首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
High diversity in DNA of soil bacteria   总被引:65,自引:0,他引:65  
Soil bacterium DNA was isolated by minor modifications of previously described methods. After purification on hydroxyapatite and precipitation with cetylpyridinium bromide, the DNA was sheared in a French press to give fragments with an average molecular mass of 420,000 daltons. After repeated hydroxyapatite purification and precipitation with cetylpyridinium bromide, high-pressure liquid chromatography analysis showed the presence of 2.1% RNA or less, whereas 5-methylcytosine made up 2.9% of the total deoxycytidine content. No other unusual bases could be detected. The hyperchromicity was 31 to 36%, and the melting curve in 1 X SSC (0.15 M NaCl plus 0.015 M sodium citrate) corresponded to 58.3 mol% G+C. High-pressure liquid chromatography analysis of two DNA samples gave 58.6 and 60.8 mol% G+C. The heterogeneity of the DNA was determined by reassociation of single-stranded DNA, measured spectrophotometrically. Owing to the high complexity of the DNA, the reassociation had to be carried out in 6 X SSC with 30% dimethyl sulfoxide added. Cuvettes with a 1-mm light path were used, and the A275 was read. DNA concentrations as high as 950 micrograms ml-1 could be used, and the reassociation rate of Escherichia coli DNA was increased about 4.3-fold compared with standard conditions. C0t1/2 values were determined relative to that for E. coli DNA, whereas calf thymus DNA was reassociated for comparison. Our results show that the major part of DNA isolated from the bacterial fraction of soil is very heterogeneous, with a C0t1/2 about 4,600, corresponding to about 4,000 completely different genomes of standard soil bacteria.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The reassociation kinetics of human DNA was studied, utilizing S1 nuclease digestion in aqueous dioxane and hydroxyapatite chromatography for isolating renatured DNA. The percentage of DNA reassociated at C0t = 10(-3) was 5--7% and that at C0t = 18 000 was about 85%, C0t being the product of the molar concentration of DNA and the reassociation period in s. The shape of the amended reassociation curve was roughly that of a rectangular hyperbola. It showed pronounced differences from the curves obtained by direct hydroxyapatite chromatography of reassociated DNA. The S1 nuclease-dioxane procedure offered two advantages over the conventional method. It was applicable to the study of reassociation with high molecular weight DNA, and the reassociated DNA so obtained was devoid of low-melting strands. The analysis of the new data took into account the possible effects of the diploid condition on the reassociation rate of DNA, the source of the DNA used in this study being placental tissue. The new reassociation profile was compared to ideal second-order reassociation curves calculated for the human genome (2.5 . 10(9) nucleotide pairs), and for a genome twice this size, containing various proportions of single-copy sequences. The results showed that approximately 85--90% of th total DNA may consist of unique sequences. This estimate is considerably higher than those reported previously.  相似文献   

3.
A simple method for the isolation and characterization of DNA-DNA and DNA-RNA hybrid molecules formed in solution was developed. It was based on the fact that, in appropriate salt concentration, such as 5% Na2HPO4, DNA in either double-stranded (DNA-DNA or DNA-RNA) or single-stranded forms, but not free nucleotides, can bind to diethylaminoethylcellulose disc filters (DE81). Thus tested samples were treated with the single-strand-specific nuclease S1 and then applied to DE81 filters. The free nucleotides, resulting from degrading the single-stranded molecules, were removed by intensive washing with 5% Na2HPO4, leaving only the hybrid molecules on the filters. The usefulness of this method was illustrated in dissociation and reassociation studies of viral (SV40) or cellular (NIH/3T3) DNAs and DNA-RNA hybrid molecules. Using this technique the reassociation of denatured SV40 DNA was found to be a very rapid process. Dissociation studies revealed that the melting curves of tested DNAs were dependent on salt concentration. Thus the melting temperatures (tm) obtained for SV40 DNA were 76 degrees C at 1 X SSC (0.15 M NaCl-0.015 M sodium citrate) and 65 degrees C at 0.1 X SSC, and for NIH/3T3 DNA 82 degrees C at 1 X SSC and 68 degrees C at 0.1 X SSC. MuLV DNA-RNA hybrid molecules were formed by annealing in vitro synthesized MuLV DNA with 70S MuLV RNA at 68 degrees C. The melting temperature of this hybrid in the annealing solution was 87 degrees C. Another important feature of this procedure was that, after being selectively bound to the filters, the hybrid molecules could efficiently be recovered by heating the filters for 5 min at 60 degrees C in 1.5-1.7 M KCl. The recovered molecules were intact hybrids as they were found to be completely resistant to S1 nuclease.  相似文献   

4.
李俊  葛诚 《微生物学报》1994,34(2):143-147
用热变性温度法和液相复性速率法分别测定了超慢生大豆根瘤菌(ESG,extra-slow-growing soybean rhizobia)DNA G+C mol%及与其它根瘤菌间的DNA同源性.结果表明,ESG的DNA G+C mol含量在59.2—63.5%之间,且不同地区不同血清型的ESG代表菌株DNA同源率在70%以上,说明它们是遗传型一致的类群.ESG与在大豆上结瘤的快生大豆根瘤菌(Rhizobium fredii USDA205)同源率为14.8%,与慢生大豆根瘤菌(Bradyrhizobiumjaponicum)三个DNA同源组的同源率分别为20.5%,30.0%,19.4%.测定结果还表明,ESG与其它根瘤菌遗传学的亲缘关系也很远.  相似文献   

5.
Relatively rapid methods for the determination of relative genome molecular mass (Mr) and the estimation of plasmid copy number have been developed. These methods are based on the ability of the Bio-Rad high-pressure liquid chromatography hydroxylapatite column to separate and quantify single-stranded DNA, double-stranded DNA, and plasmid DNA. Genome Mr values were calculated from reassociation kinetics of single-stranded DNA as measured with the hydroxylapatite column. Bacteriophage T4 DNA was used to establish a C0t (moles of nucleotides times seconds per liter), or standard reassociation value. From this C0t value, C0t values for Escherichia coli B, Beggiatoa alba B18LD, and Streptomyces coelicolor were determined by comparative calculations. From those calculated C0t values, the Mr values of 1.96 X 10(9) for E. coli, 2.02 X 10(9) for B. alba, and 3.28 X 10(9) for S. coelicolor were estimated. Plasmid concentration was determined from cleared lysates by comparing the integrated area under the phosphate buffer-eluted plasmid peak to values obtained with known amounts of plasmid. The plasmid copy number was estimated by multiplying the ratio between the amounts of plasmid and chromosomal DNA by the ratio between the Mr values of the chromosome and the plasmid. A copy number of 29 was obtained from a culture of E. coli HB101 harboring pBR322 grown to a culture density of 1.6 X 10(9) CFU . ml-1.  相似文献   

6.
Relatively rapid methods for the determination of relative genome molecular mass (Mr) and the estimation of plasmid copy number have been developed. These methods are based on the ability of the Bio-Rad high-pressure liquid chromatography hydroxylapatite column to separate and quantify single-stranded DNA, double-stranded DNA, and plasmid DNA. Genome Mr values were calculated from reassociation kinetics of single-stranded DNA as measured with the hydroxylapatite column. Bacteriophage T4 DNA was used to establish a C0t (moles of nucleotides times seconds per liter), or standard reassociation value. From this C0t value, C0t values for Escherichia coli B, Beggiatoa alba B18LD, and Streptomyces coelicolor were determined by comparative calculations. From those calculated C0t values, the Mr values of 1.96 X 10(9) for E. coli, 2.02 X 10(9) for B. alba, and 3.28 X 10(9) for S. coelicolor were estimated. Plasmid concentration was determined from cleared lysates by comparing the integrated area under the phosphate buffer-eluted plasmid peak to values obtained with known amounts of plasmid. The plasmid copy number was estimated by multiplying the ratio between the amounts of plasmid and chromosomal DNA by the ratio between the Mr values of the chromosome and the plasmid. A copy number of 29 was obtained from a culture of E. coli HB101 harboring pBR322 grown to a culture density of 1.6 X 10(9) CFU . ml-1.  相似文献   

7.
DNA of eight endosymbiotic dinoflagellates (zooxanthellae) from seven different host species has been analyzed as to its thermal characteristics and base composition by means of spectrophotometry and high performance liquid chromatography. All algae under investigation contain both methylcytosine and hydroxymethyluracil in addition to the bases typical of nuclear DNA. As a result, melting temperatures are decreased, suggesting lower contents of guanine plus cytosine than actually present. True percentages of guanine plus cytosine plus methylcytosine range from about 43 to 54 mol%. They are unique for the symbionts from different hosts, indicating phylogenetic separation of the taxa comparised within the genus Symbiodinium.Abbreviations dA deoxyadenosine - dC deoxycytidine - dG deoxyguanosine - dT deoxythymidine - m5dC 5-methyldeoxycytidine - hmdU 5-hydroxymethyldeoxyuridine - rC ribocytidine - Br8G bromine-80guanosine - A adenine - C cytosine - G guanine - T thymine - m5C 5-methylcytosine - hmU 5-hydroxymethyluracil - G+C guanine plus cytosine plus 5-methylcytosine - HPLC high performance liquid chromatography - T m temperature at the midpoint of hyperchromic shift - CTAB N-cetyl-N,N,N-trimethyl-ammonium bromide - EDTA ethylenediamine-tetraacetic acid, disodium salt - TRIS tris-(hydroxymethyl)-aminomethane - 1×SSC standard saline citrate (0.15 M NaCl+0.015 M trisodium citrate, pH 7.0)  相似文献   

8.
Polynucleotide relationships were examined among many representatives of the Enterobacteriaceae by means of agar, membrane filter, and hydroxyapatite procedures. The amount of deoxyribonucleic acid (DNA) that reassociated was dependent, especially in interspecific reactions, on the annealing temperature. In only three cases: Escherichia coli-Shigella flexneri, Salmonella typhimurium-S. typhi, and Proteus mirabilis-P. vulgaris, was relative interspecific duplex formation 80% or higher. In most cases interspecies DNA duplex formation was 40% or less of that obtained from intraspecies DNA reassociation reactions. The stability of E. coli-S. flexneri DNA duplexes formed at either 60 or 75 C was virtually identical to that of homologous E. coli DNA duplexes, and the degree of interspecies duplex formation was minimally affected by the temperature increase (86% at 60 C; 77% at 75 C). The thermal stability of DNA duplexes formed at 60 C between DNA from E. coli and DNA from strains of Aerobacter aerogenes, S. typhimurium, S. typhi, and P. mirabilis was about 12 to 14 C below that of reassociated E. coli DNA. At 75 C, the formation of the interspecific DNA duplexes was markedly decreased, but the stability of the DNA able to reassociate at this temperature approximated that of reassociated E. coli DNA. The degree of reassociation and the thermal stability of E. coli-S. flexneri DNA duplexes suggests relatively little evolutionary divergence in these organisms. The other enterobacteria tested, however, have diverged to a point where less than one-half of their DNA can reanneal with E. coli DNA at 60 C and less than 10% reacts at 75 C. The degree of divergence between various enterobacteria does not appear to be uniform along the DNA molecule. Ribosomal ribonucleic acid (RNA)-specific sequences are conserved among most enterobacteria. An examination of messenger RNA relatively specific for the lactose operon suggests that specific chromosomal genes may diverge more or less than the genome as a whole.  相似文献   

9.
Four diploid and three phylogenetically tetraploid Cyprinidae (Ostariophysi) have been characterized as for nuclear DNA content, modal chromosome number and DNA reassociation kinetics (hydroxyapatite chromatography). Among the diploid species nuclear DNA content (10(-12) g DNA/2C) was 1.62 for Tinca tinca, 1.87 for Scardinius erythrophthalmus, 2.53 for Leuciscus cephalus and 2.75 for Alburnus alburnus, while the phylogenetically tetraploid species Carassius auratus, Barbus barbus and Cyprinus carpio attained 3.40, 3.66 and 3.80 respectively. Modal chromosome number was 2n = 48-50 for diploid individuals and 2n = 100-104 for phylogenetically tetraploid ones. In all the species 5--8% of the genome is represented by highly repetitive and foldback DNA. In DNA reassociation kinetics of phylogenetically tetraploid Cyprinidae a distinct plateau separates an intermediate reassociating sequence fraction (about 22% of the genome; with average repetition frequencies between 1,000 and 1,400) from a slow reassociating one (unique DNA; about 72% of the genome). These two genome fractions are not clearly distinguishable from each other in Cot curves of the diploid Cyprinidae, where a similar plateau is not evident. Since simple ploidy changes are not expected to affect DNA reassociation kinetics we suggest a different evolution in the genome organization of the two ploidy groups. Some possible hypotheses are discussed.  相似文献   

10.
The genes for tranfer ribonucleic acid (tDNA) and 5S ribonucleic acid (5SDNA) were isolated from the total deoxyribonucleic acid (DNA) of Escherichia coli. The relatedness of tDNA and 5S from E. coli and other species of Enterobacteriaceae was determined by reassociation of the isolated genes labeled with 32PO4 to unlabeled, unfractionated DNA. Double-stranded DNA was separated from unreacted DNA by hydroxyapatite chromatography. Thermal elution profiles were done to determine the amount of unpaired bases present in related DNA sequences. Relative to total DNA, both 5S DNA and tDNA were highly conserved throughout the Enterobacteriaceae, including the genera Yersinia and Proteus.  相似文献   

11.
Long and short repetitive sequences of sea urchin DNA were prepared by reassociation of 2000 nucleotide long fragments to Cot 4 and digestion with the single strand specific nuclease S1. The S1 resistant duplexes were separated into long repetitive and short repetitive fractions on Agarose A50. The extent of shared sequences was studied by reassociating a labeled preparation of short repetitive DNA with an excess of unlabeled long repetitive DNA. Less than 10% of the long repetitive DNA preparation was able to reassociate with the short repetitive DNA. Thus the long and short repetitive elements appear to be principally independent sequence classes in sea urchin DNA. Precisely reassociating repetitive DNA was prepared by four successive steps of reassociation and thermal chromatography on hydroxyapatite. This fraction (3% of the genome) was reassociated by itself or with a great excess of total sea urchin DNA. The thermal stability of the products was identical in both cases (Tm=81 degrees C), indicating that precisely repeated sequences do not have many imprecise copies in sea urchin DNA.  相似文献   

12.
DNA extracted from Chironomus thummi larvae was studied by isopycnic centrifugation in CsCl, thermal denaturation and DNA-DNA reassociation techniques. The mean G+C content of the C. thummi DNA is 28-29% as indicated both by centrifugation in CsCl and thermal denaturation. According to optical reassociation analysis of total DNA and of isolated DNA fractions the C. thummi genome is composed of at least four components. About 80% of the DNA is classified as unique with a kinetic complexity of nearly 7 X 10(10) daltons. 6-8% intermediate DNA exhibits a kinetic complexity slightly above 10(8) daltons with a mean repetition frequency of 35. 11-13% fast-reassociating DNA has a kinetic complexity slightly above 10(6) daltons with a mean repetition frequency of 6000. 3-5% of the DNA cannot be properly studied by the optical reassociation technique and probably contains inverted repeats. The thermal denaturation behaviour of isolated DNA fractions indicated that most of the repetitive sequences in the C. thummi genome are tightly interspersed.  相似文献   

13.
A strong and constitutive expression vector of Escherichia coli beta-glucuronidase with the isocitrate dehydrogenase promoter has been developed for producing a large amount of recombinant protein. More than 95% pure enzyme was obtained by a four step purification procedure-ammonium sulfate precipitation, DEAE ion-exchange chromatography, Superose 12 gel filtration, and hydroxyapatite steric ion-exchange chromatography. The overexpressed gene can produce 23 mg of pure enzyme from one liter of bacterial culture.  相似文献   

14.
Distribution of repetitious sequences in chick nuclear DNA   总被引:7,自引:3,他引:4  
By an improved method of hydroxylapatite chromatography, the reassociated sequences of chick nuclear DNA were isolated, and their base composition analysed. By increasing the amount of reassociation, the G + C content of the renatured sequences decreased progressively to reach a mean value corresponding to that of the total DNA. In order to study the distribution of the families, or group of families having different amount of reassociation, DNA was fractionated by CsC1 density gradient centrifugation. Fractions having different G + C content were obtained, and their reassociation rates analysed. At high C(o)t value of renaturation (C(o)t=50) the amount of reassociated sequences included in the high or in the low buoyant density DNA fractions was approximately the same, but their G + C content was as expected different. At lower C(o)t values of renaturation (between C(o)t of 0.2 and the C(o)t of 10), the results indicated an heterogeneity of the repeated sequences in the A + T rich DNA fractions, as compared to the G + C rich ones.  相似文献   

15.
Polynucleotide relationships among selected Vibrio species were examined by means of deoxyribonucleic acid (DNA) reassociation reactions and chromatography on hydroxyapatite. Relative levels of intraspecific DNA duplex formation (V. cholerae-V. cholerae and V. parahaemolyticus-V. parahaemolyticus) were found to be high at 60 C (>80%), and only minimally reduced at 75 C. Interspecific DNA duplexes between V. cholerae DNA and that of the non-cholera vibrios also exhibited high relative levels of formation at 60 C (>80%) and, with one exception, were only slightly reduced at 75 C. The thermal stability of these duplexes formed at 60 or 75 C was virtually identical to that of homologous V. cholerae DNA duplexes. The degree of reassociation and the thermal stability of V. cholerae-non-cholera vibrio DNA duplexes suggests relatively little evolutionary divergence in these organisms. In all other interspecific DNA reassociation reactions, only low levels of DNA duplex formation were noted at 60 C (<25%), and these were drastically reduced (>50%) at 75 C. The degree of nucleotide sequence divergence indicated by these reactions suggests that these Vibrio species are not significantly related to V. cholerae or V. parahaemolyticus. Reassociation reactions between V. cholerae DNA and the DNA of V. parahaemolyticus indicated these species were not significantly related to each other.  相似文献   

16.
The degree of chromosomal DNA (cDNA) denaturation and renaturation on polytene chromosomes has been measured by UV microspectrophotometry. Also DNA losses occurring upon denaturation have been quantified by Feulgen, gallocyanin-chromalum and UV. It has been observed that denaturation in alkali (0.07 N NaOH at room temperature) and formamide (90% formamide; 0.1 SSC, pH 7.2) at 65 °C removes about 30% of the DNA. Low DNA loss occurs upon denaturation in HCl (0.24 M) at room temperature and 60% formamide: 2 × 10?4 M EDTA (pH 8) at 55 °C. The presence of 4% formaldehyde in the denaturation buffer prevents DNA loss. After denaturation of chromosomes in 0.1 × SSC containing 4% formaldehyde at 100 °C for 30 sec, an hyperchromicity of 39 °C is observed. The denaturation efficiency varies with the denaturation treatment. The percentage reassociation was measured from the difference in the UV absorption of renatured chromosomes and that of denatured chromosomes from the same set. It seems that in our conditions DNA:DNA reassociation does not occur. The efficiency of hybridization is proportional to the denaturation extent of the DNA. However, the entire fraction of DNA which has been denatured is not available for hybridization.  相似文献   

17.
The presence of 5-methylcytosine in Chlorella pyrenoidosa (strain 211/8b) DNA's has been investigated by means of paper chromatography and thermal chromatography on hydroxyapatite. It has been shown that nuclear DNA contains 3.5 mol% 5-methylcytosine whereas no significant amount of this base can be detected in chloroplast DNA. The thermal chromatography of nuclear DNA labelled from [6-3H]- or [Me-14C] methionine lead us to conclude that the 5-methylcytosine content is directly proportional to the G + C content of the various DNA fractions. The existence of methylated sequences in DNA is postulated and the biological function of the 5-methylcytosine is discussed.  相似文献   

18.
A wheat germ ribosome dissociation factor, eukaryotic initiation factor 6 (eIF-6), has been purified almost to homogeneity from the 25 to 40% ammonium sulfate fraction of the postribosomal supernatant. This dissociation factor is distinct from initiation factor eIF-3 and its chromatographic properties permit its separation from the known wheat germ initiation factors. Under certain conditions, eIF-6 stimulates the incorporation of amino acids into polypeptides in a partially fractionated wheat germ cell-free system. The eight-step purification procedure developed includes chromatography on DEAE-cellulose, phosphocellulose, Sephadex G-75, and hydroxyapatite and yields a dissociation factor more than 80% pure. The purified factor is composed of a single polypeptide chain with a molecular weight of approximately 23,000 as determined by gel filtration chromatography and by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It is an acidic protein which is heat labile and is inactivated by treatment with N-ethylmaleimide. The dissociation factor is much more effective in preventing the reassociation of 40 S and 60 S ribosomal subunits than in directly dissociating 80 S ribosomes. Like Escherichia coli IF-3, about 10 pmol of the dissociation factor are required to dissociate 1 pmol of ribosomes.  相似文献   

19.
Single-stranded DNA (ssDNA), separated from bulk double-stranded DNA (dsDNA) of HTC by an improved method of hydroxyapatite chromatography, exhibited the same characteristics as ssDNA previously found in various cell species. It amounted to 1.5–2% of the total nuclear DNA. Only 24–26% could be self-reassociated, but the greatest part hybridized to non-repetitious DNA fraction and about 30% hybridized to homologous mRNA.Other results tend to prove that the complementary sequences of HTC-ssDNA probably consist of non-base-paired segments attached to double helical regions of dsDNA. In effect, after hydroxyapatite chromatography, a small portion of HTC-dsDNA (2–3%) was found to be rapidly digestible by S1 nuclease and this limited digestion was sufficient to reduce markedly the hybridization rates of dsDNA with both DNA and cell-free synthesised cDNA copies of polyadenylated RNAs. Furthermore, these 3H-cDNA copies could not be annealed to ssDNA under conditions that allowed their reassociation with total nuclear DNA. These findings complete the demonstration that the greatest part of ssDNA appears to be formed via selective nicks, probably enzymatic, in the coding strand of actively transcribed DNA regions.  相似文献   

20.
ATPase (ATP phosphohydrolase, EC 3.6.1.3) activity was shown in the soluble fraction of rat liver micochondria. Two molecular forms (ATPase 1 and 2) were isolated. ATPase 1 has already been studied. The present paper deals with the purification method of ATPase 2 which was achieved by the following steps: (NH4)2SO4 precipitation. DEAE-cellulose chromatography, hydroxyapatite chromatography, Sephadex G100 filtration and AMP-Sepharose affinity chromatography. The purified protein was characterized by bidimensional polyacrylamide gel electrophoresis. Molecular weight evaluated by SDS-polyacrylamide gel electrophoresis and Sephadex G100 gel filtration was found to be 61 500 +/- 3000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号