首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Rad3 ATPase/DNA helicase was purified to physical homogeneity from extracts of yeast cells containing overexpressed Rad3 protein. The DNA helicase can unwind duplex regions as short as 11 base pairs in a partially duplex circular DNA substrate and does so by a strictly processive mechanism. On partially duplex linear substrates, the enzyme has a strict 5'----3' polarity with respect to the single strand to which it binds. Nicked circular DNA is not utilized as a substrate, and the enzyme requires single-stranded gaps between 5 and 21 nucleotides long to unwind oligonucleotide fragments from partially duplex linear molecules. The enzyme also requires duplex regions at least 11 base pairs long when these are present at the ends of linear molecules. Rad3 DNA helicase activity is inhibited by the presence of ultraviolet-induced photoproducts in duplex regions of partially duplex circular molecules.  相似文献   

2.
Rad3 protein from the yeast Saccharomyces cerevisiae is a single-stranded DNA-dependent ATPase which catalyzes the unwinding of DNA.DNA duplexes. In the present studies we have demonstrated that the purified enzyme additionally catalyzes the displacement of RNA fragments annealed to complementary DNA. Quantitative comparisons using otherwise identical partially duplex DNA.DNA and DNA.RNA substrates indicate a significant preference for the latter. Competition for ATPase or DNA helicase activity by various homopolymers suggests that Rad3 protein does not discriminate between ribonucleotide and deoxyribonucleotide homopolymers with respect to binding. However, neither single-stranded RNA nor various ribonucleotide homopolymers supported the hydrolysis of nucleoside 5'-triphosphates. Additionally, Rad3 protein was unable to catalyze the displacement of oligo(dA) annealed to poly(U), suggesting that the catalytic domain of the enzyme is exquisitely sensitive to chemical and/or or conformational differences between DNA and RNA. Hence, it appears that Rad3 protein is not an RNA helicase.  相似文献   

3.
Ribosome biogenesis requires, in addition to rRNA molecules and ribosomal proteins, a multitude of trans-acting factors. Recently it has become clear that in the yeast Saccharomyces cerevisiae many RNA helicases of the DEAD-box and related families are involved in ribosome biogenesis. Here we show that the previously uncharacterised open reading frame YDL031w (renamed DBP10 for DEAD-box protein 10) encodes an essential putative RNA helicase that is required for accurate ribosome biogenesis. Genetic depletion of Dbp10p results in a deficit in 60S ribosomal subunits and an accumulation of half-mer polysomes. Furthermore, pulse-chase analyses of pre-rRNA processing reveal a strong delay in the maturation of 27SB pre-rRNA intermediates into 25S rRNA and 7S pre-rRNA. Northern blot analyses indicate that this delay leads to higher steady-state levels of 27SB species and reduced steady-state levels of 7S pre-rRNA and 25S/5.8S mature rRNAs, thus explaining the final deficit in 60S subunit and the formation of half-mer polysomes. Consistent with a direct role in ribosome biogenesis, Dbp10p was found to be located predominantly in the nucleolus.  相似文献   

4.
Bessler JB  Zakian VA 《Genetics》2004,168(3):1205-1218
The Pif1 family of DNA helicases is conserved from yeast to humans. Although the helicase domains of family members are well conserved, the amino termini of these proteins are not. The Saccharomyces cerevisiae genome encodes two Pif1 family members, Rrm3p and Pif1p, that have very different functions. To determine if the amino terminus of Rrm3p contributes to its role in promoting fork progression at >1000 discrete chromosomal sites, we constructed a deletion series that lacked portions of the 249-amino-acid amino terminus. The phenotypes of cells expressing alleles that lacked all or most of the amino terminus were indistinguishable from those of rrm3Delta cells. Rrm3p deletion derivatives that lacked smaller portions of the amino terminus were also defective, but the extent of replication pausing at tRNA genes, telomeres, and ribosomal DNA (rDNA) was not as great as in rrm3Delta cells. Deleting only 62 amino acids from the middle of the amino terminus affected only rDNA replication, suggesting that the amino terminus can confer locus-specific effects. Cells expressing a fusion protein consisting of the Rrm3p amino terminus and the Pif1p helicase domain displayed defects similar to rrm3Delta cells. These data demonstrate that the amino terminus of Rrm3p is essential for Rrm3p function. However, the helicase domain of Rrm3p also contributes to its functional specificity.  相似文献   

5.
Spb4 is a putative ATP-dependent RNA helicase that is required for proper processing of 27SB pre-rRNAs and therefore for 60S ribosomal subunit biogenesis. To define the timing of association of this protein with preribosomal particles, we have studied the composition of complexes that copurify with Spb4 tagged by tandem affinity purification (TAP-tagged Spb4). These complexes contain mainly the 27SB pre-rRNAs and about 50 ribosome biogenesis proteins, primarily components of early pre-60S ribosomal particles. To a lesser extent, some protein factors of 90S preribosomal particles and the 35S and 27SA pre-rRNAs also copurify with TAP-tagged Spb4. Moreover, we have obtained by site-directed mutagenesis an allele that results in the R360A substitution in the conserved motif VI of the Spb4 helicase domain. This allele causes a dominant-negative phenotype when overexpressed in the wild-type strain. Cells expressing Spb4(R360A) display an accumulation of 35S and 27SB pre-rRNAs and a net 40S ribosomal subunit defect. TAP-tagged Spb4(R360A) displays a greater steady-state association with 90S preribosomal particles than TAP-tagged wild-type Spb4. Together, our data indicate that Spb4 is a component of early nucle(ol)ar pre-60S ribosomal particles containing 27SB pre-rRNA. Apparently, Spb4 binds 90S preribosomal particles and dissociates from pre-60S ribosomal particles after processing of 27SB pre-rRNA.  相似文献   

6.
DNA damage checkpoints are signal transduction pathways that are activated after genotoxic insults to protect genomic integrity. At the site of DNA damage, ‘mediator’ proteins are in charge of recruiting ‘signal transducers’ to molecules ‘sensing’ the damage. Budding yeast Rad9, fission yeast Crb2 and metazoan 53BP1 are presented as mediators involved in the activation of checkpoint kinases. Here we show that, despite low sequence conservation, Rad9 exhibits a tandem tudor domain structurally close to those found in human/mouse 53BP1 and fission yeast Crb2. Moreover, this region is important for the resistance of Saccharomyces cerevisiae to different genotoxic stresses. It does not mediate direct binding to a histone H3 peptide dimethylated on K79, nor to a histone H4 peptide dimethylated on lysine 20, as was demonstrated for 53BP1. However, the tandem tudor region of Rad9 directly interacts with single-stranded DNA and double-stranded DNAs of various lengths and sequences through a positively charged region absent from 53BP1 and Crb2 but present in several yeast Rad9 homologs. Our results argue that the tandem tudor domains of Rad9, Crb2 and 53BP1 mediate chromatin binding next to double-strand breaks. However, their modes of chromatin recognition are different, suggesting that the corresponding interactions are differently regulated.  相似文献   

7.
Hmi1p is a Saccharomyces cerevisiae mitochondrial DNA helicase that is essential for the maintenance of functional mitochondrial DNA. Hmi1p belongs to the superfamily 1 of helicases and is a close homologue of bacterial PcrA and Rep helicases. We have overexpressed and purified recombinant Hmi1p from Escherichia coli and describe here the biochemical characteristics of its DNA helicase activities. Among nucleotide cofactors, the DNA unwinding by Hmi1p was found to occur efficiently only in the presence of ATP and dATP. Hmi1p could unwind only the DNA substrates with a 3'-single-stranded overhang. The length of the 3'-overhang needed for efficient targeting of the helicase to the substrate depended on the substrate structure. For substrates consisting of duplex DNA with a 3'-single-stranded DNA overhang, at least a 19-nt 3'-overhang was needed. In the case of forked substrates with both 3'- and 5'-overhangs, a 9-nt 3'-overhang was sufficient provided that the 5'-overhang was also 9 nt in length. In flap-structured substrates mimicking the chain displacement structures in DNA recombination process, only a 5-nt 3'-single-stranded DNA tail was required for efficient unwinding by Hmi1p. These data indicate that Hmi1p may be targeted to a specific 3'-flap structure, suggesting its possible role in DNA recombination.  相似文献   

8.
9.
Crossing over is regulated to occur at least once per each pair of homologous chromosomes during meiotic prophase to ensure proper segregation of chromosomes at the first meiotic division. In a mer3 deletion mutant of Saccharomyces cerevisiae, crossing over is decreased, and the distribution of the crossovers that occur is random. The predicted Mer3 protein contains seven motifs characteristic of the DExH box type of DNA/RNA helicases. The mer3G166D and the mer3K167A mutation, amino acid substitutions of conserved residues in a putative nucleotide-binding domain of the helicase motifs caused a defect in the transition of meiosis-specific double-strand breaks to later intermediates, decreased crossing over, and reduced crossover interference. The purified Mer3 protein was found to have DNA helicase activity. This helicase activity was reduced by the mer3GD mutation to <1% of the wild-type activity, even though binding of the mutant protein to single- and double-strand DNA was unaffected. The mer3KA mutation eliminated the ATPase activity of the wild-type protein. These results demonstrate that Mer3 is a DNA helicase that functions in meiotic crossing over.  相似文献   

10.
Summary The cloned RAD3 gene of Saccharomyces cerevisiae was tailored into expression vectors for overexpression of Rad3 protein in Escherichia coli and in yeast. In both organisms the overexpressed protein is detected as a species of molecular weight ca. 90 kDa, the size expected from the sequence of the cloned gene. The protein overexpressed in E. coli is largely insoluble; however the insoluble fraction was used to generate affinity-purified polyclonal antisera which proved to be powerful reagents for the initial characterization of Rad3 protein expressed in yeast. These studies showed that: (1) when overexpressed in yeast most of the Rad3 protein is detected in the soluble fraction of cell extracts; (2) endogenous Rad3 protein is untransformed cells is also ca. 90 kDa in size and is located in the cell nucleus; (3) Rad3/-galactosidase fusion protein partially purified on an affinity matrix is associated with DNA-dependent ATPase activity that is inhibited in the presence of anti-Rad3 antibodies, suggesting that Rad3 protein is an ATPase; and (4) Rad3 antibodies cross-react with two electrophoretically distinguishable polypeptides present in the nuclear fraction of human cells, and with a single polypeptide in extracts of Drosophila cell.  相似文献   

11.
Saccharomyces cerevisiae Rad17p is necessary for cell cycle checkpoint arrests in response to DNA damage. Its known interactions with the checkpoint proteins Mec3p and Ddc1p in a PCNA-like complex indicate a sensor role in damage recognition. In a novel application of the yeast two-hybrid system and by immunoprecipitation, we show here that Rad17p is capable of increased self-interaction following DNA damage introduced by 4-nitroquinoline-N-oxide, camptothecin or partial inactivation of DNA ligase I. Despite overlap of regions required for Rad17p interactions with Rad17p or Mec3p, single amino acid substitutions revealed that Rad17p x Rad17p complex formation is independent of Mec3p. E128K (rad17-1) was found to inhibit Rad17p interaction with Mec3p but not with Rad17p. On the other hand, Phe-121 is essential for Rad17p self-interaction, and its function in checkpoint arrest but not for Mec3p interaction. These differential effects indicate that Rad17p-Rad17p interaction plays a role that is independent of the Rad17p x Mec3p x Ddc1p complex, although our results are also compatible with Rad17p-mediated supercomplex formation of the Rad17p x Mec3p x Ddc1p heterotrimer in response to DNA damage.  相似文献   

12.
In Saccharomyces cerevisiae, ribosomal biogenesis takes place primarily in the nucleolus, in which a single 35S precursor rRNA (pre-rRNA) is first transcribed and sequentially processed into 25S, 5.8S, and 18S mature rRNAs, leading to the formation of the 40S and 60S ribosomal subunits. Although many components involved in this process have been identified, our understanding of this important cellular process remains limited. Here we report that one of the evolutionarily conserved DEAD-box protein genes in yeast, DBP3, is required for optimal ribosomal biogenesis. DBP3 encodes a putative RNA helicase, Dbp3p, of 523 amino acids in length, which bears a highly charged amino terminus consisting of 10 tandem lysine-lysine-X repeats ([KKX] repeats). Disruption of DBP3 is not lethal but yields a slow-growth phenotype. This genetic depletion of Dbp3p results in a deficiency of 60S ribosomal subunits and a delayed synthesis of the mature 25S rRNA, which is caused by a prominent kinetic delay in pre-rRNA processing at site A3 and to a lesser extent at sites A2 and A0. These data suggest that Dbp3p may directly or indirectly facilitate RNase MRP cleavage at site A3. The direct involvement of Dbp3p in ribosomal biogenesis is supported by the finding that Dbp3p is localized predominantly in the nucleolus. In addition, we show that the [KKX] repeats are dispensable for Dbp3p's function in ribosomal biogenesis but are required for its proper localization. The [KKX] repeats thus represent a novel signaling motif for nuclear localization and/or retention.  相似文献   

13.
Putative ATP-dependent RNA helicases are ubiquitous, highly conserved proteins that are found in most organisms and they are implicated in all aspects of cellular RNA metabolism. Here we present the functional characterization of the Dbp7 protein, a putative ATP-dependent RNA helicase of the DEAD-box protein family from Saccharomyces cerevisiae. The complete deletion of the DBP7 ORF causes a severe slow-growth phenotype. In addition, the absence of Dbp7p results in a reduced amount of 60S ribosomal subunits and an accumulation of halfmer polysomes. Subsequent analysis of pre-rRNA processing indicates that this 60S ribosomal subunit deficit is due to a strong decrease in the production of 27S and 7S precursor rRNAs, which leads to reduced levels of the mature 25S and 5.8S rRNAs. Noticeably, the overall decrease of the 27S pre-rRNA species is neither associated with the accumulation of preceding precursors nor with the emergence of abnormal processing intermediates, suggesting that these 27S pre-rRNA species are degraded rapidly in the absence of Dbp7p. Finally, an HA epitope-tagged Dbp7 protein is localized in the nucleolus. We propose that Dbp7p is involved in the assembly of the pre-ribosomal particle during the biogenesis of the 60S ribosomal subunit.  相似文献   

14.
Previous studies showed that the K342E substitution in the Saccharomyces cerevisiae Rad51 protein increases the interaction with Rad54 protein in the two-hybrid system, leads to increased sensitivity to the alkylating agent MMS and hyper-recombination in an oligonucleotide-mediated gene targeting assay. K342 localizes in loop 2, a region of Rad51 whose function is not well understood. Here, we show that Rad51-K342E displays DNA-independent and DNA-dependent ATPase activities, owing to its ability to form filaments in the absence of a DNA lattice. These filaments exhibit a compressed pitch of 81 Å, whereas filaments of wild-type Rad51 and Rad51-K342E on DNA form extended filaments with a 97 Å pitch. Rad51-K342E shows near normal binding to ssDNA, but displays a defect in dsDNA binding, resulting in less stable protein-dsDNA complexes. The mutant protein is capable of catalyzing the DNA strand exchange reaction and is insensitive to inhibition by the early addition of dsDNA. Wild-type Rad51 protein is inhibited under such conditions, because of its ability to bind dsDNA. No significant changes in the interaction between Rad51-K342E and Rad54 could be identified. These findings suggest that loop 2 contributes to the primary DNA-binding site in Rad51, controlling filament formation and ATPase activity.  相似文献   

15.
The Saccharomyces cerevisiae temperature-sensitive mutants srm1-1, mtr1-2 and prp20-1 carry alleles of a gene encoding a homolog of mammalian RCC1. In order to identify a protein interacting with RCC1, a series of suppressors of the srm1-1 mutation were isolated as cold-sensitive mutants and one of the mutants, designated ded1-21, was found to be defective in the DED1 gene. The double mutant, srm1-1 ded1-21, could grow at 35°?C, but not at 37°?C. A revertant of srm1-1 ded1-21 that became able to grow at 37°?C acquired another mutation in the SRM1 gene, indicating the tight relationship between SRM1 and DED1. In all the rcc1 - strains examined, the amount of mutated SRM1 proteins was reduced or not detectable at the nonpermissive temperature. While mutated SRM1 protein was stabilized in all of the rcc1 - strains by the ded1-21 mutation, the ded1-21 mutation suppressed both srm1-1 and mtr1-2, but not the prp20-1 mutation, contrary to the previous finding that overproduction of the S. cerevisiae Ran homolog GSP1 suppresses prp20-1, but not srm1-1 or mtr1-2.  相似文献   

16.
A novel DNA helicase has been isolated from Saccharomyces cerevisiae. This DNA helicase co-purified with replication factor C (RF-C) during chromatography on S-Sepharose, DEAE-silica gel high performance liquid chromatography (HPLC), Affi-Gel Blue-agarose, heparin-agarose, single-stranded DNA-cellulose, fast protein liquid chromatography MonoS, and hydroxyapatite HPLC. Surprisingly, the helicase could be separated from RF-C by sedimentation on a glycerol gradient in the presence of 200 mM NaCl. The helicase is probably a homodimer of a 60-kDa polypeptide, which by UV cross-linking has been shown to bind ATP. It has a single-stranded DNA-dependent ATPase activity, with a Km for ATP of 60 microM. The DNA helicase activity depends on the hydrolysis of NTP (dNTP), with ATP and dATP the most efficient cofactors, followed by CTP and dCTP. The DNA helicase has a 5' to 3' directionality and is only marginally stimulated by coating the single-stranded DNA with the yeast single-stranded DNA-binding protein RF-A.  相似文献   

17.
18.
You LR  Chen CM  Yeh TS  Tsai TY  Mai RT  Lin CH  Lee YH 《Journal of virology》1999,73(4):2841-2853
The nucleocapsid core protein of hepatitis C virus (HCV) has been shown to trans-act on several viral or cellular promoters. To get insight into the trans-action mechanism of HCV core protein, a yeast two-hybrid cloning system was used for identification of core protein-interacting cellular protein. One such cDNA clone encoding the DEAD box family of putative RNA helicase was obtained. This cellular putative RNA helicase, designated CAP-Rf, exhibits more than 95% amino acid sequence identity to other known RNA helicases including human DBX and DBY, mouse mDEAD3, and PL10, a family of proteins generally involved in translation, splicing, development, or cell growth. In vitro binding or in vivo coimmunoprecipitation studies demonstrated the direct interaction of the full-length/matured form and C-terminally truncated variants of HCV core protein with this targeted protein. Additionally, the protein's interaction domains were delineated at the N-terminal 40-amino-acid segment of the HCV core protein and the C-terminal tail of CAP-Rf, which encompassed its RNA-binding and ATP hydrolysis domains. Immunoblotting or indirect immunofluorescence analysis revealed that the endogenous CAP-Rf was mainly localized in the nucleus and to a lesser extent in the cytoplasm, and when fused with FLAG tag, it colocalized with the HCV core protein either in the cytoplasm or in the nucleus. Similar to other RNA helicases, this cellular RNA helicase has nucleoside triphosphatase-deoxynucleoside triphosphatase activity, but this activity is inhibited by various forms of homopolynucleotides and enhanced by the HCV core protein. Moreover, transient expression of HCV core protein in human hepatoma HuH-7 cells significantly potentiated the trans-activation effect of FLAG-tagged CAP-Rf or untagged CAP-Rf on the luciferase reporter plasmid activity. All together, our results indicate that CAP-Rf is involved in regulation of gene expression and that HCV core protein promotes the trans-activation ability of CAP-Rf, likely via the complex formation and the modulation of the ATPase-dATPase activity of CAP-Rf. These findings provide evidence that HCV may have evolved a distinct mechanism in alteration of host cellular gene expression regulation via the interaction of its nucleocapsid core protein and cellular putative RNA helicase known to participate in all aspects of cellular processes involving RNA metabolism. This feature of core protein may impart pleiotropic effects on host cells, which may partially account for its role in HCV pathogenesis.  相似文献   

19.
20.
DNA post-replication repair (PRR) functions to bypass replication-blocking lesions and is subdivided into two parallel pathways: error-prone translesion DNA synthesis and error-free PRR. While both pathways are dependent on the ubiquitination of PCNA, error-free PRR utilizes noncanonical K63-linked polyubiquitinated PCNA to signal lesion bypass through template switch, a process thought to be dependent on Mms2-Ubc13 and a RING finger motif of the Rad5 ubiquitin ligase. Previous in vitro studies demonstrated the ability of Rad5 to promote replication fork regression, a function dependent on its helicase activity. To investigate the genetic and mechanistic relationship between fork regression in vitro and template switch in vivo, we created and characterized site-specific mutations defective in the Rad5 RING or helicase activity. Our results indicate that both the Rad5 ubiquitin ligase and the helicase activities are exclusively involved in the same error-free PRR pathway. Surprisingly, the Rad5 helicase mutation abolishes its physical interaction with Ubc13 and the K63-linked PCNA polyubiquitin chain assembly. Indeed, physical fusions of Rad5 with Ubc13 bypass the requirement for either the helicase or the RING finger domain. Since the helicase domain overlaps with the SWI/SNF chromatin-remodelling domain, our findings suggest a structural role of this domain and that the Rad5 helicase activity is dispensable for error-free lesion bypass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号