首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Ten of 11 supernodulating mutants of soybean [ Glycine max (L.) Merr.] cv. Bragg, in which nodulation was far in excess of that in the wild type, showed pronounced tolerance of nodulation to applied nitrate. Mutant nts (nitrate-tolerant symbiosis) 1116 had an intermediate nodulation response and also showed some inhibition by nitrate. Mutant 1029, a revertant of nts382 (an extreme supernodulator), showed a wild-type nodulation pattern and was equally sensitive to nitrate as cv. Bragg. Grafting experiments with cv. Bragg and nts382 indicated that both supernodulation and tolerance of nodulation to nitrate were dependent on shoot factors. Total leaf nitrate reductase (EC 1.6.6.1 and EC 1.6.6.2) activity of the supernodulating mutants was similar to that in cv. Bragg. We conclude from these results that the inhibitory effect of nitrate on nodule initiation and development in soybean depends on an interaction between nitrate and the autoregulation singal. In the supernodulating mutants, the autoregulation signal is either altered or absent and cosequently nodulation in these mutants is not sensitive to nitrate.  相似文献   

2.
The nodulation characteristics of soybean (Glycine max) mutant nts382 are described. The mutant nodulated significantly more than the parent cultivar Bragg in the presence and absence of several combined nitrogen sources (KNO3, urea, NH4Cl, and NH4NO3). The number of nodules on the tap root and on lateral roots was increased in the mutant line. In the presence of KNO3 and urea, nitrogenase activity was considerably higher in nts382 than in Bragg. Mutant plants were generally smaller than wild-type plants. Although nts382 is a supernodulator, inoculation with Rhizobium japonicum was necessary to induce nodule formation and both trial strains CB1809 (= USDA136) and USDA110 elicited the mutant phenotype. Segregation of M3 progeny derived from a M2 wild-type plant indicated that the mutant character is inherited as a Mendelian recessive. The mutant is discussed in the context of regulation of nodulation and of hypotheses that have been proposed to explain nitrate inhibition of nodulation.  相似文献   

3.
When soybean (Glycine max ) nodulation mutant nts 382 was inoculated with Bradyrhizobium japonicum, these plants nodulated significantly more than the parental type Bragg. Nts 382 seedlings displayed wild-type nodulation pattern when aqueous extracts of young Bragg shoots were applied to the cultural medium together with nutrient solution. Application of young nts 382 shoot extracts to Bragg seedlings did not result in any apparent increase in nodule number. In graft experiments, young shoots from mutant nts 382 induced supernodulation on Bragg root stocks, while no supernodulation was observed when Bragg seedlings were used as scion and grafted onto nts 382 root stocks. Further, the effectiveness of Bragg plant extracts to suppress supernodulation on nts 382 seedlings was found to depend on the age of the plant material used, being very ineffective with extracts from 60-day-old plants. The age effect was not observed in graft experiments. These findings suggest that soybean supernodulation phenomenon may be controlled by one or a few unknown chemicals or plant hormones.  相似文献   

4.
The availability of soybean mutants with altered symbiotic properties allowed an investigation of the shoot or root control of the relevant phenotype. By means of grafts between these mutants and wild-type plants (cultivar Bragg and Williams), we demonstrated that supernodulation as well as hypernodulation (nitrate tolerance in nodulation and lack of autoregulation) is shoot controlled in two mutants (nts382 and nts1116) belonging most likely to two separate complementation groups. The supernodulation phenotype was expressed on roots of the parent cultivar Bragg as well as the roots of cultivar Williams. Likewise it was shown that non-nodulation (resistance to Bradyrhizobium) is root controlled in mutant nod49. The shoot control of nodule initiation is epistatically suppressed by the non-nodulation, root-expressed mutation. These findings suggest that different plant organs can influence the expression of the nodulation phenotype.  相似文献   

5.
Summary The early events in the development of nodules induced byBradyrhizobium japonicum were studied in serial sections of a wild type (cv. Bragg), a supernodulating mutant (nts 382) and four non-nodulating mutants (nod49, nod139, nod772, andrj 1) of soybean (Glycine max [L.] Merrill). Cultivar Bragg responded to inoculation in a similar manner to that described previously for cv. Williams; centres of sub-epidermal cell divisions were observed both with and without associated infection threads and most infection events were blocked before the formation of a nodule meristem. The non-nodulating mutants (nod49, nod772, andrj 1) had, at most, a few centres of sub-epidermal cell divisions. In general, these were devoid of infection threads and did not develop beyond the very early stages of nodule ontogeny. Sub-epidermal cell divisions or infection threads were never observed on mutant nodl39. This mutant is not allelic to the other non-nodulating mutants and represents a defect in a separate complementation group or gene that is required for nodulation. The supernodulating mutant nts382, which is defective in autoregulation of nodulation, had a similar number of sub-epidermal cell divisions as the wild-type Bragg, but a much greater proportion of these developed to an advanced stage of nodule ontogeny. Mutant nts382, like Bragg, possessed other infection events that were arrested at an early stage of development. The results are discussed in the context of the progression of events in nodule formation and autoregulation of nodulation in soybean.Abbreviations nts nitrate tolerant symbiosis - RT root tip (i.e., position of the tap root tip at the time of inoculation) - SERH shortest emerging root hair (i.e., position of the shortest emerging root hair on the tap root at the time of inoculation) - SCD subepidermal cell divisions  相似文献   

6.
Wild-type soybean (Glycine max [L] Merr. cv Bragg) and a nitrate-tolerant supernodulating mutant (nts382) were grown in split root systems to investigate the involvement of the autoregulation response and the effect of timing of inoculation on nodule suppression. In Bragg, nodulation of the root portion receiving the delayed inoculation was suppressed nearly 100% by a 7-day prior inoculation of the other root portion with Bradyrhizobium japonicum strain USDA 110. Significant suppression was also observed after a 24-hour delay in inoculation. Mutant nts382 in the presence of a low nitrate level (0.5 millimolar) showed little, if any, systemic suppression. Root fresh weights of individual root portions were similar for both wild type and nts382 mutant. When nts382 was grown in the absence of nitrate, a 7-day delay in inoculation resulted in only 30% suppression of nodulation and a significant difference in root fresh weight between the two sides, with the delayed inoculated side always being smaller. Nodulation tests on split roots of nts382, nts1116, and wild-type cultivars Bragg, Williams 82, and Clark demonstrated a difference in their systemic suppression ability. These observations indicate that (a) autoregulation deficiencies in mutant nts382 result in a reduction of systemic suppression of nodulation, (b) some suppression is detectable after 24 hours with a delayed inoculation, (c) the presence of low nitrate affects the degree of suppression and the root growth, and (d) soybean genotypes differ in their ability to express this systemic suppression.  相似文献   

7.
We compared the formation of nodules on the primary roots of a soybean cultivar (Glycine max (L.) Merr. cv. Bragg) and a supernodulating mutant derivative, nts382. Inoculation with Bradyrhizobium japonicum USDA 110 at different times after seed imbibition showed that the roots acquired full susceptibility to infection only between 3 and 4 days postgermination. When the plants were inoculated with serial dilutions of a bacterial suspension, the number of nodules formed in the initially susceptible region of the roots was linearly dependent on the logarithm of the inoculum dose until an optimum dose was reached. At least 10-fold-lower doses were required to induce half-maximal nodulation responses on nts382 than on the wild type. However, at optimal doses, about six times as many nodules formed in the initially susceptible region of the roots in nts382. Since there was no appreciable difference in the apparent rates of nodule emergence, the increased efficiency of nodule initiation in the supernodulating mutant could have resulted from a lower threshold of response to bacterial symbiotic signals. Two inoculations (24 h apart) of G. max cv. Bragg revealed that there was a host-mediated regulatory response that suppressed nodulation in younger portions of the primary roots, as reported previously for other soybean cultivar-Bradyrhizobium combinations. Similar experiments with nts382 revealed a comparable suppressive response, but this response was not as pronounced as it was in the wild type. This and other results suggest that there are additional control mechanisms for nodulation that are different from the systemic autoregulatory control of nodulation altered in supernodulating mutants.  相似文献   

8.
The distribution of nodules of soybean (Glycine max (L.) Merr.) cultivar Bragg and the supernodulating mutant derivative nts382 was examined on the primary root relative to the first emerging lateral root, and on laterals relative to the base of the roots of plants grown in sand-vermiculite. Mutant nts382 nodulates profusely even in the presence of nitrate and appears defective in a systemic autoregulatory response that regulates nodule number in soybean. Nodules were clustered on primary roots about the first 4 cm down from the first emerging lateral root in both genotypes. Nodulation profiles showed reduced nodulation in younger and older regions of the primary root. Similarly, nodules appeared clustered close to the base of the lateral roots. Decreasing inoculum dose shifted nodule emergence to younger regions of the primary root and to lateral roots emerging in younger portions of the primary root. Our results indicate that the supernodulating mutant is able to regulate nodule number in both primary and lateral roots in the particulate matrix.  相似文献   

9.
Genetic analysis was done on a number of nitrate tolerant supernodulating (nts) mutant soybean lines. These lines are altered in the autoregulation response, and each was isolated as a separate mutational event following chemical mutagenesis. Crosses were made betweennts lines on a diallel pattern, and each was also crossed usingnts lines as female parent, to wild-type nodulation cultivars. F1 and F2 data were analysed from each cross for nodulation type and number. No complementation was noted wherents lines were intercrossed, suggesting that in each line the same gene was affected. Wherents lines were crossed with wild-type cultivars all the F1 progeny were wild-type, confirming that thenls gene is recessive and, with one exception,nts 1116, all of the F2 progeny segregated into a 3:1 wild-type to supernodulating phenotype, indicating that a single gene is involved. The hypernodulating linents 1116 gave a 1:1 ratio in its F2 progeny when crossed with othernts lines. This line behaved as a dominant in the latter crosses. No wild-type segregants were recovered, therefore again no complementation look place. This line may be a leaky mutant with partial autoregulation as its segregation ratios do not fall into any of the obvious patterns.  相似文献   

10.
The regulation and nitrate inhibition of nodule formation insoybean, Glycine max (L.) Merr., was further examined usingthe nodulation mutants of cv. Enrei. The non-nodulating mutantsEn115, Enl282, and En1314 produced extremely few markedly-curledroot hairs which were all devoid of infection threads, and invariablyfailed to initiate sub-epidermal cell divisions (SCDs) in theroot cortex. A considerable number of arrested SCDs was foundbefore nodule emergence in Enrei, but not in En6500 which hadsignificantly more SCDs that progressively increased at moreadvanced stages of nodule ontogeny. These observations indicatethat autoregulation acts by blocking the developmental stagebefore nodule emergence. In both Enrei and En65OO, the maturationof emerged nodules was restricted by a late-acting nodulationcontrol mechanism that is apparently unrelated to autoregulation.Reciprocal wedge-grafts of plants inoculated at sowing showedthat the control of the supernodulating phenotype resides inthe shoot, while the non-nodulating phenotype is strictly root-controlled.The nodulation phenotype of the current non-nodulating mutantsresults not from an alteration of the autoregulatory mechanism,but from mutation that exerts a root-localized effect that blocksSCDs which trigger the autoregulatory mechanism. Reciprocalgrafting experiments on Enrei and En6500 seedlings grown undervarious nitrate levels suggest that nitrate inhibition of nodulation,like autoregulation, is shoot-controlled. Since these two processesare invariably expressed together, they are probably causallyrelated, acting synergistically to regulate nodule formationin soybean. These results indicate that the regulation and nitrateinhibition of nodulation in the nodulation mutants of cv. Enreiare similar to those of cv. Bragg nodulation mutants. Key words: Autoregulation, nitrate-tolerant symbosis, non-nodulating mutants, soybean, supernodulating mutant  相似文献   

11.
Summary The genetic locus (nts) controlling nitrate-tolerant nodulation, supernodulation, and diminished autoregulation of nodulation of soybean (Glycine max (L.) Merill) was mapped tightly to the pA-132 molecular marker using a restriction fragment length polymorphism (RFLP) detected by subclone pUTG-132a. The nts (nitrate-tolerant symbiotic) locus of soybean was previously detected after its inactivation by chemical mutagenesis. Mutant plant lines were characterized by abundant nodulation (supernodulation) and tolerance to the inhibitory effects of nitrate on nodule cell proliferation and nitrogen fixation. The large number of RFLPs between G. max line nts382 (homozygous for the recessive nts allele) and the more primitive soybean G. soja (P1468.397) allowed the detection of co-segregation of several diagnostic markers with the supernodulation locus in F2 families. We located the nts locus on the tentative RFLP linkage group E about 10 cM distal to pA-36 and directly next to marker pA-132. This very close linkage of the molecular marker and the nts locus may allow the application of this clone as a diagnostic probe in breeding programs as well as an entry point for the isolation of the nts gene.  相似文献   

12.
The growth of a supernodulating, nitrate-tolerant soybean [ Glycine max (L.) Merr.] mutant nts 382 (nitrate-tolerant symbiosis) was compared to that of its wild-type parent, cv. Bragg, over the first 50 days after sowing. Plants were grown either inoculated in the absence of an external nitrogen source or uninoculated in the presence of 5 m M KNO3. For both treatments, nts 382 growth up to 13 days after planting was faster than that of cv. Bragg. Thereafter, supernodulation of inoculated nts 382 occurred and growth of cv. Bragg was faster; shoot and root dry weight increments and leaf area were greater in cv. Bragg, but the N content of nts 382 was higher. Relative growth and net assimilation rates were lower in nts 382, which had faster shoot and root respiration rates. Shoot growth of uninoculated plants was similar for both mutant and wild-type but roots of nts 382 were slightly smaller than those of cv. Bragg. Total plant N content was similar in uninoculated cv. Bragg and nts 382 but the latter had a higher leaf N content. Early lateral root formation (prior to nodule emergence) was greater in nts 382 regardless of whether rhizobia or KJNO3 were present. We conclude that nts 382 has some inherent differences from its parent but that supernodulation significantly retards plant growth.  相似文献   

13.
Cho MJ  Harper JE 《Plant physiology》1991,96(4):1277-1282
It was previously reported that the hypernodulating soybean (Glycine max [L.] Merr.) mutants, derived from the cultivar Williams, had higher root concentration of isoflavonoid compounds (daidzein, genistein, and coumestrol) than did Williams at 9 to 12 days after inoculation with Bradyrhizobium japonicum. These compounds are known inducers of nod genes in B. japonicum and may be involved in subsequent nodule development. The current study involving reciprocal grafts between NOD1-3 (hypernodulating mutant) and Williams showed that root isoflavonoid concentration and content was more than twofold greater when the shoot genotype was NOD1-3. When grafted, NOD1-3 shoots also induced hypernodulation on roots of both Williams and NOD1-3, while Williams shoots induced normal nodulation on both root genotypes. This shoot control of hypernodulation may be causally related to differential root isoflavonoid levels, which are also controlled by the shoot. In contrast, the nonnodulating characteristic of the NN5 mutant was strictly root controlled, based on reciprocal grafts. Delayed inoculation (7 days after planting) resulted in greater nodule numbers on both NOD1-3 and Williams, compared with a seed inoculation treatment. The nodulation pattern of grafted plants was independent of whether the shoot portion was derived from inoculated seed or uninoculated seed, when grafted at day 7 onto seedling roots derived from inoculated seed. This observation, coupled with the fact that no difference existed in nodule number of NOD1-3 and Williams until after 9 days from seed inoculation, indicated that if isoflavonoids play a role in differential nodulation of the hypernodulating mutant and the wild type, the effect is on advanced stages of nodule ontogeny, possibly related to autoregulation, rather than on initial infection stages.  相似文献   

14.
Two strains of Bradyrhizobium japonicum wereevaluated with five commercial cultivars of soybean(Clark, Crauford, Davis, Centaur, and Nessen) and onehypernodulating mutant NOD1-3. The hypernodulatingNOD1-3 produced 30–50 times more nodules thancommercial cultivars either inoculated with B.japonicum strain USDA 123 or RCR 3409. The currentexperiments were extended to determine if therestricted nodulation of commercial cultivars could be overcome by grafting them to a hypernodulated shoot (NOD1-3). Grafting of NOD1-3 shoots to Clark and Davis roots induced hypernodulation on roots of Clark and Davis but did not enhance nodulation when grafted onto the roots of Crauford, Centaur, and Nessen. The shoots of Clark, Davis, Centaur and Nessen significantlyinhibited nodule formation on the root of NOD1-3,while Crauford shoots did not alter nodule formationon the roots of NOD1-3 as compared with self-grafts ofNOD1-3. It appears that the shoot of NOD1-3 has theability to alter autoregulatory control of nodulationof Clark and Davis cultivars, but did not withCrauford, Centaur and Nessen. The results suggestedthat the regulation of nodulation in soybean cultivarsClark and Davis is controlled by the shoot factors,while the Crauford was root controlled.Reciprocal-grafts between NOD1-3 and Centaur or Nessenindicate that both shoot and root factors involved inregulation of nodulation and the regulation ofnodulation did not depend on bradyrhizobial strains. Isoflavonoid analyses from extracts of grafted plantsshowed that NOD1-3 shoots had markedly higher rootisoflavonoid concentrations in roots of both Clark andNOD1-3. The shoot control of hypernodulation may becausally related to differential root isoflavonoidlevels, which are also controlled by the shoot. Thecurrent work was extended to investigate the effect ofapplication of an isoflavonoid (daidzein) on nodulationand nitrogen fixation of soybean cultivars Clark andCentaur as well as in vitro growth of Bradyrhizobium japonicum. Application of theisoflavonoid (daidzein) significantly enhanced thenodulation and nitrogenase activity of Clark but notof Centaur indicating that this character is notrelated to isoflavonoids. Therefore, autoregulationin Clark and Centaur plants may be separate events inlegume-rhizobia symbiosis and regulated by differentkinds of signals. Addition of daidzein to yeastmannitol broth medium promoted the growth of B.japonicum strain USDA 123 and RCR 3409. It seemsthat this compound is able to help the nodulation ofsoybean cv Clark by a Bradyrhizobium strain. Understanding the signaling pathways between rhizobiaand their host plants may allow modifications of thisinteraction to improve symbiotic performance.  相似文献   

15.
Chen  Guoxiong  Fu  Xiaoping  Herman Lips  S.  Sagi  Moshe 《Plant and Soil》2003,256(1):205-215
Grafted plants of flacca, an ABA-deficient mutant of tomato (Lycopersicon esculentum), and the wild-type variety Rheinlands Ruhm were grown with and without salinity stress to test the roles of roots and shoots in the regulation of plant growth. Fourteen days after exposure to 200 mM NaCl, shoot and root fresh weight, endogenous ABA concentrations, nitrate concentration, activities of selected enzymes related to nitrogen assimilation, and cation accumulation were determined. Rootstock genotype had little influence on the growth of the grafted plants, whereas grafted plants having wild-type shoots (Ws) produced more biomass than those having flacca shoots (Fs), irrespective of the salinity level. Growth of flacca shoots grafted onto wild-type rootstock (Fs/Wr) was superior to that of flacca shoots grafted onto flacca rootstock (Fs/Fr). The improved growth correlated with enhanced levels of ABA in the flaccashoots of Fs/Wr. In all the graft combinations, ABA content was higher in wild-type shoots than in flacca shoots, with or without salinity. There were no significant differences in root ABA concentrations among the different grafted types. Enhanced growth correlated with higher nitrate levels and higher nitrate reductase activity in the roots and shoots of plants with wild-type shoots and with higher shoot concentrations of ABA in plants with wild-type shoots. There were no significant differences in glutamine synthetase and phosphoenol pyruvate carboxylase activities in the shoots and roots of all the grafted plants, regardless of the salinity level. While shoot genotype determined the accumulation of K+ and Na+ in grafted plants regardless of salinity, it had no influence on Ca2+ concentrations. Regardless of the salinity, the total concentration of cations was the same in all the plants, while salinity decreased Mg2+ concentration in roots and shoots of all grafts, with the exception of flacca grafted shoots. The scion genotype – and its ABA level – thus played the major role in the growth of grafted plants, regardless of the rootstock genotype and the salinity of the growth medium.  相似文献   

16.
Strigolactones promote nodulation in pea   总被引:2,自引:0,他引:2  
Foo E  Davies NW 《Planta》2011,234(5):1073-1081
Strigolactones are recently defined plant hormones with roles in mycorrhizal symbiosis and shoot and root architecture. Their potential role in controlling nodulation, the related symbiosis between legumes and Rhizobium bacteria, was explored using the strigolactone-deficient rms1 mutant in pea (Pisum sativum L.). This work indicates that endogenous strigolactones are positive regulators of nodulation in pea, required for optimal nodule number but not for nodule formation per se. rms1 mutant root exudates and root tissue are almost completely deficient in strigolactones, and rms1 mutant plants have approximately 40% fewer nodules than wild-type plants. Treatment with the synthetic strigolactone GR24 elevated nodule number in wild-type pea plants and also elevated nodule number in rms1 mutant plants to a level similar to that seen in untreated wild-type plants. Grafting studies revealed that nodule number and strigolactone levels in root tissue of rms1 roots were unaffected by grafting to wild-type scions indicating that strigolactones in the root, but not shoot-derived factors, regulate nodule number and provide the first direct evidence that the shoot does not make a major contribution to root strigolactone levels.  相似文献   

17.
Legumes form root nodules to house beneficial nitrogen‐fixing rhizobia bacteria. However, nodulation is resource demanding; hence, legumes evolved a systemic signalling mechanism called autoregulation of nodulation (AON) to control nodule numbers. AON begins with the production of CLE peptides in the root, which are predicted to be glycosylated, transported to the shoot, and perceived. We synthesized variants of nodulation‐suppressing CLE peptides to test their activity using petiole feeding to introduce CLE peptides into the shoot. Hydroxylated, monoarabinosylated, and triarabinosylated variants of soybean GmRIC1a and GmRIC2a were chemically synthesized and fed into recipient Pisum sativum (pea) plants, which were used due to the availability of key AON pathway mutants unavailable in soybean. Triarabinosylated GmRIC1a and GmRIC2a suppressed nodulation of wild‐type pea, whereas no other peptide variant tested had this ability. Suppression also occurred in the supernodulating hydroxyproline O‐arabinosyltransferase mutant, Psnod3, but not in the supernodulating receptor mutants, Pssym29, and to some extent, Pssym28. During our study, bioinformatic resources for pea became available and our analyses identified 40 CLE peptide‐encoding genes, including orthologues of nodulation‐suppressive CLE peptides. Collectively, we demonstrated that soybean nodulation‐suppressive CLE peptides can function interspecifically in the AON pathway of pea and require arabinosylation for their activity.  相似文献   

18.
We previously found that the ethylene inhibitor Ag+ could overcome the inhibitory effect of nitrate on nodulation of soybean ( Glycine max ) cv. Bragg. The same treatment increased nodulation quantitatively under non-inhibitory conditions, strongly suggesting involvement of ethylene in the control of nodulation in this species. Supernodulation mutants that lack internal autoregulation of nodulation, however, had biosynthesis capacity similar to the wild type. In the present work, the effects of ethylene on nodulation of 'Bragg' and two separate, but allelic, supernodulating mutants ( nts382 and nts1007 ) were compared. The nodulation process appeared much more sensitive than plant growth and development to ethylene, which reduced the number of nodules per plant, but nearly twofold more in the wild type than in the supernodulation mutants. The cause–effect relationship is established by the counteracting effect of Ag+ and the fact that the stronger the inhibition by ethylene, the higher the recovery of nodulation ability with the ethylene antagonist. This higher tolerance of or lower sensitivity to ethylene in nts382 persists even under low inoculum dose, where nodule number and mass could be decreased to wild-type levels. Differences between the mutant and the wild type in the triple response test do not appear to support differences in ethylene perception on a whole-plant basis. The results suggest that sensitivity of nodulation to ethylene might have been affected in supernodulation mutants.  相似文献   

19.
Plants regulate the extent of nodulation and root colonization by arbuscular mycorrhizal fungi (AMF), a phenomenon named autoregulation of symbiosis. We tested AMF colonization in split roots of various soybean genotypes [ Glycine max (L.) Merr. cv. Bragg, Enrei, Harosoy and Williams], where precolonization of one side of the split-root system by the AMF Glomus mosseae resulted in reduced mycorrhization of the other. AMF precolonization failed to control secondary mycorrhization in the supernodulating Bragg nonsense mutant nts1007 (Q106*), indicating that the GmNARK gene (predicted to encode a leucine-rich repeats (LRR) receptor kinase related to CLAVATA1 in Arabidopsis ) is involved in autoregulation of the AMF symbiosis. Here, we tested whether the allelic En6500 nonsense supernodulating mutant ( GmNARK K606*, derived from cv. Enrei) and supernodulating mutants of cv. Williams ( Nod1-3 and Nod2-4 ) with yet-undefined genetic lesions exhibit a similar symbiotic phenotype in mycorrhizal split-root systems. Surprisingly, these supernodulating mutants retained their ability to autoregulate AMF. To examine possible differences between two allelic mutants, we determined levels of IAA, abscisic acid, coumestrol, daidzein and genistein in mycorrhizal and uninoculated control roots. Compared with wild-type plants, both mutants showed reduced IAA accumulation in mycorrhizal roots. Roots of cv. Enrei and En6500 exhibited high levels of isoflavonoids not seen in Bragg or nts1007 . Taken together, these findings showed that supernodulation mutants, despite a common nodulation phenotype, differ in their ability to autoregulate AMF root colonization. This suggests either that the GmNARK gene product of some mutants is still partially functional (Q106* vs. K606*) or that varietal differences reflected in altered physiological responses suppress the loss of function.  相似文献   

20.
Two strains of Bradyrhizobium japonicum were evaluated with five commercial cultivars of soybean (Clark, Crauford, Davis, Centaur, and Nessen) and one hypernodulating mutant NOD1-3. The hypernodulating NOD1-3 produced 30–50 times the number of nodules of commercial cultivars either inoculated with B. japonicum strain USDA 123 or RCR 3409. Grafting of NOD1-3 shoots to Clark and Davis roots induced hypernodulation on roots of Clark and Davis but did not enhance nodulation when grafted onto the roots of Crauford, Centaur, and Nessen. In contrast, the shoots of Clark, Davis, Centaur and Nessen significantly inhibited nodule formation on the root of NOD1-3. However, Crauford shoots did not alter nodule formation on the roots of NOD1-3 as compared with self-grafts of NOD1-3. It appears that the shoot of NOD1-3 has the ability to alter autoregulatory control of nodulation of Clark and Davis cultivars, but not of Crauford, Centaur and Nessen. The results suggest that the regulation of nodulation in soybean cultivars Clark and Davis is controlled by the shoot factors, while the Crauford was root controlled. Reciprocal grafts between NOD1-3 and Centaur or Nessen indicate that both shoot and root factors are involved in regulation of nodulation. The results suggested that the regulation of nodulation did not depend on bradyrhizobial strains. The shoot control of hypernodulation may be causally related to differential root isoflavonoid levels, which are also controlled by shoot. Application of daidzein significantly enhanced the nodulation and nitrogenase activity of soybean cv. Clark. Root control of restricted nodulation of soybean cv. Centaur did not respond to the addition of daidzein in nutrient solution indicating that this character is not related to isoflavonoids. Therefore, autoregulation in Clark and Centaur plants may be separate events in legume–rhizobia symbiosis and regulated by different kinds of signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号