首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The redox poise of the mitochondrial glutathione pool is central in the response of mitochondria to oxidative damage and redox signaling, but the mechanisms are uncertain. One possibility is that the oxidation of glutathione (GSH) to glutathione disulfide (GSSG) and the consequent change in the GSH/GSSG ratio causes protein thiols to change their redox state, enabling protein function to respond reversibly to redox signals and oxidative damage. However, little is known about the interplay between the mitochondrial glutathione pool and protein thiols. Therefore we investigated how physiological GSH/GSSG ratios affected the redox state of mitochondrial membrane protein thiols. Exposure to oxidized GSH/GSSG ratios led to the reversible oxidation of reactive protein thiols by thiol-disulfide exchange, the extent of which was dependent on the GSH/GSSG ratio. There was an initial rapid phase of protein thiol oxidation, followed by gradual oxidation over 30 min. A large number of mitochondrial proteins contain reactive thiols and most of these formed intraprotein disulfides upon oxidation by GSSG; however, a small number formed persistent mixed disulfides with glutathione. Both protein disulfide formation and glutathionylation were catalyzed by the mitochondrial thiol transferase glutaredoxin 2 (Grx2), as were protein deglutathionylation and the reduction of protein disulfides by GSH. Complex I was the most prominent protein that was persistently glutathionylated by GSSG in the presence of Grx2. Maintenance of complex I with an oxidized GSH/GSSG ratio led to a dramatic loss of activity, suggesting that oxidation of the mitochondrial glutathione pool may contribute to the selective complex I inactivation seen in Parkinson's disease. Most significantly, Grx2 catalyzed reversible protein glutathionylation/deglutathionylation over a wide range of GSH/GSSG ratios, from the reduced levels accessible under redox signaling to oxidized ratios only found under severe oxidative stress. Our findings indicate that Grx2 plays a central role in the response of mitochondria to both redox signals and oxidative stress by facilitating the interplay between the mitochondrial glutathione pool and protein thiols.  相似文献   

2.
Glutathione oxidation and protein glutathionylation are considered hallmarks of oxidative stress in cells because they reflect thiol redox status in proteins. Our aims were to analyze the redox status of thiols and to identify mixed disulfides and targets of redox signaling in pancreas in experimental acute pancreatitis as a model of acute inflammation associated with glutathione depletion. Glutathione depletion in pancreas in acute pancreatitis is not associated with any increase in oxidized glutathione levels or protein glutathionylation. Cystine and homocystine levels as well as protein cysteinylation and γ-glutamyl cysteinylation markedly rose in pancreas after induction of pancreatitis. Protein cysteinylation was undetectable in pancreas under basal conditions. Targets of disulfide stress were identified by Western blotting, diagonal electrophoresis, and proteomic methods. Cysteinylated albumin was detected. Redox-sensitive PP2A and tyrosine protein phosphatase activities diminished in pancreatitis and this loss was abrogated by N-acetylcysteine. According to our findings, disulfide stress may be considered a specific type of oxidative stress in acute inflammation associated with protein cysteinylation and γ-glutamylcysteinylation and oxidation of the pair cysteine/cystine, but without glutathione oxidation or changes in protein glutathionylation. Two types of targets of disulfide stress were identified: redox buffers, such as ribonuclease inhibitor or albumin, and redox-signaling thiols, which include thioredoxin 1, APE1/Ref1, Keap1, tyrosine and serine/threonine phosphatases, and protein disulfide isomerase. These targets exhibit great relevance in DNA repair, cell proliferation, apoptosis, endoplasmic reticulum stress, and inflammatory response. Disulfide stress would be a specific mechanism of redox signaling independent of glutathione redox status involved in inflammation.  相似文献   

3.
Incubation of isolated rat hepatocytes with tert-butylhydroperoxide resulted in marked cytotoxicity preceded by intracellular glutathione depletion and extensive lipid peroxidation. Addition of antioxidants delayed, but did not prevent, this toxicity. A significant decrease in protein-free sulfhydryl groups also occurred in the presence of tert-butylhydroperoxide; direct oxidation of protein thiols and mixed disulfide formation with glutathione were responsible for this decrease. The involvement of protein thiol depletion in tert-butylhydroperoxide-induced cytotoxicity is suggested by our observation that administration of dithiothreitol, which caused re-reduction of the oxidized sulfhydryl groups and mixed disulfides, efficiently protected the cells from toxicity. Moreover, depletion of intracellular glutathione by pretreatment of the hepatocytes with diethyl maleate accelerated and enhanced the depletion of protein thiols induced by tert-butylhydroperoxide and potentiated cell toxicity even in the absence of lipid peroxidation.  相似文献   

4.
Exposure of isolated rat hepatocytes to allyl alcohol (AA), diethyl maleate (DEM) and bromoisovalerylurea (BIU) induced lipid peroxidation, depletion of free protein thiols to about 50% of the control value and cell death. Vitamin E completely prevented lipid peroxidation, protein thiol depletion and cell death. A low concentration (0.1 mM) of the lipophylic disulfide, disulfiram (DSF), also prevented the induction of lipid peroxidation by the hepatotoxins; however, in the presence of DSF, protein thiol depletion and cell death occurred more rapidly. Incubation of cells with a high concentration (10 mM) of DSF alone led to 100% depletion of protein thiols and cell death, which could not be prevented by vitamin E. The level of free protein thiols in cells, decreased to 50% by exposure to AA, DEM and BIU, could be reversed to 75% of the initial level by dithiothreitol (DTT) treatment, indicating that the protein thiols were partially modified into disulfides and partially into other, stable thiol adducts. The 100% depletion of protein thiols by DSF was completely reversed by DTT treatment. The involvement of lipid peroxidation in protein thiol depletion was studied by measuring the effect of a lipid peroxidation product, 4-hydroxynonenal (4-HNE), on protein thiols in a cell free liver fraction. 4-HNE did not induce lipid peroxidation in this system, but protein thiols were depleted to 30% of the initial value, irrespective of the presence of vitamin E. DTT treatment could reverse this for only 25%. Similar, DSF-induced protein thiol depletion could be reversed completely by DTT. We conclude that (at least) two types of protein thiol modifications can occur after exposure of hepatocytes to toxic compounds: one due to interaction of endogeneously generated lipid peroxidation products with protein thiols, which is not reversible by the action of DTT, and one due to a disulfide interchange between disulfides like DSF and protein thiols, which can be reversed by the action of DTT.  相似文献   

5.
Incubation of isolated rat hepatocytes with tert-butylhydroperoxide resulted in marked cytotoxicity preceded by intracellular glutathione depletion and extensive lipid peroxidation. Addition of antioxidants delayed, but did not prevent, this toxicity. A significant decrease in protein-free sulfhydryl groups also, occurred in the presence of tert-butylhydroperoxide; direct oxidation of protein thiols and mixed disulfide formation with glutathione were responsible for this decrease. The involvement of protein thiol depletion in tert-butylhydroperoxide–induced cytotoxicity is suggested by our observation that administration of dithiothreitol, which caused re-reduction of the oxidized sulfhydryl groups and mixed disulfides, efficiently protected the cells from toxicity. Moreover, depletion of intracellular glutathione by pretreatment of the hepatocytes with diethyl maleate accelerated and enhanced the depletion of protein thiols induced by tert-butylhydroperoxide and potentiated cell toxicity even in the absence of lipid peroxidation.  相似文献   

6.
Menadione (2-methyl-1,4-naphthoquinone) was used as a model compound to test the hypothesis that thioether conjugates of quinones can be toxic to tissues associated with their elimination through a mechanism involving oxidative stress. Unlike menadione, the glutathione (2-methyl-3-(glutathion-S-yl)-1,4-naphthoquinone; MGNQ) and N-acetyl-L-cysteine (2-methyl-3-(N-acetylcysteine-S-yl)-1,4-naphthoquinone; M(NAC)NQ) thioether conjugates were not able to arylate protein thiols but were still able to redox cycle with cytochrome c reductase/NADH and rat kidney microsomes and mitochondria. Interestingly, menadione and M(NAC)NQ were equally toxic to isolated rat renal epithelial cells (IREC) while MGNQ was nontoxic. The toxicity of both menadione and M(NAC)NQ was preceded by a rapid depletion of soluble thiols and was associated with a depletion of soluble thiols and was associated with a depletion of protein thiols. Treatment of IREC with the glutathione reductase inhibitor, 1,3-bis(2-chloroethyl)-1-nitrosourea, potentiated the thiol depletion and toxicity observed with menadione and M(NAC)NQ indicating the involvement of oxidative stress in this model of renal cell toxicity. The lack of MGNQ toxicity can be attributed to an intramolecular cyclization reaction which destroys the quinone nucleus and therefore eliminates its ability to redox cycle. These findings have important implications with regard to our understanding of the toxic potential of quinone thioether conjugates and of quinone toxicity in general.  相似文献   

7.
Vitamin E protection against chemical-induced toxicity to isolated hepatocytes was examined during an imbalance in the thiol redox system. Intracellular reduced glutathione (GSH) was depleted by two chemicals of distinct mechanisms of action: adriamycin, a cancer chemotherapeutic agent that undergoes redox cycling, producing reactive oxygen species that consume GSH, and ethacrynic acid, a direct depleter of GSH. The experimental system used both nonstressed vitamin E-adequate isolated rat hepatocytes and compromised hepatocytes subjected to physiologically induced stress, generated by incubation in calcium-free medium. At doses whereby intracellular GSH was near total depletion, cell injury induced by either chemical was found to follow the depletion of cellular alpha-tocopherol, regardless of the status of the GSH redox system. Changes in protein thiol contents of the cells closely paralleled the changes in alpha-tocopherol contents throughout the incubation period. Supplementation of the calcium-depleted hepatocytes with alpha-tocopheryl succinate (25 microM) markedly elevated their alpha-tocopherol content and prevented the toxicities of both drugs. The prevention of cell injury and the elevation in alpha-tocopherol contents were both associated with a prevention of the loss in cellular protein thiols in the near total absence of intracellular GSH. The mechanism of protection by vitamin E against chemical-induced toxicity to hepatocytes may therefore be an alpha-tocopherol-dependent maintenance of cellular protein thiols.  相似文献   

8.
 Mercurochrom [2,7-dibromo-4-(hydroxymercuri)-fluorescein disodium salt] used for staining of protein thiols in addition binds to other groups of proteins. Experimental evidence is provided that mercurochrom bound to non-thiol groups forms a 1:1 adduct with protein (mixed) disulfides. The disulfide contents of three different types of cells determined biochemically correlated with the corresponding mean integrated optical densities determined microphotometrically after mercurochrom staining of groups other than thiols. Intracellular disulfide exchange has been studied, leading to a transformation of protein mixed disulfides to protein disulfides and an equimolar loss of protein thiols. Protein mixed disulfides were generated from protein thiols using both methyl methanethiosulfonate (MMTS) and 2,2′-dihydroxy-6,6′-dinaphthyldisulfide (DDD). Loss of thiols as well as the equimolar increase of protein mixed disulfides were followed using both mercurochrom staining for thiols and for disulfides. Generation of protein mixed disulfides due to the DDD reaction was also followed by azocoupling with Fast blue B. On the basis of the observed stoichiometry between the loss of protein thiols and the quantity, increase or conversion of protein disulfides determined microphotometrically using both mercurochrom staining and DDD Fast blue B staining, we conclude that: (1) 1 mol of mercurochrom is bound per mol of protein (mixed) disulfide; and (2) the molar absorptivity of mercurochrom bound to disulfides is ɛ520=34940. This study demonstrates that mercurochrom can be used for the quantitative determination of the oxidative status of protein thiols in cells. Accepted: 17 December 1996  相似文献   

9.
Dethiolation experiments of thiolated albumin with thionitrobenzoic acid and thiols (glutathione, cysteine, homocysteine) were carried out to understand the role of albumin in plasma distribution of thiols and disulfide species by thiol/disulfide (SH/SS) exchange reactions. During these experiments we observed that thiolated albumin underwent thiol substitution (Alb-SS-X+RSH<-->Alb-SS-R+XSH) or dethiolation (Alb-SS-X+XSH<-->Alb-SH+XSSX), depending on the different pK(a) values of thiols involved in protein-thiol mixed disulfides (Alb-SS-X). It appeared in these reactions that the compound with lower pK(a) in mixed disulfide was a good leaving group and that the pK(a) differences dictated the kind of reaction (substitution or dethiolation). Thionitrobenzoic acid, bound to albumin by mixed disulfide (Alb-TNB), underwent rapid substitution after thiol addition, forming the corresponding Alb-SS-X (peaks at 0.25-1 min). In turn, Alb-SS-X were dethiolated by the excess nonprotein SH groups because of the lower pK(a) value in mixed disulfide with respect to that of other thiols. Dethiolation of Alb-SS-X was accompanied by formation of XSSX and Alb-SH up to equilibrium levels at 35 min, which were different for each thiol. Structures by molecular simulation of thiolated albumin, carried out for understanding the role of sulfur exposure in mixed disulfides in dethiolation process, evidenced that the sulfur exposure is important for the rate but not for determining the kind of reaction (substitution or dethiolation). Our data underline the contribution of SH/SS exchanges to determine levels of various thiols as reduced and oxidized species in human plasma.  相似文献   

10.
Quinones are believed to be toxic by a mechanism involving redox cycling and oxidative stress. In this study, we have used 2,3-dimethoxy-1,4-naphthoquinone (2,3-diOMe-1,4-NQ), which redox cycles to the same degree as menadione, but does not react with free thiol groups, to distinguish between the importance of redox cycling and arylation of free thiol groups in the causation of toxicity to isolated hepatocytes. Menadione was significantly more toxic to isolated hepatocytes than 2,3-diOMe-1,4-NQ. Both menadione and 2,3-diOMe-1,4-NQ caused an extensive GSH depletion accompanied by GSSG formation, preceding loss of viability. Both compounds stimulated a similar increase in oxygen uptake in isolated hepatocytes and NADPH oxidation in microsomes suggesting they both redox cycle to similar extents. Further evidence for the redox cycling in intact hepatocytes was the detection of the semiquinone anion radicals with electron spin resonance spectroscopy. In addition we have, using the spin trap DMPO (5,5-dimethyl-1-pyrroline N-oxide), demonstrated for the first time the formation of superoxide anion radicals by intact hepatocytes. These radicals result from oxidation of the semiquinone by oxygen and further prove that both these quinones redox cycle in intact hepatocytes. We conclude that while oxidative processes may cause toxicity, the arylation of intracellular thiols or nucleophiles also contributes significantly to the cytotoxicity of compounds such as menadione.  相似文献   

11.
Quinones may induce toxicity by a number of mechanisms, including alkylation and oxidative stress following redox cycling. The metabolism of quinones by isolated rat hepatocytes is associated with cytoskeletal alterations, plasma membrane blebbing, and subsequent cytotoxicity. The different mechanisms underlying the effects of alkylating (p-benzoquinone), redox cycling (2,3-dimethoxy-1,4-naphthoquinone), and mixed redox cycling/alkylating (2-methyl-1,4-naphthoquinone) quinones on hepatocyte cytoskeleton have been investigated in detail in this study. Analysis of the cytoskeletal fraction extracted from quinone-treated cells revealed a concentration-dependent increase in the amount of cytoskeletal protein and a concomitant loss of protein thiols, irrespective of the quinone employed. In the case of redox cycling quinones, these alterations were associated with an oxidation-dependent actin crosslinking (sensitive to the thiol reductant dithiothreitol). In contrast, with alkylating quinones an oxidation-independent cytoskeletal protein crosslinking (insensitive to thiol reductants) was observed. In addition to these changes, a dose-dependent increase in the relative abundance of F-actin was detected as a consequence of the metabolism of oxidizing quinones in hepatocytes. Addition of dithiothreitol solubilized a considerable amount of polypeptides from the cytoskeletal fraction isolated from hepatocytes exposed to redox cycling but not alkylating quinones. Our findings indicate that the hepatocyte cytoskeleton is an important target for the toxic effects of different quinones. However, the mechanisms underlying cytoskeletal damage differ depending on whether the quinone acts primarily by oxidative stress or alkylation.  相似文献   

12.
Thiol homeostasis plays an important role in human health and aging by regulation of cellular responses to oxidative stress. Due to major constraints that hamper reliable plasma thiol/disulfide redox status assessment in clinical research, we introduce an improved strategy for comprehensive thiol speciation using capillary electrophoresis-electrospray ionization-mass spectrometry (CE-ESI-MS) that overcomes sensitivity, selectivity and dynamic range constraints of conventional techniques. This method integrates both specific and nonspecific approaches toward sensitivity enhancement for artifact-free quantification of labile plasma thiols without complicated sample handling. A multivariate model was developed to predict increases in ionization efficiency for reduced thiols when conjugated to various maleimide analogs based on their intrinsic physicochemical properties. Optimization of maleimide labeling in conjunction with online sample preconcentration allowed for simultaneous analysis of nanomolar levels of reduced thiols and free oxidized thiols as their intact symmetric or mixed disulfides. Identification of low-abundance thiols and various other polar metabolites detected in plasma was supported by prediction of their relative migration times using CE as a qualitative tool complementary to ESI-MS. Plasma thiol redox status determination together with untargeted metabolite profiling offers a systemic approach for elucidation of the causal role of dysregulated thiol metabolism in the etiology of human diseases.  相似文献   

13.
Reversible oxidation on proteins of vicinal thiols to form intraprotein disulfides is believed to be an important means by which redox sensitivity is conferred on cellular signaling and metabolism. Affinity chromatography using immobilized phenylarsine oxide (PAO), which binds preferentially to vicinal thiols over monothiols, has been used in very limited studies to isolate the fraction of cellular proteins that exhibit reversible oxidation of vicinal thiols to presumed disulfide bonds. A challenge to the use of PAO-affinity chromatography for isolation of readily oxidizable vicinal thiol proteins (VTPs) has been the lack of a disulfide reducing agent that reverses oxidation of the PAO-binding protein thiols and maintains these in the reduced state necessary to bind PAO but does not also compete with the VTPs for binding to the immobilized PAO. The present study demonstrates that the capture from a detergent-soluble rat brain extract of VTPs by PAO-affinity chromatography was improved greatly by use of the reducing agent tris(2-carboxyethyl)-phosphine which, unlike more traditional disulfide-reducing agents, does not contain a thiol group. Moreover, we show that, while a substantial fraction of total brain proteins contain PAO-binding thiols, only a fraction of these were readily and reversibly oxidized. The two most abundant of these redox-active proteins were identified as albumin and triose phosphate isomerase (TPI). We propose that TPI is a candidate intracellular redox receptor protein. The improved PAO-affinity method detailed here should enable the discovery of lower abundance novel redox-active regulatory proteins.  相似文献   

14.
Gough JD  Gargano JM  Donofrio AE  Lees WJ 《Biochemistry》2003,42(40):11787-11797
The production of proteins via recombinant DNA technology often requires the in vitro folding of inclusion bodies, which are protein aggregates. To create a more efficient redox buffer for the in vitro folding of disulfide containing proteins, aromatic thiols were investigated for their ability to increase the folding rate of scrambled RNase A. Scrambled RNase A is fully oxidized RNase A with a relatively random distribution of disulfide bonds. The importance of the thiol pK(a) value was investigated by the analysis of five para-substituted aromatic thiols with pK(a) values ranging from 5.2 to 6.6. Folding was measured at pH 6.0 where the pK(a) value of the thiols would be higher, lower, or equal to the solution pH. Thus, relative concentrations of thiol and thiolate would vary across the series. At pH 6.0, the aromatic thiols increased the folding rate of RNase A by a factor of 10-23 over that observed for glutathione, the standard additive. Under optimal conditions, the apparent rate constant increased as the thiol pK(a) value decreased. Optimal conditions occurred when the concentration of protonated thiol in solution was approximately 2 mM, although the total thiol concentration varied considerably. The importance of the concentration of protonated thiol in solution can be understood based on equilibrium effects. Kinetic studies suggest that the redox buffer participates as the nucleophile and/or the center thiol in the key rate determining thiol disulfide interchange reactions that occur during protein folding. Aromatic thiols proved to be kinetically faster and more versatile than classical aliphatic thiol redox buffers.  相似文献   

15.
Mammalian metallothioneins are redox-active metalloproteins. In the case of zinc metallothioneins, the redox activity resides in the cysteine sulfur ligands of zinc. Oxidation releases zinc, whereas reduction re-generates zinc-binding capacity. Attempts to demonstrate the presence of the apoprotein (thionein) and the oxidized protein (thionin) in tissues posed tremendous analytical challenges. One emerging strategy is differential chemical modification of cysteine residues in the protein. Chemical modification distinguishes three states of the cysteine ligands (reduced, oxidized and metal-bound) based on (i) quenched reactivity of the thiolates when bound to metal ions and restoration of thiol reactivity in the presence of metal-ion-chelating agents, and (ii) modification of free thiols with alkylating agents and subsequent reduction of disulfides to yield reactive thiols. Under normal physiological conditions, metallothionein exists in three states in rat liver and in cell lines. Ras-mediated oncogenic transformation of normal HOSE (human ovarian surface epithelial) cells induces oxidative stress and increases the amount of thionin and the availability of cellular zinc. These experiments support the notion that metallothionein is a dynamic protein in terms of its redox state and metal content and functions at a juncture of redox and zinc metabolism. Thus redox control of zinc availability from this protein establishes multiple methods of zinc-dependent cellular regulation, while the presence of both oxidized and reduced states of the apoprotein suggest that they serve as a redox couple, the generation of which is controlled by metal ion release from metallothionein.  相似文献   

16.
Previously we reported that thiol depletion and lipid peroxidation were associated with the cytotoxicity of nephrotoxic cysteine S-conjugates, a group of toxins which kill LLC-PK1 cells after metabolic activation and covalent binding. To determine if this is a general mechanism of cytotoxicity in these cells, we compared the effect of antioxidants, an iron chelator, and a thiol reducing agent on the toxicity of an alkylating agent, iodoacetamide (IDAM), and an organic peroxidant, t-butylhydroperoxide (TBHP). IDAM or TBHP toxicity was concentration (0.01 to 1.0 mM) and time (1 to 6 h) dependent. Both toxins caused lipid peroxidation which occurred prior to cell death as determined by leakage of lactate dehydrogenase (LDH). The alkylating agent IDAM bound to cellular macromolecules and depleted cellular non-protein thiols almost completely by 1 h, while LDH release occurred first at 2 to 3 h. The toxicity of IDAM and TBHP was inhibited by the antioxidants DPPD, BHA, BHQ, PGA, and BHT and the iron chelator deferoxamine. However, DPPD blocked TBHP- and IDAM-induced lipid peroxidation and toxicity without affecting binding and depletion of cellular nonprotein thiols. Furthermore, the thiol reducing agent dithiothreitol was able to block lipid peroxidation and toxicity. Therefore it is possible that with an alkylating agent, depletion of cellular nonprotein thiols cooperates with covalent binding and contributes to lipid peroxidation and cell death. There appear to be common elements in the toxicity of alkylating agents and organic peroxidants in LLC-PK1 cells.  相似文献   

17.
Peroxiredoxin 2 (Prx2) is a thiol protein that functions as an antioxidant, regulator of cellular peroxide concentrations, and sensor of redox signals. Its redox cycle is widely accepted to involve oxidation by a peroxide and reduction by thioredoxin/thioredoxin reductase. Interactions of Prx2 with other thiols are not well characterized. Here we show that the active site Cys residues of Prx2 form stable mixed disulfides with glutathione (GSH). Glutathionylation was reversed by glutaredoxin 1 (Grx1), and GSH plus Grx1 was able to support the peroxidase activity of Prx2. Prx2 became glutathionylated when its disulfide was incubated with GSH and when the reduced protein was treated with H2O2 and GSH. The latter reaction occurred via the sulfenic acid, which reacted sufficiently rapidly (k = 500 m−1 s−1) for physiological concentrations of GSH to inhibit Prx disulfide formation and protect against hyperoxidation to the sulfinic acid. Glutathionylated Prx2 was detected in erythrocytes from Grx1 knock-out mice after peroxide challenge. We conclude that Prx2 glutathionylation is a favorable reaction that can occur in cells under oxidative stress and may have a role in redox signaling. GSH/Grx1 provide an alternative mechanism to thioredoxin and thioredoxin reductase for Prx2 recycling.  相似文献   

18.
Garant MJ  Kole S  Maksimova EM  Bernier M 《Biochemistry》1999,38(18):5896-5904
In this study, we used maleimidobutyrylbiocytin to examine possible alteration that may occur in the redox state of the insulin receptor (IR) sulfhydryl groups in response to reduced glutathione (GSH) or N-acetyl-L-cysteine (NAC). Short-term treatment of intact cells expressing large numbers of IR with GSH or NAC led to a rapid and reversible reduction of IR alpha-subunit disulfides, without affecting the receptor beta-subunit thiol reactivity. The overall integrity of the oligomeric structure of IR was maintained, indicating that neither class I nor class II disulfides were targeted by these agents. Similar findings were obtained in cells transfected with IR mutants lacking cysteine524, one of the class I disulfides that link the two IR alpha-subunits. Membrane-associated thiols did not participate in GSH- or NAC-mediated reduction of IR alpha-subunit disulfides. No difference in insulin binding was observed in GSH-treated cells; however, ligand-mediated increases in IR autophosphorylation, tyrosine phosphorylation of cellular substrates, and dual phosphorylation of the downstream target mitogen-activated protein kinase were inhibited at concentrations of GSH (10 mM or greater) that yielded a significant increase in IR alpha-subunit thiol reactivity. GSH did not affect IR signaling in the absence of insulin. Our results provide the first evidence that the IR alpha-subunit contains a select group of disulfides whose redox status can be rapidly altered by the reducing agents GSH and NAC.  相似文献   

19.
The analysis of the global thiol–disulfide redox status in tissues and cells is a challenging task since thiols and disulfides can undergo artificial oxido-reductions during sample manipulation. Because of this, the measured values, in particular for disulfides, can have a significant bias. Whereas this methodological problem has already been addressed in samples of red blood cells and solid tissues, a reliable method to measure thiols and disulfides in cell cultures has not been previously reported.Here, we demonstrate that the major artifact occurring during thiol and disulfide analysis in cultured cells is represented by glutathione disulfide (GSSG) and S-glutathionylated proteins (PSSG) overestimation, due to artificial oxidation of glutathione (GSH) during sample manipulation, and that this methodological problem can be solved by the addition of N-ethylmaleimide (NEM) immediately after culture medium removal. Basal levels of GSSG and PSSG in different lines of cultured cells were 3–5 and 10–20 folds higher, respectively, when the cells were processed without NEM. NEM pre-treatment also prevented the artificial reduction of disulfides that occurs during the pre-analytical phase when cells are exposed to an oxidant stimulus. In fact, in the absence of NEM, after medium removal, GSH, GSSG and PSSG levels restored their initial values within 15–30 min, due to the activity of reductases and the lack of the oxidant. The newly developed protocol was used to measure the thiol–disulfide redox status in 16 different line cells routinely used for biomedical research both under basal conditions and after treatment with disulfiram, a thiol-specific oxidant (0–200 μM concentration range).Our data indicate that, in most cell lines, treatment with disulfiram affected the levels of GSH and GSSG only at the highest concentration. On the other hand, PSSG levels increased significantly also at the lower concentrations of the drug, and the rise was remarkable (from 100 to 1000 folds at 200 μM concentration) and dose-dependent for almost all the cell lines. These data support the suitability of the analysis of PSSG in cultured cells as a biomarker of oxidative stress.  相似文献   

20.
Glutathione, the most abundant low-molecular weight thiol in the skin, has been shown to protect the skin from both photobiological and chemical injury. The thiols, glutathione in particular, have also been shown to be crucially involved in defence against contact allergens. Since the levels of extracellular thiol concentrations are important determinants of intracellular thiol status, we have compared the normal concentrations and the redox status of the main low-molecular weight thiol components in the extracellular fluid at the dermo-epidermal junction with the corresponding plasma levels. In their sulfhydryl form, all three thiols, i.e. glutathione, cysteine and homocysteine, were more abundant in experimental skin blister fluid than in plasma, as were the free disulfides of glutathione and homocysteine, whereas the free disulfides of cysteine were about the same in blister fluid and in plasma. Protein mixed disulfide levels were higher in plasma than in blister fluid. The present results provide information concerning the extracellular defence in the skin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号