首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interactions between the nucleotides: adenosine-5'-diphosphate (ADP) and adenosine-5'-triphosphate (ATP) with spermine (Spm) and 1,11-diamine-4,8-diazaundecane (3,3,3-tet), as well as Cu(II) ions are studied. In the metal-free systems nucleotide-polyamine molecular complexes have been found to form, in which the interaction centres are the nitrogen atoms of the purine ring N(1) and N(7), oxygen atoms of the phosphate group of the nucleotide (for 3,3,3-tet) and protonated nitrogen atoms of the polyamine. Significant differences in the mode of metallation between the systems with Spm and 3,3,3-tet have been established. In the systems with Spm, the main products are protonated species with [N(7),O] chromophore and the nitrogen N(1) is involved in the intramolecular interaction additionally stabilising the complex. In the systems with 3,3,3-tet the formation of metal-ligand-ligand (MLL) species has been observed, in which the oxygen atoms from the phosphate group and the nitrogen atoms from the polyamine are involved in the metallation, while the N(1) and N(7) atoms from the purine ring of the nucleotide remain outside the inner coordination sphere of the copper ion. The main centre of metallation in the nucleotide, both with Spm and 3,3,3-tet, is the phosphate group of the nucleotide.  相似文献   

2.
The interactions between pyrimidine nucleotides: cytidine-5'-diphosphate (CDP) and cytidine-5'-triphosphate (CTP) and Cu(II) ions, spermine (Spm) and 1,11-diamino-4,8-diazaundecane (3,3,3-tet) have been studied. The composition and stability constants of the complexes formed have been determined by means of the potentiometric method, while the centres of interactions in the ligands have been identified by the spectral methods (UV-Vis, Ultraviolet and Visible spectroscopy; EPR, electron spin resonance; NMR). In the systems without metal, formation of the molecular complexes nucleotide-polyamine with the interaction centres at the endocyclic nitrogen atom of purine ring N3, the oxygen atoms of the phosphate group from the nucleotide and protonated nitrogen atoms of the polyamine have been detected. Significant differences have been found in the metallation between the systems with Spm and with 3,3,3-tet. In the systems with spermine, mainly protonated species are formed with the phosphate group of the nucleotide and deprotonated nitrogen atoms of the polyamine making the coordination centres, while the donor nitrogen atom of the nucleotide N3 is involved in the intramolecular interligand interactions, additionally stabilising the complex. In the systems with 3,3,3-tet, the MLL' type species are formed in which the oxygen atoms of the phosphate group and nitrogen atoms of the polyamine are involved in metallation, whereas the N3 atom from the pyrimidine ring of the nucleotide is located outside the inner coordination sphere of copper ion. The main centre of Cu(II) interaction in the nucleotide, both in the system with Spm and 3,3,3-tet is the phosphate group of the nucleotide.  相似文献   

3.
Reactions of metallation and non-covalent interactions have been studied in ternary systems of Cu(II) ions with uridine, uridine 5'-monophosphate and diamines or triamines. It has been found that in metal-free systems the reaction centres of the nucleoside with the polyamine are the donor nitrogen atoms N(3) and protonated -NH(x) groups of the amines. In comparison to systems with adenosine or cytidine, the pH range of complex formation is shifted towards higher values. It is a consequence of significantly higher basicity of uridine and in agreement with the ion-ion, ion-dipole interaction model assumed. Formation of molecular complexes of uridine 5'-monophosphate with polyamines at a low pH is the result of activity of the phosphate group which plays the role of a negatively charged reaction site. Non-covalent interactions interfere in processes of bioligand metallation. Centres of weak interactions are simultaneously binding sites of metal ions. In protonated Cu(Urd)(PA)H(x) complexes, coordination has been found to involve the N(3) atom from the nucleoside and two donor nitrogen atoms from the polyamine (PA). In the heteroligand species Cu(Urd)(PA), despite deprotonation of all amine groups, one of these groups is located outside the inner coordination sphere. In complexes with uridine-5'-monophosphate, the phosphate group is active in metallation. Moreover, in certain coordination compounds this group is engaged in non-covalent interactions with PA molecules, despite binding Cu ions, as has been shown on the basis of equilibrium and spectral studies.  相似文献   

4.
The occurrence of non-covalent interactions and formation of molecular complexes between adenosine 5'-monophosphate (AMP) or cytidine 5'-monophosphate (CMP) and the polyamines, putrescine, 1,7-diamino-4-azaheptane (3,3-tri), spermidine and 1,11-diamino-4,8-diazaundecane (3,3,3-tet), were detected in metal-free systems. The stoichiometric composition of the adducts and their stability constants were determined on the basis of computer analysis of the titration data, taking into account the fact that the acid-base properties of the system change as a result of these interactions. Spectral analysis allowed an identification of the interaction centers in the adducts as protonated amine groups of polyamines, phosphate groups as well as nitrogen atoms of high electron density from nucleotides. Unexpectedly, no participation of the phosphate group from AMP in the formation of molecular complexes with tetramine-3,3,3-tet was detected. The stoichiometric composition and stability constants of mixed-ligand complexes in the systems of Cu(II) with AMP or CMP and polyamines were obtained. Analysis of the results of equilibrium studies and 13C, 31PNMR, UV-Vis, IR and EPR data permitted determination of the mode of coordination. In the systems with metal ions, the formation of molecular complexes Cu(CMP)H4(3,3-tri) was found, apart from heteroligand complexes of the MLL' and MLL'Hx type. In protonated complexes the occurrence of non-covalent interactions leading to stabilization of the coordination compounds was observed. The differences in the character of coordination biogenic amines and their biologically inactive analogs were identified.  相似文献   

5.
Molecular complexes of the types (Urd)H(x)(PA) and (UMP)H(x)(PA) are formed in the uridine (Urd) or uridine 5'-monophosphate (UMP) plus spermidine or spermine systems, as shown by the results of equilibrium and spectral studies. Overall stability constants of the adducts and equilibrium constants of their formation have been determined. An increase in the efficiency of the reaction between the bioligands is observed with increasing length of the polyamine. The pH range of adduct formation is found to coincide with that in which the polyamine is protonated while uridine or its monophosphate is deprotonated. The -NH(x)(+) groups from PA and the N(3) atom of the purine base as well as phosphate groups from the nucleotides have been identified as the significant centres of non-covalent interactions. Compared to cytidine, the pH range of Urd adduct formation is shifted significantly higher due to differences in the protonation constants of the endocyclic N(3) donor atoms of particular nucleosides. Overall stability constants of the Cu(II) complexes with uridine and uridine 5'-monophosphate in ternary systems with spermidine or spermine have been determined. It has been found from spectral data that in the Cu(II) ternary complexes with nucleosides and polyamines the reaction of metallation involves mainly N(3) atoms from the pyrimidine bases, as well as the amine groups of PA. This unexpected type of interaction has been evidenced in the coordination mode of the complexes forming in the Cu-UMP systems including spermidine or spermine. Results of spectral and equilibrium studies indicate that the phosphate groups taking part in metallation are at the same time involved in non-covalent interaction with the protonated polyamine.  相似文献   

6.
The interactions of Cu(II) ions with adenosine-5'-monophosphate (AMP), cytidine-5'-monophosphate (CMP) and 1,12-diamino-4,9-dioxadodecane (OSpm) were studied. A potentiometric method was applied to determine the composition and stability constants of complexes formed, while the mode of interactions was analysed by spectral methods (ultraviolet and visible spectroscopy (UV-Vis), electron paramagnetic resonance (EPR), (13)C NMR, (31)P NMR). In metal-free systems, molecular complexes nucleotide-polyamine (NMP)H(x)(OSpm) were formed. The endocyclic nitrogen atoms of the purine ring N(1), N(7), the nitrogen atom of the pyrimidine ring N(3), the oxygen atoms of the phosphate group of the nucleotide and the protonated nitrogen atoms of the polyamine were the reaction centres. The mode of interaction of the metal ion with OSpm and the nucleotides (AMP or CMP) in the coordination compounds was established. In the system Cu(II)/OSpm the dinuclear complex Cu(2)(OSpm) forms, while in the ternary systems Cu(II)/nucleotide/OSpm the species type MH(x)LL' and MLL' appear. In the MH(x)LL' type species, the main centres of copper (II) ion binding in the nucleotide are the phosphate groups. The protonated amino groups of OSpm are involved in non-covalent interaction with the nitrogen atoms N(1), N(7) or N(3) of the purine or pyrimidine ring, whereas at higher pH, deprotonated nitrogen atoms of polyamine are engaged in metallation in MLL' species.  相似文献   

7.
The interactions of adenosine 5'-diphosphate (ADP) with some polyamines (PA) (1,3-diaminopropane (tn), 1,4-diaminobutane (Put), 1,7-diamino-4-azaheptane (3,3-tri) and 1,8-diamino-4-azaoctane (Spd)) both in presence and in the absence of metal ions (Cu(II), Cd(II) and Hg(II)) have been studied. In the metal-free systems the formation of adducts (ADP)Hx(PA) has been observed, in which the main reaction centres are the endocyclic nitrogen atoms of the purine ring, the phosphate group of the nucleotide and the protonated nitrogen atoms of the polyamine. The effectiveness of the phosphate group in formation of adducts has been found to decrease in the series Put > Spd > Spm and to be lower than in the reactions with shorter homologues of biogenic amines. In the ternary systems with metal ions the formation of molecular complexes (ML L' type) has been evidenced in which the protonated polyamine interacts with the nitrogen atoms N(1) or N(7) of the purine ring of the nucleotide. In the ternary systems Cu(II)/ADP/polyamine the coordination dichotomy observed in the binary system Cu(II)/ADP disappears. In the systems with Hg(II) ions the pH range of the dichotomy is extended, while for the systems Cd(II)/ADP/polyamine no changes of the range relative to the binary system Cd(II)/ADP have been noted.  相似文献   

8.
The aim of this work is to study the binding of nickel ions to hexahistidine (His(6)) combining potentiometric titrations and spectroscopic (UV-Vis and circular dichroism) determinations in order to establish the species distribution as a function of the pH, their stoichiometry, stability and geometry. For comparative purposes, the same procedure was applied to the Ni-histidine (His) system. His behaves as a tridentate ligand, coordinating the carboxyl group, the imidazole and the amino nitrogen atoms to Ni(II) ions in an octahedral coordination and a bis(histidine) complex is formed at pH higher than 5. For the Ni-His(6) system, the complex formation starts at pH 4 and five different species (Ni(His(6))H, Ni(His(6)), Ni(n)(His(6))(n), Ni(n)(His(6))(n)H(-n/2), Ni(n)(His(6))(n)H(-n)) are formed as a function of the pH. Ni(His(6))H involves the coordination of the imidazole nitrogen and a deprotonated amide nitrogen (N(Im), N(-)) resulting in an octahedral geometry. In Ni(His(6)), an imidazole nitrogen is deprotonated and coordinated (2N(Im), N(-)) to the metal ion with a square planar geometry. The aggregated forms result from the extra Ni-N(Im) coordination, resulting in a 4N square planar geometry that is stabilized by inter/intramolecular hydrogen bonds. This coordination mode is not altered during the deprotonation steps from Ni(n)(His(6))(n).  相似文献   

9.
The antitumor antibiotic Altromycin H was studied using electronic absorption (UV-Vis.) and circular dichroism (CD) spectroscopy. The dissociation constants of the phenolic groups on C(5) and C(11) were estimated as pK(1)=6.7 and pK(2)=11.8 at 25 degrees C, respectively, and a complete assignment of the CD and UV-Vis. bands is proposed. The interaction of Cu(II) ions with the Altromycin H has been also investigated by UV-Vis., CD and electron paramagnetic resonance (EPR) spectroscopy. A pH depended stepwise complex formation was observed. At pH<4 no copper-Altromycin H interactions were detected. At the 4相似文献   

10.
Three new complexes [Cu(L)(2)(NO(3))](NO(3))(H(2)O)(1/2)(CH(3)OH)(1/2) (1), [Cd(L)(2)(NO(3))(2)](H(2)O)(3) (2) and [Cd(L)(2)(ClO(4))(CH(3)OH)](ClO(4))(H(2)O)(1/4)(CH(3)OH) (3) (L=1-[3-(2-pyridyl)pyrazol-1-ylmethyl]naphthalene) were synthesized and characterized by elemental analyses, IR and X-ray diffraction analysis. Among them, the Cu(II) and Cd(II) ions were both coordinated by four N donors from two distinct L ligands via N,N-bidentate chelating coordination mode. Additional weak interactions, such as the face-to-face pi-pi stacking and C-Hcdots, three dots, centeredO H-bonding interactions, linked the mononuclear unit into 1D chain and further into 2D network. Complexes 1-3 were subjected to biological assays in vitro against six different cancer cell lines. All of them exhibited cytotoxic specificity and notable cancer cell inhibitory rate. The interactions of 1-3 with calf thymus DNA were investigated by thermal denaturation, viscosity measurements, spectrophotometric and electrophoresis methods. The results indicate that these complexes bound to DNA by intercalation mode via the ligand L and had different nuclease activities, which were in good agreement with their DNA-binding strength. Moreover, the central metal ions of 1-3 played a vital role in DNA-binding behaviors, DNA-cleavage activities and cytotoxicities, whereas the contribution of the different counter anions to their bioactivities also should not be ignored.  相似文献   

11.
The digold complex [Au(2)(micro-G)(micro-dmpe)](KBr)(0.75) x 2H(2)O (dmpe=1,2-bis(dimethylphosphino)ethane (1)) has been prepared by nucleophilic attack of the guaninate dianion on the gold(I) atoms of [(AuBr)(2)(micro-dmpe)] and has been characterised by X-ray crystallography and spectroscopic studies. The structure of 1 consists of dinuclear nine-membered ring molecules, K(+) cations, Br(-) anions and water molecules, all of them involved in either weak K....O or hydrogen bonding interactions. Within the cyclic dinuclear molecules, gold(I) atoms are bridged on one side by the diphosphine ligand and on the other side by a doubly deprotonated guaninate anion coordinated through neighbouring N3 and N9 nitrogen atoms, with gold(I)....gold(I) interactions of 3.030(2) A. This is the first X-ray example showing an N3,N9-bridging mode for guanine. There are two types of K(+) cations in the structure, K1 and K2. The former interacts with water molecules to form a unique [K(H(2)O)(3)(micro-H(2)O)(2)K(H(2)O)(3)](2+) dipotassium unit whereas K2 interact with the O6 atom of the guaninate ligands and oxygen atoms of the dipotassium unit leading to a chain running along the c-axis. Each chain is interdigitated with four neighbouring ones to give rise to an intricate network in which Br1, Br2 and [K(H(2)O)(3)(micro-H(2)O)(2)K(H(2)O)(3)](2+) fit snugly into cavities defined by digold molecules. Complex 1 luminescence at room temperature and 77 K in the solid state with excitation maxima at 385 nm and emission maxima at 451.8 and 448.7 nm, respectively. The emission spectrum of a saturated solution of 1 in DMSO (dimethyl sulfoxide) shows the maximum at about 440 nm.  相似文献   

12.
《Inorganica chimica acta》1986,114(2):185-190
The equilibria of adduct formation between several nickel(II) tetraamine complexes and acetonitrile were determined from −40 to 80 °C in acetonitrile solution by the Evans NMR magnetic susceptibility method. The stability order for adduct formation of the paramagnetic complex in terms of the ligand was found to be: 2,2,2-tet, 3,3,3-tet > 3,2,3- tet > 2,3,2-tet > cyclam. This order parallels that found in previous studies in aqueous solution. However, in this study, enthalpic factors were found to be dominant whereas enthalpic and entropic factors have been reported to be comparable in magnitude in aqueous solution. Optical studies from 200–1500 nm were conducted on 0.01 M acetonitrile solutions of the complexes from 25–65 °C. Only small changes in the intensity and position of the optical bands were observed with temperature except for the 2,3,2-tet (468 nm), 3,2,3-tet (450 nm), and cyclam (460 nm) complexes. These indicated bands increase with increasing temperature, which can be explained by assuming a square-planar (diamagnetic)-octahedral (paramagnetic) equilibrium in agreement with the magnetic susceptibility data. Band assignments were made for the cis- and trans-octahedral isomers for each of the complexes. The order of cis-octahedral character for the complexes was found to be 2,2,2- tet, 3,3,3-tet > 2,3,2-tet > 3,2,3-tet > cyclam in agreement with previous studies in aqueous, DMSO, and DMF solutions.  相似文献   

13.
Interaction of phytic acid (myo-inositolhexakisphosphoric acid, IP) and polyamines (A = en, tn, Put, dien, 2,3-tri, 3,3-tri, Spd, 3,3,3-tet, spermine(Spm)) have been studied by potentiometric and (31)P-NMR techniques. The non-covalent interactions have led to the formation of stable molecular complexes of (IP)H(n)(A) type at the 1:1 molar ratio of the ligands, but of different numbers of protons. The IP protonation constants, stability constants of the molecular complexes and metal (Mg(2+)) complexes have been determined. The structural and pH dependences of stability constants showed the interactions between IP and A have the acid-base character determining their effectiveness, although the IP structure (5ax1eq, 5eq1ax) in molecular complexes should be also taken into account. (31)P NMR study showed in the presence of Spm (31)P highfield shifts and high pH shift of signal broadening due to chemical exchange between 5ax1eq and 5eq1ax. The preferable binding of Spm to IP over Mg(2+) in neutral pH indicated the importance of polyamine as a stabilizer of phosphate compounds.  相似文献   

14.
The GGGTH sequence has been proposed to be the minimal sequence involved in the binding of a fifth Cu(II) ion in addition to the octarepeat region of the prion protein (PrP) which binds four Cu(II) ions. Coordination of Cu(II) by the N- and C-protected Ac-GGGTH-NH(2) pentapeptide (P(5)) was investigated by using potentiometric titration, electrospray ionization mass spectrometry, UV-vis spectroscopy, electron paramagnetic resonance (EPR) spectroscopy and cyclic voltammetry experiments. Four different Cu(II) complexes were identified and characterized as a function of pH. The Cu(II) binding mode switches from NO(3) to N(4) for pH values ranging from 6.0 to 10.0. Quasi-reversible reduction of the [Cu(II)(P(5))H(-2)] complex formed at pH 6.7 occurs at E (1/2)=0.04 V versus Ag/AgCl, whereas reversible oxidation of the [Cu(II)(P(5))H(-3)](-) complex formed at pH 10.0 occurs at E (1/2)=0.66 V versus Ag/AgCl. Comparison of our EPR data with those of the rSHaPrP(90-231) (Burns et al. in Biochemistry 42:6794-6803, 2003) strongly suggests an N(3)O binding mode at physiological pH for the fifth Cu(II) site in the protein.  相似文献   

15.
Preparations of copper(II) and palladium(II) complexes of 4-amino-5-methylthio-3-(2-pyridyl)-1,2,4-triazole (L(1)) and the copper(II) complex of 1,4-dihydro-4-amino-3-(2-pyridyl)-5-thioxo-1,2,4-triazole (HL) are described. These complexes have been characterized by means of spectroscopy and microanalysis. Molecular structures of HL (1), [CuCl(2)(H(2)L)]Cl.2H(2)O (2a), cis-[CuCl(2)(L(1))] (3), and cis-[PdCl(2)(L(1))] (4) have been determined by single-crystal X-ray diffraction. The HL ligand acts as a N,S bidentate through the thioxo moiety and the exo-amino group whilst the ligand L(1) forms N,N coordination complexes through the pyridine and triazole nitrogen atoms. Speciation in solution of the systems Cu/HL and Cu/L(1) have been determined by means of potentiometry and spectrophotometry as well as for the Cu/L(1)/A (HA=glycine) system in order to determine species present at physiological pH. Antiproliferative activity of these complexes and their ligands was evaluated, using the AlamarBlue Assay, on normal human fibroblasts (HF) and human fibrosarcoma tumor (HT1080) cells. The copper compounds cis-[CuCl(2)(H(2)L)]Cl and cis-[CuCl(2)(L(1))] exerted significant antiproliferative activity of both normal and neoplastic cells; although dose-response experiments revealed that the HT1080 cell line was more sensitive to the tested drugs than normal fibroblasts.  相似文献   

16.
The metal binding properties of a phenolic lichen substance usnic acid (UA) and its acetyl and enamine derivatives 9-O-acetylusnic acid (MAUA), 7,9-di-O-acetylusnic acid (DAUA), Delta(2,11)-enaminousnic acid (EUA), and N-substituted Delta(2,11)-enaminousnic acids have been studied by synthetic and spectroscopic methods, and the structures of copper(II) and palladium(II) complexes have been established by the X-ray diffraction method. Cu(II) reacted with UA and DAUA to give the binary complexes Cu(UA)(2) x H(2)O and Cu(DAUA)(2), respectively, and Cu(bpy) (bpy=2,2'-bipyridine) formed ternary complexes with UA and DAUA. Pd(II) also reacted with UA, DAUA, EUA, and N-substituted Delta(2,11)-enaminousnic acids to give the corresponding binary complexes. All the isolated complexes are insoluble in water and soluble in most organic solvents. They exhibited very strong absorption and circular dichroism spectral peaks in the UV region. The (1)H-NMR spectrum in CDCl(3) of the Pd(II) complex of N-phenyl-Delta(2,11)-enaminousnic acid (PEUA), Pd(PEUA)(2) x C(6)H(6), showed that the C(4)-proton signal suffered a large upfield shift (0.86 ppm) due to the ring current effect of the N-phenyl moiety. X-Ray crystal structure analysis has been performed for Cu(bpy)(UA)(ClO(4)) x CH(3)OH, Pd(MEUA)(2) x C(6)H(6), and Pd(PEUA)(2) x C(6)H(6). Cu(bpy)(UA)(ClO(4)) x CH(3)OH has a square-pyramidal structure with the two nitrogen atoms of bpy and the two oxygen atoms of the mono-deprotonated B ring of UA in the equatorial positions, while Pd(II) binds with two molecules of MEUA or PEUA in the trans configuration through the nitrogen and oxygen atoms with deprotonation. The N-phenyl ring of PEUA in Pd(PEUA)(2).C(6)H(6) was revealed to be located close to the C(4) proton as indicated by (1)H-NMR. Isolation of Cu(2)(bpy)(2)(UA)(NO(3))(2) x 2H(2)O suggests that UA has two metal binding sites that can form polymeric complexes. The present results substantiate the metal binding ability and the structures of the complexes of usnic acid and other substances from lichens as biomonitors of environmental metal ions.  相似文献   

17.
A new series of complexes of the type [Cu(dien)(2a-2tzn)Y(2)] and [Cu(dienXX)(2a-2tzn)Y(2)], where dien=diethylenetriamine and dienXX=Schiff dibase of diethylenetriamine formed with 2-furaldehyde (dienOO), 2-thiophenecarboxaldehyde (dienSS), or pyrrol-2-carboxaldehyde (dienNN); Y=Cl, Br or NO(3); and 2a-2tzn=2-amino-2-thiazoline, were synthesized and their structure established by C, H, N and Cu analysis; IR and electronic spectra; magnetic susceptibility; and molar conductivity. The isolated complexes are monomers, paramagnetic, and electrolytes of types 1:1 or 1:2. In both types of solid state complexes, [Cu(dien)(2a-2tzn)Y(2)] and [Cu(dienXX)(2a-2tzn)Y(2)], dien and its Schiff dibases are bonded to Cu(II) in a tridentate fashion through 3N atoms. The coordination sphere is completed by the endocyclic nitrogen of the thiazoline moiety and by two Cl, Br, or NO(3) groups with distorted octahedral geometry. The proposed structure of these compounds was supported by X-ray analysis of [Cu(dien)(Br)(2a-2tzn)](Br)(H(2)O). The coordination polyhedron around the copper atom can be described as a distorted square pyramid [Cu(dien)(Br)(2a-2tzn)](+). Its basal plane is occupied by the four nitrogen atoms of the dien and thiazoline ligands with Cu-N distances ranging between 1.996(6) and 2.032(3)A, and the axial position is occupied by one of the two bromine atoms (Br1) with a Cu1-Br1 bond distance of 2.782(1)A. The second bromine atom (Br2) is 4.694(2)A from the copper atom, which exists as a discrete anion and is responsible for the cationic nature of the complex. Results regarding toxicity, antitumor, and anti-inflammatory activities of the investigated compounds are promising and allow the selection of a lead compound for further biological studies.  相似文献   

18.
The protonation equilibria of a pentadentate ligand, N,N'-(2,2'-azanediylbis(ethane-2,1-diyl))dipicolinamide ([H(2)(5555)-N]) and the complexation of this ligand with Cu(II) Ca(II), Zn(II) and Ni(II) have been studied by pH-potentiometry, (1)H NMR spectroscopy and UV-vis spectrophotometry. (1)H NMR detected the protonation of the pyridyl groups and formation of Cu[H(2)(5555)-N]H species at low pH, while amide group deprotonation at higher pH resulted in the formation of Cu[H(2)(5555)-N]H(-1) and Cu[H(2)(5555)-N]H(-2) species in solution. Potentiometric detection of protonated species was limited by the acidic nature of the pyridyl nitrogen donors. From UV-vis spectroscopy it is suggested that the amide nitrogens are coordinated. This conclusion is supported by Molecular Mechanics calculations. Water-octanol partition coefficients for the Cu(II)-[H(2)(5555)-N] system indicated that although the Cu[H(2)(5555)-N]H(-1) species is largely hydrophilic, approximately 54% of the complex goes into the organic phase. This percentage is able to promote dermal absorption of copper with a calculated penetration rate of 1.92x10(-1)cmh(-1). This was confirmed by dermal absorption studies which illustrate the role of hydrophobicity in promoting percutaneous drug administration.  相似文献   

19.
Two pseudopolymorphs, solvates, of [Cu(2)(II)(niflumate)(4)(H(2)O)(2)] of unknown structure were obtained following solution of [Cu(2)(II)(niflumate)(4)(H(2)O)(2)] in N,N-dimethylacetamide (DMA) or N,N-dimethylformamide (DMF). Low-temperature crystal structures obtained for these solvates revealed that they were ternary aqua DMA and DMF solvates: [Cu(2)(II)(niflumate)(4)(H(2)O)(2)].4DMA and [Cu(2)(II)(niflumate)(4)(H(2)O)(2)].4DMF. Intermolecular hydrogen bonding interactions account for the formation of these stable DMA and DMF solvates. These pseudopolymorphs contain a centrosymmetric binuclear center with Cu-Cu bond distances ranging from 2.6439(7) to 2.6452(9) A; the coordination sphere of Cu(II) is characterized by one long Cu-O (water) bond length of 2.128(3)-2.135(3) A and four short Cu-O (carboxylate) bonds of 1.949(3)-1.977(3) A. Crystal parameters for the DMA pseudopolymorph: a=10.372(1), b=19.625(2), c=17.967(2) A, beta=97.40(1) degrees , V=3626.8(6) A(3); monoclinic system; space group: P2(1)/a and for the DMF pseudopolymorph: a=10.125(2), b=18.647(3), c=19.616(4) A, alpha=74.38(2)(o), beta=88.18(2)(o), gamma=79.28(2)(o), V=3504(1) A(3); triclinic system; space group: P1. EPR spectra of these solids are identical and show strong antiferromagnetic coupling between the copper atoms, similar to the spectrum obtained for [Cu(2)(II)(niflumate)(4)(DMSO)(2)]. The [Cu(2)(II)(niflumate)(4)(H(2)O)(2)], [Cu(2)(II)(niflumate)(4)(H(2)O)(2)].4DMA, [Cu(2)(II)(niflumate)(4)(H(2)O)(2)].4DMF, [Cu(2)(II)(niflumate)(4)(DMF)(2)], and[Cu(2)(II)(niflumate)(4)(DMSO)(2)] evidenced protection against maximal electroshock-induced seizures and Psychomotor seizures at various times after treatment, consistent with the well known antiinflammatory activities of Cu chelates, but failed to protect against Metrazol-induced seizures while evidencing some Rotorod Toxicity consistent with a mechanism of action involving sedative activity.  相似文献   

20.
Four new complexes of Cu(II) of stoichiometry [Cu(ATP)(polyamine)] containing as ligands the polyamines (PA) ethylenediamine, 1,3-diaminopropane, spermidine or spermine and adenosine 5′triphosphate were prepared from aqueous solution at pH 6. The synthesis, characterization, thermogravimetric, vibrational spectroscopy, electron paramagnetic resonance analyses are described and show that these complexes have similar molecular structures. The infrared spectra and the thermal analysis are briefly discussed based on the peculiarities of the complexes. The IR spectra of the ligands and their copper complexes were used to assign the various groups and compare the shifts due to complexation. The EPR parameters values for the complexes show that Cu(II) is complexed in a similar way in the four complexes. Similarity in the coordination mode of complexes in solid state has been determined and discussed. The data obtained suggest that the four complexes present one water molecule of hydration and are complexed through two oxygen atoms from ATP and through two nitrogen atoms of each polyamine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号