首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In Saccharomyces cerevisiae, reduction of NAD(+) to NADH occurs in dissimilatory as well as in assimilatory reactions. This review discusses mechanisms for reoxidation of NADH in this yeast, with special emphasis on the metabolic compartmentation that occurs as a consequence of the impermeability of the mitochondrial inner membrane for NADH and NAD(+). At least five mechanisms of NADH reoxidation exist in S. cerevisiae. These are: (1) alcoholic fermentation; (2) glycerol production; (3) respiration of cytosolic NADH via external mitochondrial NADH dehydrogenases; (4) respiration of cytosolic NADH via the glycerol-3-phosphate shuttle; and (5) oxidation of intramitochondrial NADH via a mitochondrial 'internal' NADH dehydrogenase. Furthermore, in vivo evidence indicates that NADH redox equivalents can be shuttled across the mitochondrial inner membrane by an ethanol-acetaldehyde shuttle. Several other redox-shuttle mechanisms might occur in S. cerevisiae, including a malate-oxaloacetate shuttle, a malate-aspartate shuttle and a malate-pyruvate shuttle. Although key enzymes and transporters for these shuttles are present, there is as yet no consistent evidence for their in vivo activity. Activity of several other shuttles, including the malate-citrate and fatty acid shuttles, can be ruled out based on the absence of key enzymes or transporters. Quantitative physiological analysis of defined mutants has been important in identifying several parallel pathways for reoxidation of cytosolic and intramitochondrial NADH. The major challenge that lies ahead is to elucidate the physiological function of parallel pathways for NADH oxidation in wild-type cells, both under steady-state and transient-state conditions. This requires the development of techniques for accurate measurement of intracellular metabolite concentrations in separate metabolic compartments.  相似文献   

2.
Heat resistance appears to cycle in concert with energy metabolism in continuous culture of the yeast Saccharomyces cerevisiae. To study the mechanism of this oscillation, the authors first examined if heat shock proteins (Hsps) are involved. Neither the protein levels of major Hsps nor the expression of the β-galactosidase gene as a reporter under the control of the promoter carrying heat-shock element oscillated during the metabolic oscillation. The level of trehalose in yeast cycled with the same periodicity, as did energy metabolism. This oscillation was not found in a GTS1-deleted mutant that also did not show cyclic changes in heat resistance. These results suggest that heat resistance oscillation is induced by fluctuations in trehalose level and not by an oscillatory expression of Hsps. The increase in trehalose began at the start of the respiro-fermentative phase and the decrease began after the elevation of the cyclic adenosine monophosphate (cAMP) level. The authors hypothesize that the synthesis of trehalose parallels the activation of the glycolytic pathway and that trehalose is degraded by trehalase activated by cAMP coupled with the metabolic oscillation in the continuous culture of yeast.  相似文献   

3.
Heat resistance appears to cycle in concert with energy metabolism in continuous culture of the yeast Saccharomyces cerevisiae. To study the mechanism of this oscillation, the authors first examined if heat shock proteins (Hsps) are involved. Neither the protein levels of major Hsps nor the expression of the β-galactosidase gene as a reporter under the control of the promoter carrying heat-shock element oscillated during the metabolic oscillation. The level of trehalose in yeast cycled with the same periodicity, as did energy metabolism. This oscillation was not found in a GTS1-deleted mutant that also did not show cyclic changes in heat resistance. These results suggest that heat resistance oscillation is induced by fluctuations in trehalose level and not by an oscillatory expression of Hsps. The increase in trehalose began at the start of the respiro-fermentative phase and the decrease began after the elevation of the cyclic adenosine monophosphate (cAMP) level. The authors hypothesize that the synthesis of trehalose parallels the activation of the glycolytic pathway and that trehalose is degraded by trehalase activated by cAMP coupled with the metabolic oscillation in the continuous culture of yeast.  相似文献   

4.
To study the role of the GTS1 gene in the energy metabolism oscillation in continuous cultures of yeast from the physical aspect, time-series data of dissolved oxygen oscillations were analyzed by transforming them into power spectra and by creating two-dimensional trajectories using time delay embedding technique. We found that the wild-type cells organized themselves into a stable limit cycle oscillation and that the GTS1-deleted mutant, gts1Delta, usually showed transient oscillations whose power spectra resembled those of 1/f noise. Thus, we suggested that GTS1 plays an important role in the self-organization of the energy metabolism oscillation.  相似文献   

5.
酒精酵母在连续发酵中的振荡行为研究   总被引:1,自引:0,他引:1  
初步分析酒精酵母在连续发酵中的振荡行为的产生条件及产生机理。通过改变稀释率、pH值、溶氧和进料葡萄糖浓度等条件 ,观察不同操作条件对酒精酵母菌生长和代谢行为的影响。在 10~ 15 g/L的较低葡萄糖浓度 ,0 .10~ 0 .2 0h-1的较低稀释率 ,以及 70 %左右的适度的溶氧浓度等发酵条件下 ,酒精酵母会出现同步的代谢振荡现象。一定条件下 ,菌体浓度处于振荡状态 ,残余葡萄糖浓度不可测或在很低水平振荡 ,这些发现预示着控制机制的新发展。  相似文献   

6.
7.
COQ10 deletion in Saccharomyces cerevisiae elicits a defect in mitochondrial respiration correctable by addition of coenzyme Q2. Rescue of respiration by Q2 is a characteristic of mutants blocked in coenzyme Q6 synthesis. Unlike Q6 deficient mutants, mitochondria of the coq10 null mutant have wild-type concentrations of Q6. The physiological significance of earlier observations that purified Coq10p contains bound Q6 was examined in the present study by testing the in vivo effect of over-expression of Coq10p on respiration. Mitochondria with elevated levels of Coq10p display reduced respiration in the bc1 span of the electron transport chain, which can be restored with exogenous Q2. This suggests that in vivo binding of Q6 by excess Coq10p reduces the pool of this redox carrier available for its normal function in providing electrons to the bc1 complex. This is confirmed by observing that extra Coq8p relieves the inhibitory effect of excess Coq10p. Coq8p is a putative kinase, and a high-copy suppressor of the coq10 null mutant. As shown here, when over-produced in coq mutants, Coq8p counteracts turnover of Coq3p and Coq4p subunits of the Q-biosynthetic complex. This can account for the observed rescue by COQ8 of the respiratory defect in strains over-producing Coq10p.  相似文献   

8.
Summary Glucose limited growth of a respiratory deficient mutant of Saccharomyces cerevisiae was studied in continuous culture under steady state conditions. The maximal growth rate, the Michaelis constant, the cell yield, the maintenance coefficient and the ethanol yield of the growing cell population were determined. The steady state concentrations of cells, glucose and ethanol were measured as functions of the dilution rate and compared with theoretical predictions. A far-reaching agreement between theory and experiment was observed. The decrease of the cell yield in the range of low dilution rates is well explained by introducing the concept of maintenance energy in the general theory of continuous cultures. A deviation of the cell yield from the predicted values, which has been found in the range of high dilution rates, is discussed.  相似文献   

9.
Summary Growth of Saccharomyces cerevisiae was investigated under aerobic conditions in a glucose limited chemostat. The steady state concentrations of cells, glucose and ethanol were measured in dependence of the dilution rate. The growth rate showed a biphasic dependence from the glucose concentration. A shift from respiratory to fermentative metabolism (Crabtree-effect) altering heavily the cell yield and the ethanol yield took place in the range of dilution rates between 0.3 h-1 and 0.5 h-1. Therefore the classical theory of continuous cultures is not applicable on aerobic growth of Saccharomyces cerevisiae under glucose limitation without introducing further premises. On the other hand the steady state cell concentration as a function of the dilution rate fits well the theoretically calculated curves, if cells are cultivated under conditions where only fermentation or respiration is possible.  相似文献   

10.
Summary The +1 frameshift mutation, M5631, which is located in the gene (oxi1) for cytochrome c oxidase II (COXII) of the yeast mitochondrial genome, is suppressed spontaneously to a remarkably high extent (20%–30%). The full-length wild-type COXII produced as a result of suppression allows the mutant strain to grow with a leaky phenotype on non-fermentable medium. In order to elucidate the factors and interactions involved in this translational suppression, the strain with the frameshift mutation was mutated by MnCl2 treatment and a large number of mutants showing restriction of the suppression were isolated. Of 20 mutants exhibiting a strong, restricted, respiration-deficient (RD) phenotype, 6 were identified as having mutations in the mitochondrial genome. Furthermore, genetic analyses mapped one mutation to the vicinity of the gene for tRNAPro and two others to a region of the tRNA cluster where two-thirds of all mitochondrial tRNA genes are encoded. The degree of restriction of the spontaneous frameshift suppression was characterized at the translational level by in vivo 35S-labeling of the mitochondrial translational products and immunoblotting. These results showed that in some of these mutant strains the frameshift suppression product is synthesized to the same extent as in the leaky parent strain. It is suggested that more than one +1 frame-shifted product is made as a result of suppression in these strains: one is as functional as the wild-type COXII, the other(s) is (are) non-functional and prevent leaky growth on non-fermentable medium. A possible mechanism for this heterogenous frameshift suppression is discussed.  相似文献   

11.
Short-period (40-50 min) synchronized metabolic oscillation was found in a continuous culture of yeast Saccharomyces cerevisiae under aerobic conditions at low-dilution rates. During oscillation, many parameters changed cyclically, such as dissolved oxygen concentration, respiration rate, ethanol and acetate concentrations in the culture, glycogen, ATP, NADH, pyruvate and acetate concentrations in the cells. These changes were considered to be associated with glycogen metabolism. When glycogen was degraded, the respiro-fermentative phase was observed, in which ethanol was produced and the respiration rate decreased. In this phase, the levels of intracellular pyruvate and acetate became minimum, ATP became high and intracellular pH at its lowest level. When glycogen metabolism changed from degradation to accumulation, the respiratory phase started, during which ethanol was re-assimilated from the culture and the respiration rate increased. Intracellular pyruvate and acetate became maximum, ATP decreased and the intracellular pH appeared high. These findings may indicate new aspects of the control mechanism of glycogen metabolism and how respiration and ethanol fermentation are regulated together under aerobic conditions.  相似文献   

12.
Ultradian clock-coupled respiratory oscillation (UCRO) in an aerobic continuous culture of Saccharomyces cerevisiae S288C is principally regulated by control of certain redox reactions of energy metabolism. It is also modulated by the metabolism of storage carbohydrates during adaptation to environmental change. However, the mechanism of cell sensing and response to environmental nutrients in UCRO is unknown. The purpose of the present study was to determine the role of PSK2 kinase in UCRO in yeast. S. cerevisiae in culture showed oscillation in PSK2 mRNA levels with a definite phase relationship to the respiratory oscillation. Furthermore, inactivation of Psk2 by gene disruption severely affected UCRO and its decline to undetectable levels within 2 days. In addition, the extracellular and intracellular glucose concentrations of PSK2 deletion mutants in culture were higher and lower, respectively, than those of the wild type. PSK2 mutant cells showed no alteration in redox state. Furthermore, the levels of storage carbohydrates such as glycogen and trehalose fluctuated in PSK2 mutants with attenuated amplitudes comparable to those in the wild type. The results indicated that PSK2 kinase is important for the uptake of glucose and regulation of storage-carbohydrate synthesis and hence the maintenance of an unperturbed continuously oscillating state.  相似文献   

13.
14.
During cultivation of a flocculent yeast, Saccharomyces cerevisiae 1001, two cell fractions, flocs and free cells, appeared in the medium. Free cells contained cells with a normal ability to flocculate, less flocculent cells and not-flocculent cells. When the non-flocculent cells and not-flocculent cells. When the non-flocculent cell fraction from the postexponential phase of growth was collected and used as an inoculum, the culture showed synchronous growth. The floc forming ability of the yeast cells from this culture increased gradually with the number of divisions.  相似文献   

15.
Summary The nuclear genome encoded yeast protein CBS2 is required for translational activation of mitochondrial cytochrome b RNA. Genetic studies have shown that the target sequence of the CBS2 protein is the 5 untranslated leader sequence of cytochrome b RNA. Here we report on the intracellular localization of CBS2. CBS2 protein, expressed in Escherichia coli and prepared from inclusion bodies, was used as an antigen to raise a polyclonal rabbit antiserum. Affinity-purified CBS2 antibodies detect a 45 kDa protein in mitochondrial lysates of wild-type cells, which is absent in a strain in which the CBS2 gene has been deleted. The protein is overexpressed in mitochondrial extracts of a transformant carrying the CBS2 gene on a high copy number plasmid, but undetectable in the post-mitochondrial supernatant. Intramitochondrial localization of CBS2 was verified by in vitro import of CBS2 protein that had been synthesized in a reticulocyte lysate programmed with CBS2 mRNA transcribed in vitro. Mitochondrial import of CBS2 is not accompanied by any detectable proteolytic processing.  相似文献   

16.
17.
Auranofin is a gold based drug in clinical use since 1985 for the treatment of rheumatoid arthritis. Beyond its antinflammatory properties, auranofin exhibits other attractive biological and pharmacological actions such as a potent in vitro cytotoxicity and relevant antimicrobial and antiparasitic effects that make it amenable for new therapeutic indications. For instance, auranofin is currently tested as an anticancer agent in four independent clinical trials; yet, its mode of action is highly controversial. With the present study, we explore the effects of auranofin in Saccharomyces cerevisiae and its likely mechanism. Notably, auranofin is reported to induce remarkable yeast growth inhibition. Solid evidence is provided that growth inhibition is the consequence of a direct cytotoxic insult occurring at the mitochondrial level; a profound depression of cell respiration is indeed clearly documented as the main cause of cell death while induction of ROS plays only a secondary role. More in detail, the mitochondrial NADH kinase Pos5 is identified as a primary target for auranofin. The implications of these results are discussed in the frame of current mechanistic knowledge on the cellular effects of auranofin and of its role as a prospective anticancer drug.  相似文献   

18.
The two non-bilayer forming mitochondrial phospholipids cardiolipin (CL) and phosphatidylethanolamine (PE) play crucial roles in maintaining mitochondrial morphology. We have shown previously that CL and PE have overlapping functions, and the loss of both is synthetically lethal. Because the lack of CL does not lead to defects in the mitochondrial network in Saccharomyces cerevisiae, we hypothesized that PE may compensate for CL in the maintenance of mitochondrial tubular morphology and fusion. To test this hypothesis, we constructed a conditional mutant crd1Δpsd1Δ containing null alleles of CRD1 (CL synthase) and PSD1 (mitochondrial phosphatidylserine decarboxylase), in which the wild type CRD1 gene is expressed on a plasmid under control of the TET(OFF) promoter. In the presence of tetracycline, the mutant exhibited highly fragmented mitochondria, loss of mitochondrial DNA, and reduced membrane potential, characteristic of fusion mutants. Deletion of DNM1, required for mitochondrial fission, restored the tubular mitochondrial morphology. Loss of CL and mitochondrial PE led to reduced levels of small and large isoforms of the fusion protein Mgm1p, possibly accounting for the fusion defect. Taken together, these data demonstrate for the first time in vivo that CL and mitochondrial PE are required to maintain tubular mitochondrial morphology and have overlapping functions in mitochondrial fusion.  相似文献   

19.
Although yeast cells grown in abundant glucose tend to acidify their extracellular environment, they raise the pH of the environment when starved for glucose or when grown strictly with non-fermentable carbon sources. Following prolonged periods in this alkaline phase, Saccharomyces cerevisiae cells will switch to producing acid. The mechanisms and rationale for this “acid burst” were unknown. Herein we provide strong evidence for the role of mitochondrial superoxide in initiating the acid burst. Yeast mutants lacking the mitochondrial matrix superoxide dismutase (SOD2) enzyme, but not the cytosolic Cu,Zn-SOD1 enzyme, exhibited marked acceleration in production of acid on non-fermentable carbon sources. Acid production is also dramatically enhanced by the superoxide-producing agent, paraquat. Conversely, the acid burst is eliminated by boosting cellular levels of Mn-antioxidant mimics of SOD. We demonstrate that the acid burst is dependent on the mitochondrial aldehyde dehydrogenase Ald4p. Our data are consistent with a model in which mitochondrial superoxide damage to Fe-S enzymes in the tricarboxylic acid (TCA) cycle leads to acetate buildup by Ald4p. The resultant expulsion of acetate into the extracellular environment can provide a new carbon source to glucose-starved cells and enhance growth of yeast. By triggering production of organic acids, mitochondrial superoxide has the potential to promote cell population growth under nutrient depravation stress.  相似文献   

20.
Summary We studied the NAM2 genes of Saccharomyces douglasii and Saccharomyces cerevisiae, and showed that they are interchangeable for all the known functions of these genes, both mitochondrial protein synthesis and mitochondrial mRNA splicing. This confirms the prediction that the S. douglasii NAM2D gene encodes the mitochondrial leucyl tRNA synthetase (EC 6.1.1.4). The observation that these enzymes are interchangeable for their mRNA splicing functions, even though there are significant differences in the intron/exon structure of their mitochondrial genome, suggests that they may have a general role in yeast mitochondrial RNA splicing. A short open reading frame (ORF) precedes the synthetase-encoding ORF, and we showed that at least in S. cerevisiae this is not essential for the expression of the gene; however, it may be involved in a more subtle type of regulation. Sequence comparisons of S. douglasii and S. cerevisiae revealed a particularly interesting situation from the evolutionary point of view. It appears that the two yeasts have diverged relatively recently: there is remarkable nucleotide sequence conservation, with no deletions or insertions, but numerous (albeit non-saturating) silent substitutions resulting from transitions. This applies not only to the NAM2 coding regions, but also to two other ORFs flanking the NAM2 ORF. The regions between the ORFs (believed to be intergenic regions) are much less conserved, with several deletions and insertions. Thus S. douglasii and S. cerevisiae provide an ideal system for the study of molecular evolution, being two yeasts caught in the act of speciation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号