首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrogen bonding involving peptide bonds of the backbone of the insulin molecule may play an important role in insulin-receptor interaction. Our previous work suggested that the A2-A8 helical segment of the hormone molecule participates in this interaction. To investigate the possible involvement of peptide bonds of this segment in insulin-receptor interaction the [2-N-methylisoleucine-A]insulin and [3-N-methylvaline-A]insulin ([MeIle2-A]- and [MeVal3-A]insulins) were synthesized. The circular dichroic spectra of the analogues were obtained and their properties were examined in several biological assays. The circular dichroic spectra suggested that the analogues remained monomeric at concentrations at which insulin is predominantly dimeric, and that their A2-A8 helical segments are distorted. The in vitro biological activity and the receptor binding affinity of these analogues were compared with that of natural insulin. Both analogues are weak full agonists. [MeIle2-A]insulin displayed a potency of 5.4 +/- 0.3% in stimulating lipogenesis and 4.6 +/- 2.3% in receptor binding affinity in rat fat cells and rat liver plasma membranes respectively. [MeVal3-A]insulin displayed a potency of 2.1 +/- 0.2% in lipogenesis and 1.0 +/- 0.3% in receptor binding assays. In radioimmunoassays [MeIle2-A]- and [MeVal3-A]insulins exhibited potencies of 13% and 11% respectively relative to the natural hormone. The substantially decreased biological activity and receptor binding affinity of these analogues may be attributed partly to the change of conformation and partly to the loss of hydrogen bonding capacity of the A2-A8 segment brought about by N-methylation of the A1-A2 or A2-A3 peptide bonds.  相似文献   

2.
S H Nakagawa  H S Tager 《Biochemistry》1992,31(12):3204-3214
In order to evaluate the cause of the greatly decreased receptor-binding potency of the naturally occurring mutant human insulin Insulin Wakayama ([LeuA3]insulin, 0.2% relative potency), we examined (by the semisynthesis of insulin analogues based on N alpha-PheB1,N epsilon-LysB29-bisacetyl-insulin) the importance of aliphatic side chain structure at positions A2 and A3 (Ile and Val, respectively) in directing the interaction of insulin with its receptor. Analogues bearing glycine, alanine, alpha-amino-n-butyric acid, norvaline, norleucine, valine, isoleucine, allo-isoleucine, threonine, tert-leucine, or leucine at positions A2 or A3 were assayed for their potencies in competing for the binding of 125I-labeled insulin to isolated canine hepatocytes, as were analogues bearing deletions from the A-chain amino terminus or the B-chain carboxyl terminus. Selected analogues were also analyzed by far-UV CD and absorption spectroscopy of Co2+ complexes. Our results identify that (a) Ile and Val serve well at position A2, whereas residues with other side chains (including those with straight chains, alternatively configured beta-branches, or a gamma-branch) exhibit relative receptor-binding potencies in the range 1-5%; (b) greater flexibility is allowed side-chain structure at position A3, with Ile, allo-Ile, alpha-amino-n-butyric acid, and tert-Leu exhibiting relative receptor-binding potencies in the range 11-36%; and (c) simultaneous replacements at positions A2 and A3, and deletions of the COOH-terminal domain of the insulin B chain in related analogues, yield cumulative effects. These findings are discussed with respect to a model for insulin-receptor interactions that involves a structure-orienting role for residue A2, the direct interaction of residue A3 with receptor, and multiple separately defined elements of structure and of conformational adjustment.  相似文献   

3.
In this study, we prepared several shortened and full-length insulin analogues with substitutions at position B26. We compared the binding affinities of the analogues for rat adipose membranes with their ability to lower the plasma glucose level in nondiabetic Wistar rats in vivo after subcutaneous administration, and also with their ability to stimulate lipogenesis in vitro. We found that [NMeHisB26]-DTI-NH 2 and [NMeAlaB26]-DTI-NH 2 were very potent insulin analogues with respect to their binding affinities (214 and 465%, respectively, compared to that of human insulin), but they were significantly less potent than human insulin in vivo. Their full-length counterparts, [NMeHisB26]-insulin and [NMeAlaB26]-insulin, were less effective than human insulin with respect to binding affinity (10 and 21%, respectively) and in vivo activity, while [HisB26]-insulin exhibited properties similar to those of human insulin in all of the tests we carried out. The ability of selected analogues to stimulate lipogenesis in adipocytes was correlated with their biological potency in vivo. Taken together, our data suggest that the B26 residue and residues B26-B30 have ambiguous roles in binding affinity and in vivo activity. We hypothesize that our shortened analogues, [NMeHisB26]-DTI-NH 2 and [NMeAlaB26]-DTI-NH 2, have different modes of interaction with the insulin receptor compared with natural insulin and that these different modes of interaction result in a less effective metabolic response of the insulin receptor, despite the high binding potency of these analogues.  相似文献   

4.
The relative expression patterns of the two IR (insulin receptor) isoforms, +/- exon 11 (IR-B/IR-A respectively), are tissue-dependent. Therefore we have developed insulin analogues with different binding affinities for the two isoforms to test whether tissue-preferential biological effects can be attained. In rats and mice, IR-B is the most prominent isoform in the liver (> 95%) and fat (> 90%), whereas in muscles IR-A is the dominant isoform (> 95%). As a consequence, the insulin analogue INS-A, which has a higher relative affinity for human IR-A, had a higher relative potency [compared with HI (human insulin)] for glycogen synthesis in rat muscle strips (26%) than for glycogen accumulation in rat hepatocytes (5%) and for lipogenesis in rat adipocytes (4%). In contrast, the INS-B analogue, which has an increased affinity for human IR-B, had higher relative potencies (compared with HI) for inducing glycogen accumulation (75%) and lipogenesis (130%) than for affecting muscle (45%). For the same blood-glucose-lowering effect upon acute intravenous dosing of mice, INS-B gave a significantly higher degree of IR phosphorylation in liver than HI. These in vitro and in vivo results indicate that insulin analogues with IR-isoform-preferential binding affinity are able to elicit tissue-selective biological responses, depending on IR-A/IR-B expression.  相似文献   

5.
Five analogs of human insulin with -Cys in different positions (A6, A7, A11, A6+11, B7) have been synthesized by the fragment condensation approach, combined with selective disulfide formation. All of them have physicochemical properties noticeably different from those of human insulin. They possess very low biological activity (0.03−1.2%, glucose oxidation in rat fat cells). In contrast, the potency for antibody binding ranges from 7 to 70% of that of insulin. The two analogs with -Cys in positions A6 and A7 have been obtained in crystalline form.  相似文献   

6.
Five analogs of human insulin with d-Cys in different positions (A6, A7, A11, A6+11, B7) have been synthesized by the fragment condensation approach, combined with selective disulfide formation. All of them have physicochemical properties noticeably different from those of human insulin. They possess very low biological activity (0.03?1.2%, glucose oxidation in rat fat cells). In contrast, the potency for antibody binding ranges from 7 to 70% of that of insulin. The two analogs with d-Cys in positions A6 and A7 have been obtained in crystalline form.  相似文献   

7.
Insulin receptor binding and autophosphorylating activities of a number of synthetic analogs of human insulin have been examined using highly purified insulin receptor from human placenta. In general, autophosphorylation correlates well with the ability of the analogs to stimulate glucose oxidation and to inhibit lipolysis in adipocytes although their biological activities varied over a wide range. These findings support the hypothesis that autophosphorylation is an obligatory step in the pathways leading to glucose oxidation and inhibition of lipolysis. The relative biological potencies of the analogs in the autophosphorylation assay also correlated well with their receptor-binding affinities except for the peptides [endo-TyrB16a]insulin, in which an additional Tyr has been inserted between TyrB16 and LeuB17 and [ProA2]insulin. The relative receptor binding affinity of [endo-TyrB16a]insulin is significantly greater than its biological activity in the adipocyte or receptor autophosphorylation assays. The converse is true for [ProA2]insulin. These results demonstrate that the amino-acid residues involved in binding and receptor activation may not be identical.  相似文献   

8.
The substitution of aspartic acid for the naturally-occurring histidine residue in position B10 in human insulin results in an insulin analogue which displays an in vitro potency 4- to 5-fold greater than the parent compound. This substitution has been introduced into six insulin analogues which, before modification, display potencies ranging from less than 0.01-fold to 3-fold relative to natural insulin. In each case, the resulting aspartic acid-substituted analogue is substantially more potent than the parent compound. Thus, it is now possible to prepare "tailor-made" insulins with enhanced potency.  相似文献   

9.
Two analogs of sheep insulin, both differing from the native material by a single amino acid in the A chain, have been synthesized and isolated in highly purified form by procedures developed in this laboratory. In one case, the glutamine residue in position A5 was replaced by leucine ([Leu5-A]); in the other, the tyrosine residue in position A19 was replaced by phenylalanine ([Phe19-A]). The biological behavior of these analogs was compared with natural bovine insulin inin vitro tests and in receptor-binding assays, as well as in radioimmunoassay. In the stimulation of glucose oxidation by rat adipocytes, the analogs gave relative potencies of 30% and 7.8% for [Leu5-A] and [Phe19-A], respectively. Receptor-binding assays in rat liver plasma membranes showed similar behavior for both analogs. In radioimmunoassay, [Leu5-A] displayed a relative potency of 27.9%, while [Phe19-A] showed a relative potency of 19–27%, compared with bovine insulin. At high concentration, both analogs displayed the same maximal activity as bovine insulin, and the dose-response curves are essentially parallel. It is speculated that the interaction between the glutamine residue in position 5 and the tyrosine residue in position 19 of the A chain of insulin are important in maintaining a three-dimensional structure commensurate with high biological activity. The full intrinsic activity of both analogs at high concentrations and the similarity of the potency figures in receptor-binding and glucose-oxidation assays permit the further conclusion that the reduced potency in the latter assay can be ascribed wholly to the reduced binding affinity toward insulin receptors caused by the substitutions made in the analogs. The receptor-analog complexes are fully capable of triggering the next event in the chain leading to the biological response.  相似文献   

10.
Glucagon-like peptide-1 (GLP-1) stimulates insulin secretion and improves glycemic control in type 2 diabetes. In serum the peptide is degraded by dipeptidyl peptidase IV (DPP IV). The resulting short biological half-time limits the therapeutic use of GLP-1. Therefore, various GLP-1 analogues with alterations in cleavage positions were synthesized. GLP-1-receptor binding was investigated in RINm5F cells. Biological activity of the GLP-1 analogues was investigated in vitro by measuring cAMP production in RINm5F cells. GLP-1 analogues with modifications in position 2 were not cleaved by DPP IV and showed receptor affinity and in vitro biological activity comparable to native GLP-1. Analogues with alterations in positions 2 and 8, 2 and 9 or 8 and 9 showed a significant decrease in receptor affinity and biological activity. In vivo biological activity was tested in pigs. GLP-1 analogues were administered subcutaneously followed by an intravenous bolus injection of glucose. Plasma glucose and insulin were monitored over 4 h. Compared to native GLP-1, analogues with an altered position 2 showed similar or increased potency and biological half-time. Other GLP-1 analogues were less active. Despite the lack of degradation of these GLP-1 analogues by DPP IV in vitro, their biological action is as short as that of GLP-1, except for desamino-GLP-1, indicating that other degradation enzymes are important in vivo. Alterations of GLP-1 in positions 8 or 9 result in a loss of biological activity without extending biological half-time.  相似文献   

11.

Background

Insulin analogues comprising acidic amino acid substitutions at position B10 have previously been shown to display increased mitogenic potencies compared to human insulin and the underlying molecular mechanisms have been subject to much scrutiny and debate. However, B10 is still an attractive position for amino acid substitutions given its important role in hexamer formation. The aim of this study was to investigate the relationships between the receptor binding properties as well as the metabolic and mitogenic potencies of a series of insulin analogues with different amino acid substitutions at position B10 and to identify a B10-substituted insulin analogue without an increased mitogenic to metabolic potency ratio.

Methodology/Principal Findings

A panel of ten singly-substituted B10 insulin analogues with different amino acid side chain characteristics were prepared and insulin receptor (both isoforms) and IGF-I receptor binding affinities using purified receptors, insulin receptor dissociation rates using BHK cells over-expressing the human insulin receptor, metabolic potencies by lipogenesis in isolated rat adipocytes, and mitogenic potencies using two different cell types predominantly expressing either the insulin or the IGF-I receptor were systematically investigated. Only analogues B10D and B10E with significantly increased insulin and IGF-I receptor affinities as well as decreased insulin receptor dissociation rates displayed enhanced mitogenic potencies in both cell types employed. For the remaining analogues with less pronounced changes in receptor affinities and insulin receptor dissociation rates, no apparent correlation between insulin receptor occupancy time and mitogenicity was observed.

Conclusions/Significance

Several B10-substituted insulin analogues devoid of disproportionate increases in mitogenic compared to metabolic potencies were identified. In the present study, receptor binding affinity rather than insulin receptor off-rate appears to be the major determinant of both metabolic and mitogenic potency. Our results also suggest that the increased mitogenic potency is attributable to both insulin and IGF-I receptor activation.  相似文献   

12.
We have prepared several alpha-melanotropin (alpha-MSH) analogues with tyrosine substituted for methionine at the 4-position and determined their melanotropic activities on the frog (Rana pipiens), lizard (Anolis carolinensis) and S-91 (Cloudman) mouse melanoma adenylate cyclase bioassays. The potencies of Ac-[Tyr4]-alpha-MSH4-10-NH2 and Ac-[Tyr4]-alpha-MSH4-11-NH2 were compared with alpha-MSH and with their corresponding methionine and norleucine substituted analogues. The Tyr-4 analogues were found to be less active than the Nle-4 analogues on both the frog and lizard assays. Ac-[Tyr4]-alpha-MSH4-10-NH2 was found to be less active than Ac-[Tyr4]-alpha-MSH4-11-NH2 on the lizard bioassay, but more active than the longer fragment on the frog skin assay. Ac-[Tyr4]-alpha-MSH4-10-NH2 exhibited extremely prolonged biological activity on frog skin, but not on lizard skin, while the melanotropic activity of Ac-[Tyr4]-alpha-MSH4-11-NH2 was rapidly reversed on both assay systems. The increased potency of Ac-[Tyr4]-alpha-MSH4-10-NH2 over Ac-[Tyr4]-alpha-MSH4-11-NH2 on frog melanocytes may be related to the fact that the shorter 4-10 analogue exhibits prolonged biological activity. Interestingly, it was found that both Tyr-4 analogues were partial agonists on the mouse melanoma adenylate cyclase bioassay, and stimulated the enzyme to only about 50% of the maximal activity of alpha-MSH. We reported previously that replacement of L-Phe-7 by its D-enantiomer in [Nle4]-alpha-MSH and its Nle-4 containing analogues resulted in peptides with increased potency and in some instances prolonged activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Guo ZY  Tang YH  Zhang Z  Feng YM 《IUBMB life》2001,52(6):309-314
To further understand the role of the three conserved Val residues in insulin, B12Val, B18Val, and A3Val, five insulin mutants-[A3Ser]insulin, [B12Thr]insulin, (desB30)[B12Ser]insulin, [B18Thr] insulin, and [B18Leu]insulin--were obtained by means of site-directed mutagenesis and their receptor-binding activities as well as in vivo biological potencies were measured. The two B18 mutants, [B18Thr]insulin and [B18Leu]insulin, both retained relatively high receptor-binding activities (70% and 30% of native porcine insulin, respectively) as well as relatively high in vivo biological potencies. The receptor-binding activities of [B12Thr]insulin and (desB30)[B12Ser]insulin were 5.1% and 0.2%, respectively. However the in vivo biological potency of [B12Thr]insulin was still about 50% of native insulin, whereas that of (desB30)[B12Ser]insulin decreased drastically. The [A3Ser]insulin retained 1.4% of the receptor-binding activity and low in vivo biological potency. These results, together with previous reports showed that when the three conserved Val residues were replaced by residues containing a beta-branched side-chain, such as Thr or Ile, the insulin mutants retained higher biological activities than those mutants replaced by other residues. Here we propose that Val, Thr, and Ile are "isosteric residues' because they all contain a beta-branched side-chain. This proposal may have perhaps general significance in protein design and protein engineering.  相似文献   

14.
As part of our aim to investigate the contribution of the tyrosine residue found in the 14 position of the A-chain to the biological activity of insulin, we have synthesized six insulin analogues in which the A14 Tyr has been substituted by a variety of amino acid residues. We have selected three hydrophilic and charged residues—glutamic acid, histidine, and lysine—as well as three hydrophobic residues—cycloleucine, cyclohexylalanine, and naphthyl-(1)-alanine—to replace the A14 Tyr. All six analogues exhibit full agonist activity, reaching the same maximum stimulation of lipogenesis as is achieved with procine insulin. The potency for five of the six analogues, [A14 Glu]-, [A14 His]-, [A14 Lys]-, [A14 cycloleucine]-, and [A14 naphthyl-(1)-alanine]-insulins in receptor binding assays ranges from 40–71% and in stimulation of lipogenesis ranges from 35-120% relative to porcine insulin. In contrast, the potency of the sixth analogue, [A14 cyclohexylalanine]insulin, in both types of assays is less than 1% of the natural hormone. The retention time on reversed-phase high-performance liquid chromatography for the first five analogues is similar to that of bovine insulin, whereas for the sixth analogue, [A14 cyclohexylalanine]insulin, it is approximately 11 min longer than that of the natural hormone. This suggests a profound change in conformation of the latter analogue. Apparently, the A14 position of insulin can tolerate a wide latitude of structural alterations without substantial decrease in potency. This suggests that the A14 position does not participate directly in insulin receptor interaction. Only when a substitution which has the potential to disrupt the conformation of the molecule is made at this position, is the affinity for the receptor, and hence the biological potency, greatly reduced.  相似文献   

15.
We have synthesized [21-desasparagine,20-cysteine ethylamide-A]insulin and [21-desasparagine,20-cysteine 2,2,2-trifluoroethylamide-A]insulin, which differ from natural insulin in that the C-terminal amino residue of the A chain, asparagine, has been removed and the resulting free carboxyl group of the A20 cysteine residue has been converted to an ethylamide and a trifluoroethylamide group, respectively. [21-Desasparagine,20-cysteine ethylamide-A]insulin displayed equivalent potency in receptor binding and biological activity, ca. 12% and ca. 14%, respectively, relative to bovine insulin. In contrast, [21-desasparagine,20-cysteine 2,2,2-trifluoroethylamide-A]insulin displayed a divergence in these properties, ca. 13% in receptor binding and ca. 6% in biological activity. This disparity is ascribed to a difference in the electronic state of the A20-A21 amide bond in these two analogues. A model is proposed to account for the observation of divergence between receptor binding and biological activity in a number of synthetic insulin analogues and naturally occurring insulins. In this model, changes in the electronic state and/or the orientation of the A20-A21 amide bond can modulate biological activity independently of receptor binding affinity. The A20-A21 amide bond is thus considered as an important element in the "message region" of insulin.  相似文献   

16.
Previous studies have shown that glycated insulin is secreted from pancreatic beta-cells under conditions of hyperglycaemia. This study has investigated the effects of monoglycated insulin on plasma glucose homeostasis and in vitro cellular glucose transport and metabolism by isolated abdominal muscle of mice. Monoglycated insulin was prepared under hyperglycaemic reducing conditions, purified by RP-HPLC and identified by electrospray ionisation mass spectrometry (5971.1 Da). When administered to mice at an intraperitoneal dose of 7 nmoles/kg body weight, insulin (non-glycated) decreased plasma glucose concentrations and substantially reduced the glycaemic excursion induced by conjoint intraperitoneal injection of 2 g glucose/kg body weight. In comparison, the same dose of monoglycated insulin decreased plasma glucose concentrations to a lesser extent (P < 0.05), corresponding to an approx. 20% reduction of glucose lowering potency. Using isolated abdominal muscle, insulin (10(-9)-10(-7) M) stimulated dose-dependent increases in cellular 2-deoxy-D-[1-3H]glucose uptake, D-[U-14C]glucose oxidation and glycogen production. Monoglycated insulin was approx. 20% less effective than native insulin in stimulating glucose uptake and both indices of metabolism, generally requiring 10-fold greater concentrations to achieve significant stimulatory effects. These data indicate that the impaired biological activity of glycated insulin may contribute to glucose intolerance of diabetes.  相似文献   

17.
The biological activities of several derivatives of human proinsulin (HPI) containing peptide bond cleavages or peptide deletions in the connecting peptide region were examined in vivo in rats and in several in vitro systems. The two derivatives which were tested in vivo, split (32-33)HPI and des-(64,65)HPI, both demonstrated greater potency in lowering blood glucose than did intact HPI. The receptor binding affinities of split (65-66)HPI, des-(57-65)HPI, des-(64,65)HPI, des-(33-56)HPI, des-(31,32)HPI, split (32-33)HPI, and split (56-57)HPI were examined in cultured IM-9 lymphocytes, freshly isolated rat adipocytes, and purified rat liver membranes and were compared to the binding of intact HPI and insulin. In these systems, HPI averaged approximately 1% of the activity of insulin. Modification of proinsulin in the connecting peptide region near the A-chain of insulin to form split (65-66)HPI, des-(57-65)HPI, des-(64,65)HPI, or des-(33-56)HPI resulted in an increase in affinity for receptor binding ranging from 11 to 27-fold over that of intact HPI. In contrast, modifications near the B-chain of insulin to form either des-(31,32)HPI or split (32-33)HPI resulted in roughly a 5-fold increase in affinity, whereas a cleavage within the connecting peptide to form split (56-57)HPI showed only a 2-fold increase in affinity as compared to intact HPI. The biological potencies of these materials were examined in isolated rat adipocytes. At high concentrations (10(-7) M), each derivative produced the same maximal response. At lower concentrations, differences in the relative potencies paralleled the differences in receptor binding affinity previously noted.  相似文献   

18.
The role of three highly conserved insulin residues PheB24, PheB25, and TyrB26 was studied to better understand the subtleties of the structure-function relationship between insulin and its receptor. Ten shortened insulin analogues with modifications in the beta-strand of the B-chain were synthesized by trypsin-catalyzed coupling of des-octapeptide (B23-B30)-insulin with synthetic peptides. Insulin analogues with a single amino acid substitution in the position B26 and/or single N-methylation of the peptide bond at various positions were all shortened in the C-terminus of the B-chain by four amino acids. The effect of modifications was followed by two types of in vitro assays, i.e., by the binding to the receptor of rat adipose plasma membranes and by the stimulation of the glucose transport into the isolated rat adipocytes. From our results, we can deduce several conclusions: (i) the replacement of tyrosine in the position B26 by phenylalanine has no significant effect on the binding affinity and the stimulation of the glucose transport of shortened analogues, whereas the replacement of TyrB26 by histidine affects the potency highly positively; [HisB26]-des-tetrapeptide (B27-B30)-insulin-B26-amide and [NMeHisB26]-des-tetrapeptide (B27-B30)-insulin-B26-amide show binding affinity 529 and 5250%, respectively, of that of human insulin; (ii) N-methylation of the B24-B25 peptide bond exhibits a disruptive effect on the potency of analogues in both in vitro studies regardless the presence of amino acid in the position B26; (iii) N-methylation of the B23-B24 peptide bond markedly reduces the binding affinity and the glucose transport of respective analogue [NMePheB24]-des-tetrapeptide (B27-B30)-insulin-B26-amide.  相似文献   

19.
In continuation of our efforts to study the solution structure and conformational dynamics of insulin by time-resolved fluorescence spectroscopy, we have synthesized and examined the biological activity of five insulin analogues in which selected naturally occurring residues in the A-chain have been replaced with the strongly fluorescent tryptophan residue. The potency of these analogues was evaluated in lipogenesis assays in isolated rat adipocytes, in receptor binding assays using rat liver plasma membranes, and in two cases, in receptor binding assays using adipocytes. [A3 Trp]insulin displays a potency of 3% in receptor binding assays in both liver membranes and in adipocytes, but only 0.06% in lipogenesis assays as compared to porcine insulin. [A10 Trp] insulin displays a potency ofca. 40% andca. 25% in rat liver receptor binding and lipogenesis assays, respectively. [A13 Trp]insulin displays a potency ofca. 39% in rat liver receptor binding assays, but onlyca. 9% in receptor binding in adipocytes; in lipogenesis assays, [A13 Trp] insulin displays a potency ofca. 12%, comparable to its potency in adipocyte receptor binding assays. [A15 Trp]insulin exhibits a potency of 18% and 9% in rat liver receptor binding and lipogenesis assays, respectively. The doubly substituted analogue, [A14 Trp, A19 Trp] insulin, displays a potency ofca. 0.7% in both rat liver receptor binding assays and lipogenesis assays. These data suggest two major conclusions: (1) the A3 and A15 residues lie in sensitive regions in the insulin molecule, and structural modifications at these positions have deleterious effects on biological activity of the hormone; and (2) [A13 Trp]insulin appears to be a unique case in which an insulin analogue exhibits a higher potency when assayed in liver tissue than when assayed in fat cells.  相似文献   

20.
Three natural forms of vertebrate gonadotropin-releasing hormone (GnRH) provided the structural basis upon which to design new GnRH agonists: [His5,Trp7,Leu8]-GnRH, dogfish (df) GnRH; [His5,Asn8]-GnRH, catfish (cf) GnRH; and [His5,Trp7,Tyr8]-GnRH, chicken (c) GnRH-II. The synthetic peptides incorporated the position 6 dextro ( )-isomers -arginine ( -Arg) or -naphthylalanine ( -Nal) in combination with an ethylamide substitution of position 10. The in vitro potencies for LH and FSH release of these analogues were assessed using static cultures of rat anterior pituitary cells. Efficacious peptides were examined for their gonadotropin-II and growth hormone releasing abilities from perifused goldfish pituitary fragments. Rat LH and FSH release was measured using homologous radioimmunoassays, whereas goldfish growth hormone and gonadotropin-II release were determined using heterologous carp hormone radioimmunoassays. The receptor binding of the most potent analogues was determined in bovine pituitary membrane preparations. Substitution of -Nal6 into [His5,Asn8]-GnRH increased the potency over 2200-fold compared with the native ligand (cfGnRH) in cultured rat pituitary cells. This was equivalent to a 55-fold greater potency than that of the native mammal (m) GnRH peptide. Substitution of -Nal6 or -Arg6 into dfGnRH or cGnRH-II resulted in potencies that were related to the overall hydrophobicity of the analogues. The [ -Nal6,Pro9NEt]-cfGnRH bound to the bovine membrane preparation with an affinity statistically similar to that of [ -Nal6,Pro9NEt]-mGnRH (kd = 0.40 ± 0.04 and 0.55 ± 0.10 nM, respectively) in cultured rat pituitary cells. All analogues tested released the same ratio of FSH to LH. In goldfish, the analogues did not possess superagonistic activity but instead desensitized the pituitary fragments at lower analogue doses than that of the sGnRH standard suggesting differences in receptor affinity or signal transduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号