首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The biosynthesis and proteolytic processing of lysosomal cathepsin L was studied using in vitro translation system and in vivo pulse-chase analysis with [35S]methionine and [32P]phosphate in primary cultures of rat hepatocytes. Messenger RNA prepared from membrane-bound but not free polysomes directed the synthesis of a primary translation product of an immunoprecipitable 37.5-kDa cathepsin L in vitro. The 37.5-kDa form was converted to the 39-kDa form when translated in the presence of dog pancreas microsomes. During pulse-chase experiments with [35S]methionine in cultured rat hepatocytes, cathepsin L was first synthesized as a 39-kDa protein, presumably the proform, after a short time of labeling, and was subsequently processed into the mature forms of 30 and 25 kDa in the cell. On the other hand, considerable amounts of the proenzyme were found to be secreted into the culture medium without further proteolytic processing during the chase. The precursor and mature enzymes were N-glycosylated with high-mannose-type oligosaccharides, and the proenzyme molecule contained phosphorylated oligosaccharides. The effects of tunicamycin and chloroquine were also investigated. In the presence of tunicamycin, a 36-kDa unglycosylated polypeptide appeared in the cell and this protein was exclusively secreted from the cells without undergoing proteolytic processing. These results suggest that cathepsin L is initially synthesized on membrane-bound polysomes as a 37.5-kDa prepropeptide and that the cotranslational cleavage of the 1.5-kDa signal peptide and the core glycosylation convert the precursor to the 39-kDa proform, which is subsequently processed to the mature form during biosynthesis. Thus, the biosynthesis and secretion of lysosomal cathepsin L in rat hepatocytes seem to be analogous to those of the major excreted protein of transformed mouse fibroblasts [S. Gal, M. C. Willingham, and M. M. Gottesman (1985) J. Cell Biol. 100, 535-544] and the mouse cysteine proteinase of activated macrophages [D.A. Portnoy, A. H. Erickson, J. Kochan, J. V. Ravetch, and J. C. Unkeless (1986) J. Biol. Chem. 261, 14697-14703].  相似文献   

2.
Insulin in the presence of high concentrations of glucose has a beneficial trophic effect on the development of primary cultures of hepatocytes. Compared to the situation observed in hormone-free control cultures, the flattening of the reaggregated hepatocytes is enhanced, and the reconstituted cell trabeculae are enlarged and tend to form a confluent monolayer after 3 days; the survival time is prolonged from 3 to 5 or 6 days. Ultrastructural modifications are also initiated by insulin; numerous glycogen particles appear after 24 h, in between the cisternae of the proliferated smooth endoplasmic reticulum. After 48 h, large amounts of glycogen are stored, and numerous polysomes are present. A small number of cells showed an increased synthesis of lipid droplets in the lumen of the smooth endoplasmic reticulum and form liposomes at the same time. After 72 h, cytolysomes filled with glycogen develop, simulating glycogenosis type II. Simultaneously, microtubules and microfilaments, closely related to numerous polysomes, appear in cytoplasmic extensions constituting undulating membranes. The biochemical data demonstrate that, in the absence of insulin, a high concentration of glucose stimulates glycogenesis and hinders glycogenolysis. This effect of glucose on polysaccharide synthesis is progressively lost. The addition of insulin to the culture induces after 48 and 72 h, a three- to fivefold increase of the glucose incorporation into glycogen, as compared to the controls. The presence of insulin is required to maintain the hepatocyte's capacity to store glycogen. Glycogen synthetase is converted into its active form under the influence of glucose. Insulin increases the rate of activation.  相似文献   

3.
The effects on the uptake (cell-associated 125I) and degradation (125I-labelled products released into the medium) of 125I-insulin and bioactivity (protein, glycogen and lipid synthesis) of insulin caused by altering the cellular thiol/disulphide status in primary cultures of rat hepatocytes were studied. Incubation of hepatocyte cultures with various exogenous thiol compounds (reduced glutathione, 2-mercaptoethanol, cysteamine, dithiothreitol) resulted in increased insulin binding, but markedly decreased degradation and bioactivity. These effects could be reversed by washing or by the addition of oxidized glutathione, which alone had no effect. When cultures were exposed to certain thiol-modifying reagents (N-ethylmaleimide, p-chloromercuribenzoate, p-chloromercuribenzenesulphonate, iodoacetamide, iodoacetate), some decreases in bioactivity were evident, but the pronounced decrease in insulin degradation observed with the thiol-containing compounds was not observed with this class of compounds. None of the thiol-containing or -modifying agents tested had any significant effect on cellular ATP concentrations, indicating that the effects observed were due to perturbation of the thiol/disulphide status. Depletion of intracellular glutathione by DL-buthionine SR-sulphoximine (a specific inhibitor of glutathionine biosynthesis) decreased the syntheses of glycogen and lipid by about one-half, while having essentially no effect on protein synthesis, ATP concentrations or on the binding and degradation of insulin. The data presented here indicate that although intracellular thiol (glutathione) concentrations may be important for the maintenance of full expression of certain biological activities (glycogen and lipid synthesis), the thiol/disulphide groups on the cell surface and those immediately inside the cell membrane may be more critical in the mediation of insulin action, including the degradation and bioactivity of insulin in primary cultures of rat hepatocytes.  相似文献   

4.
We compared three different anthraquinones, rhein (4,5-dihydroxy-anthraquinone-2-carboxylic acid), danthron (1,8-dihydroxy-anthraquinone) and chrysophanol (1,8-dihydroxy-3-methylanthraquinone), with respect to their toxicity and ability to induce apoptosis in primary cultures of rat hepatocytes. Rhein was the most effective in producing free radicals, and was the only one of the tested anthraquinones that could induce apoptosis. Addition of 50μM rhein to hepatocyte cultures led to depletion of intracellular reduced glutathione (GSH) and ATP and accumulation of lipid peroxidation products. The substances N,N′-diphenyl-p-phenylenediamine (DPPD), dithiothreitol (DTT), nifedipine and desferal all protected the hepatocytes, i.e. prevented viability loss and ATP depletion, and decreased the GSH depletion.

Cultures exposed to rhein for 15min and subsequently rinsed and incubated for 16h under normal culture conditions (complete medium) exhibited apoptosis, as shown by DNA fragmentation, nuclear condensation and positive TUNEL reaction. Pretreatment with the antioxidant DPPD and the iron-chelator desferal gave complete protection against apoptosis.

No signs of oxidative cell damage were detected when the cultures were exposed to danthron or chrysophanol. All three anthraquinones did, however, cause an immediate increase in the intracellular Ca2+ concentration.

We conclude that rhein, which contains one carboxyl group, is a suitable substrate for one-electron-reducing enzymes and an effective redox cycler, which leads to the production of oxygen-derived free radicals that eventually induce apoptotic cell death.  相似文献   

5.
6.
Incubation of rat liver particulate fraction with insulin causes the release of a substance that stimulates lipid synthesis and down regulates the insulin receptor in primary cultures of isolated rat hepatocytes. This substance may be similar to putative mediator(s) of insulin action which has been shown to modulate the activity of key enzymes of lipid and carbohydrate metabolism in various cell free systems. Our data demonstrate that the mediator of insulin is also biologically active in an intact cell system. Down regulation of the insulin receptor by the mediator supports the concept that this phenomenon is a post binding event of insulin action.  相似文献   

7.
We compared three different anthraquinones, rhein (4,5-dihydroxy-anthraquinone-2-carboxylic acid), danthron (1,8-dihydroxy-anthraquinone) and chrysophanol (1,8-dihydroxy-3-methylanthraquinone), with respect to their toxicity and ability to induce apoptosis in primary cultures of rat hepatocytes. Rhein was the most effective in producing free radicals, and was the only one of the tested anthraquinones that could induce apoptosis. Addition of 50μM rhein to hepatocyte cultures led to depletion of intracellular reduced glutathione (GSH) and ATP and accumulation of lipid peroxidation products. The substances N,N'-diphenyl-p-phenylenediamine (DPPD), dithiothreitol (DTT), nifedipine and desferal all protected the hepatocytes, i.e. prevented viability loss and ATP depletion, and decreased the GSH depletion.

Cultures exposed to rhein for 15min and subsequently rinsed and incubated for 16h under normal culture conditions (complete medium) exhibited apoptosis, as shown by DNA fragmentation, nuclear condensation and positive TUNEL reaction. Pretreatment with the antioxidant DPPD and the iron-chelator desferal gave complete protection against apoptosis.

No signs of oxidative cell damage were detected when the cultures were exposed to danthron or chrysophanol. All three anthraquinones did, however, cause an immediate increase in the intracellular Ca2+ concentration.

We conclude that rhein, which contains one carboxyl group, is a suitable substrate for one-electron-reducing enzymes and an effective redox cycler, which leads to the production of oxygen-derived free radicals that eventually induce apoptotic cell death.  相似文献   

8.
In vivo studies have demonstrated that the liver is the main site of insulin resistance in hyperthyroidism. To further investigate the effect of thyroid hormone in the liver, we have incubated primary cultures of rat hepatocytes in the presence and absence of triiodothyronine (T3) 1 ng/ml and 5 ng/ml for 20 hr. Without affecting basal activity, T3 5 ng/ml decreased insulin-stimulated (1 x 10(-7) M) lipid synthesis but not insulin-stimulated alpha-aminoisobutyric acid uptake. These changes occur in the absence of any abnormalities in 125I-insulin binding, degradation, internalization or insulin receptors structure as determined by affinity-labeling methods. However, basal insulin receptor kinase activity using Glu4: Tyrl as phospho-acceptor was decreased by T3 without altering its insulin responsiveness. These results demonstrate the heterogeneity of T3's effects at the postinsulin binding level in the liver.  相似文献   

9.
10.
Accumulating evidence that administration of S-adenosylmethionine (SAMe) protects hepatocytes against oxidative stress-mediated injury led us to evaluate the effect of SAMe on hepatocyte injury induced in culture by oxidant substance tert-butylhydroperoxide (1.5 mM tBHP) with regard to prevent mitochondrial injury. The pretreatment of hepatocyte culture with SAMe in doses of 0.25, 0.5, 1, 2.5, 5, 10, 25 and 50 mg/l for 30 min prevented the release of LDH from cells incubated for 30 min with tBHP in a dose dependent manner. The inhibitory effect of SAMe on lipid peroxidation paralleled the effect on cell viability. SAMe also moderated the decrease of the mitochondrial membrane potential induced by tBHP. Our results indicate that the inhibition of lipid peroxidation by SAMe can contribute to the prevention of disruption of both cellular and mitochondrial membranes. While the protective effect of SAMe against tBHP-induced GSH depletion was not confirmed, probably the most potent effect of SAMe on membranes by phospholipid methylation should be verified.  相似文献   

11.
12.
To determine the relative contributions of glucose, insulin, dexamethasone, and triiodothyronine to the induction of hepatic glucose-6-phosphate dehydrogenase, hepatocytes isolated from normal or adrenalectomized rats, either fasted or fed, were examined in culture. Addition of insulin (42 milliunits/ml, 0.9 microM) and dexamethasone (1 microM) to hepatocytes obtained from 3-day-fasted rats and cultured for 48 h in serum-free Dulbecco's medium resulted in a 7- to 11-fold increase in Glc-6-P dehydrogenase specific activity compared with a 2- to 3-fold increase in activity in control cultures incubated without added hormones. The effects of insulin and dexamethasone were independent of DNA synthesis, dose-dependent, and additive; each contributing about one-half of the total response. Medium glucose was neither sufficient nor necessary for the insulin- or dexamethasone-stimulated increase in Glc-6-P dehydrogenase specific activity. Addition of triiodothyronine (10 microM) preferentially blocked the dexamethasone-stimulated increase in Glc-6-P dehydrogenase specific activity. Insulin failed to stimulate the induction of Glc-6-P dehydrogenase in hepatocytes obtained from normal fed rats or from fasted and fed adrenalectomized rats. However, insulin caused a significant increase in the Glc-6-P dehydrogenase specific activity of these cells when dexamethasone was concurrently added to the culture medium.  相似文献   

13.
Summary Fetal rat hepatocytes were isolated and cultured in primary culture to investigate activity changes of arginase under defined conditions. In hormone-free medium, cultured cells maintained the enzyme activity at levels equal to that of freshly isolated cells for at least 4 d. Arginase activity could be induced by dexamethasone in hepatocytes isolated from 16.5-d-old fetuses although cells were competent to respond to glucagon only at the stage of 18.5 d. The combination of the two hormones induced greater levels of arginase activity than the individual compounds. These findings indicate that glucocorticoid and glucagon receptors appear early and sequentially before birth and reveal that cultured fetal hepatocytes provide a suitable system for the investigation of the role of hormones in the initiation of enzyme synthesis. This work was supported by the Institut National Scientifique et de la Recherche Médicale through Grant 85.80.117.  相似文献   

14.
Matrix metalloproteinases (MMPs) play a major role in tissue remodelling and repair in pathophysiological conditions, such as liver fibrosis and regeneration. Regulation of the MMPs produced by liver cells is important in maintaining cell-matrix ratio in liver, which is a major target site for hormones that mediate their intracellular effects through cAMP. The possibility of cAMP affecting the activity of MMPs and their endogenous inhibitors, tissue inhibitor of MMPs (TIMPs) was studied using isolated rat hepatocytes in culture. Zymographic analysis showed that treatment with hormones like epinephrine, thyroxine and dexamethasone and Bt2 cAMP increased 92 kDa MMP-9 activity. Bt2 cAMP caused upregulation of MMP-9 in a dose-dependent manner. The effect of hormones was less on MMP-2. ELISA using specific antibodies showed increase in levels of MMP-9 and TIMP-1 protein. Kinetic analysis of production of MMPs and TIMPs showed that the response to Bt2 cAMP was a delayed one, indicating its effect on de novo protein synthesis. These results suggest the possibility of cAMP dependent regulation of MMP-9 in the hepatocytes.  相似文献   

15.
With the use of an extensively modified Leibovitz-15 medium, the alcohol dehydrogenase activity of hepatocytes prepared from male rats was successfully maintained in primary culture at the level observed in freshly isolated hepatocytes. Enzyme activity was higher in freshly isolated cells from female rats than from male rats, but it fell to the level characteristic of the male animals after four days in culture. The levels of activity of the cells in culture from both sexes were unaffected by treatment with estrogens or androgens. The results suggest that the sex-determined differences in alcohol dehydrogenase activity in rats do not arise from direct effects of gonadal steroids on the liver.  相似文献   

16.
17.
Summary Primary monolayer cell cultures of adult rat hepatocytes underwent change in morphology and substantial cell loss between 1 and 3 days postinoculation. Dexamethasone-supplementation (1μM) of the culture medium maintained the polygonal epithelial morphology of the hepatocytes and increased longevity such that over 80% of the cells survived for 3 days and at least 30% for 8 or 9 days. This enhancement of survival was obtained up to 48 hr postinoculation, but the earlier the time of dexamethasone supplementation the greater the effect. Removal of dexamethasone resulted in a decrease in longevity. The positive effect of dexamethasone on longevity was observed following dexamethasone replacement of insulin in supplemented cultures, but the combination of insulin and dexamethasone resulted in poorer survival than with dexamethasone alone. The results are interpreted to indicate that dexamethasone provided a requirement of the in vitro environment for survival and suggest that elaboration of a complex medium is required to maintain hepatocytes in culture. This study was supported by an Alexander Ralston Peacock Memorial Grant for Cancer Research (No. BC-133A) from the American Cancer Society.  相似文献   

18.
Summary The conditions for obtaining representative, primary adult rat hepatocyte cultures were explored. The methods applied included enzymatic liver perfusion which was nondestructive to hepatocytes, the prevention of aggregation of dissociated cells and the selective attachment of viable cells. These procedures yielded a recovery of 50% of the liver cells which gave rise to cultures representing 14% of the total liver cells. The cultures were composed of homogeneous epithelial-like cells cytologically similar to hepatocytes and possessed a number of liver-specific enzymes. There was virtually no cell division initially and most cells died between 24 and 48 hr. Insulin enhanced the attachment of the liver cells, altered their morphology, but did not prolong cell survival. This study was supported by grant no. BC 133 from the American Cancer Society.  相似文献   

19.
We have analyzed the receptors for epidermal growth factor (urogastrone) (EGF-URO) and insulin in primary cultures of adult rat hepatocytes maintained for up to 3 weeks on human placental cell matrix in serum-free defined medium. Cross-link labeling experiments revealed that the insulin receptor, partially damaged by the collagenase isolation procedure, was rapidly regenerated to yield an intact receptor. In contrast, cross-link labeling of the EGF-URO receptor revealed that, upon prolonged culture, there was a progressive disappearance of the high molecular mass (175 kilodaltons (kDa)) receptor form, and an appearance of low molecular mass receptor species (130 and 105 kDa). After 3 weeks of culture, the low molecular mass receptor forms accounted for all of the labeled EGF-URO receptor present in the cells. Measurements of EGF-URO binding indicated that the number of EGF-URO binding sites per cell (2.0 x 10(5) +/- 0.3 x 10(5)) did not change during the 3 weeks of culture. However, there was a decrease in EGF-URO binding affinity, reflected by an increase in the KD from 0.6 to 3.0 nM. At zero time and after 3 weeks in culture, Scatchard plots of the binding data were linear; at intermediate time points, the plots were curvilinear. Despite the changes in the EGF-URO receptor that occurred, cells were still responsive to EGF-URO in terms of the inhibition of acetate incorporation into lipid. The ED50 for EGF-URO (about 0.2 nM) was the same for short-term cultures (48 h) as for cells maintained in culture for 3 weeks.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The half-lives of turnover of plasma membrane proteins in rat hepatoma tissue, culture cells, and in primary cultures of rat hepatocytes have been analyzed after resolution by two-dimensional gel electrophoresis. Cell membranes were externally labeled via iodination catalyzed by lactoperoxidase and glucose oxidase. A bimodal pattern of turnover was found for the externally oriented plasma membrane proteins of rat hepatoma cells. Three glycoproteins analyzed in these cells had an average t 1/2 of 22 h while eight proteins which did not bind to concanavalin A had an average t 1/2 of 80 h. In contrast, more heterogeneous rates of turnover were found for the externally oriented plasma membrane proteins of primary cultures of hepatocytes. Most, if not all, of the membrane proteins accessible to iodination in these cells were glycoproteins. Among the glycoproteins resolved by two-dimensional polyacrylamide electrophoresis, the receptors for asialoglycoproteins had the shortest half-lives (18 h). Other glycoproteins, mostly with higher molecular weights and different isoelectric points, showed a spectrum of half-lives ranging from 16 to 99 h. The turnover rates of membrane proteins of primary cultures of rat hepatocytes were also determined with [3H]- and [35S]methionine labeling of cells. Heterogeneous rates of turnover again were found among the labeled glycoproteins and nonglycoproteins. Among the 10 glycoproteins individually analyzed, the half-lives range from 17 to 67 h. Among the 21 proteins which do not bind to concanavalin A, the half-lives range from 18 h to more than 100 h. Three proteins analyzed showed an apparent biphasic pattern of turnover, having a fast phase with a half-life of 4-6 h and a slow phase with a half-life of 15-29 h. Several nonglycoproteins, including clathrin and actin associated with membrane vesicles had extremely long half-lives. The more than 5-fold difference in the half-life between clathrin and the receptors for asialoglycoproteins, which coexist in coated pits indicates that intrinsic proteins of the coated pits turn over at a different rate than peripheral components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号