TIMP-1 production as well as JNK, p38MAPK, NFκB, IκB, Smad3 phosphorylation. Moreover, IMT strongly inhibited activation of stellate cells by known selective agonist of adenosine A(2A) receptor (CGS 21680). When known A(2A) receptor antagonist (SCH 58261) was used together with IMT this effect was not spectacular. Additionally, only slight enhancement of inhibition was observed when cells were pretreated both IMT with SCH 58261, hence we suppose that IMT acts as nonselective antagonist of A(2A) receptors, and, besides its antioxidant activity, also by this way inhibited ethanol-induced stellate cell activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号