首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have performed 128 folding and 45 unfolding molecular dynamics runs of chymotrypsin inhibitor 2 (CI2) with an implicit solvation model for a total simulation time of 0.4 microseconds. Folding requires that the three-dimensional structure of the native state is known. It was simulated at 300 K by supplementing the force field with a harmonic restraint which acts on the root-mean-square deviation and allows to decrease the distance to the target conformation. High temperature and/or the harmonic restraint were used to induce unfolding. Of the 62 folding simulations started from random conformations, 31 reached the native structure, while the success rate was 83% for the 66 trajectories which began from conformations unfolded by high-temperature dynamics. A funnel-like energy landscape is observed for unfolding at 475 K, while the unfolding runs at 300 K and 375 K as well as most of the folding trajectories have an almost flat energy landscape for conformations with less than about 50% of native contacts formed. The sequence of events, i.e., secondary and tertiary structure formation, is similar in all folding and unfolding simulations, despite the diversity of the pathways. Previous unfolding simulations of CI2 performed with different force fields showed a similar sequence of events. These results suggest that the topology of the native state plays an important role in the folding process.  相似文献   

2.
The conformation of the 29-residue rat galanin neuropeptide was studied using the Monte Carlo with energy minimization (MCM) and electrostatically driven Monte Carlo (EDMC) methods. According to a previously elaborated procedure, the polypeptide chain was first treated in a united-residue approximation, in order to enable extensive exploration of the conformational space to be carried out (with the use of MCM), Then the low-energy united-residue conformations were converted to the all-atom representations, and EDMC simulations were carried out for the all-atom polypeptide chains, using the ECEPP/3 force field with hydration included. In order to estimate the effect of environment on galanin conformation, the low-energy conformations obtained as a result of these simulations were taken as starting structures for further EDMC runs that did not include hydration. The lowest-energy conformation obtained in aqueous solution calculations had a nonhelical N-terminal part packed against the nonpolar face of a residual helix that extended from Pro13 toward the C-terminus. One next lowest-energy structure was a nearly-all-helical conformation, but with a markedly higher energy. In contrast, all of the low-energy conformations in the absence of water were all-helical differing only by the extent to which the helix was kinked around Pro13. These results are in qualitative agreement with the available NMR and CD data of galanin in aqueous and nonaqueous solvents.  相似文献   

3.
The electrostatically driven Monte Carlo (EDMC) method has been greatly improved by adding a series of new features, including a procedure for cluster analysis of the accepted conformations. This information is used to guide the search for the global energy minimum. Alternative procedures for generating perturbed conformations to sample the conformational space were also included. These procedures enhance the efficiency of the method by generating a larger number of low-energy conformations. The improved EDMC method has been used to explore the conformational space of a 20-residue polypeptide chain whose sequence corresponds to the membrane-bound portion of melittin. The ECEPP/3 (Empirical Conformational Energy Program for Peptides) algorithm was used to describe the conformational energy of the chain. After an exhaustive search involving 14 independent runs, the lowest energy conformation (LEC) (−91.0 kcal/mol) of the entire study was encountered in four of the runs, while conformations higher in energy by no more than 1.8 kcal/mol were found in the remaining runs with the exception of one of them (run 8). The LEC is identical to the conformation found recently by J. Lee, H.A. Scheraga, and S. Rackovsky [(1998) “Conformational Analysis of the 20-Residue Membrane-Bound Portion of Melittin by Conformational Space Annealing,” Biopolymers, Vol. 46, pp. 103–115] as the lowest energy conformation obtained in their study using the conformational space annealing method. These results suggest that this conformation corresponds to the global energy minimum of the ECEPP/3 potential function for this specific sequence; it also appears to be the conformation of lowest free energy. © 1998 John Wiley & Sons, Inc. Biopoly 46: 117–126, 1998  相似文献   

4.
The conformational space of the 20-residue membrane-bound portion of melittin has been investigated extensively with the conformational space annealing (CSA) method and the ECEPP/3 (Empirical Conformational Energy Program for Peptides) algorithm. Starting from random conformations, the CSA method finds that there are at least five different classes of conformations, within 4 kcal/mol, which have distinct backbone structures. We find that the lowest energy conformation of this peptide from previous investigations is not the global minimum-energy conformation (GMEC); but it belongs to the second lowest energy class of the five classes found here. In four independent runs, one conformation is found repeatedly as the lowest energy conformation of the peptide (two of the four lowest energy conformations are identical; the other two have essentially identical backbone conformations but slightly different side-chain conformations). We propose this conformation, whose energy is lower than that found previously by 1.9 kcal/mol, as the GMEC of the ECEPP/3 force field. The structure of the proposed GMEC is less helical and more compact than the previous one. It appears that the CSA method can find several classes of conformations of a 20-residue peptide starting from random conformations utilizing only its amino acid sequence information. The proposed GMEC has also been found with a modified electrostatically driven Monte Carlo method [D. R. Ripoll, A. Liwo, and H.A. Scheraga (1998) “New Developments of the Electrostatically Driven Monte Carlo Method: Test on the Membrane-Bound Portion of Melittin,” Biopolymers, Vol. 46, pp. 117–126]. © 1998 John Wiley & Sons, Inc. Biopoly 46: 103–115, 1998  相似文献   

5.
Cisproline(i - 1)-aromatic(i) interactions have been detected in several short peptides in aqueous solution by analysis of anomalous chemical shifts measured by 1H-NMR spectroscopy. This formation of local structure is of importance for protein folding and binding properties. To obtain an atomic-detail characterisation of the cisproline(i - 1)-aromatic(i) interaction in terms of structure, energetics and dynamics, we studied the minimal peptide unit, blocked Ala-cisPro-Tyr, using computational and experimental techniques. Structural database analyses and a systematic search revealed two groups of conformations displaying a cisproline(i - 1)-aromatic(i) interaction. These conformations were taken as seeds for molecular dynamics simulations in explicit solvent at 278 K. During a total of 33.6 ns of simulation, all the 'folded' conformations and some 'unfolded' states were sampled. 1H- and 13C-chemical shifts and 3J-coupling constants were measured for the Ala-Pro-Tyr peptide. Excellent agreement was found between all the measured and computed NMR properties, showing the good quality of the force field. We find that under the experimental and simulation conditions, the Ala-cisPro-Tyr peptide is folded 90% of the time and displays two types of folded conformation which we denote 'a' and 'b'. The type a conformations are twice as populated as the type b conformations. The former have the tyrosine ring interacting with the alanine alpha proton and are enthalpically stabilised. The latter have the aromatic ring interacting with the proline side chain and are entropically stabilised. The combined and complementary use of computational and experimental techniques permitted derivation of a detailed scenario of the 'folding' of this peptide.  相似文献   

6.
1. The effect exerted by a residue on the conformation of neighbouring residues was analysed by using data from nine globular proteins of known sequence and conformation. 2. An information measure was used which estimated the role of a residue in influencing neighbouring conformations and also its tendency to influence the lengths of runs of residues in that conformation. This measure was estimated for each residue in all conformations defined by domains on the varphi, psi diagram. 3. Plots of the information measure yielded an intercept, which was a measure of intra-residue information for a residue. The slope was a measure of the statistical co-operativity or tendency of the residue to influence the occurrence of its neighbours in runs of a particular conformation. Both parameters are a function of the residue type. Statistical co-operativity is found in the alpha(1)-helical (H(1)) and beta-pleated-sheet (P(2)) conformations and, to a lesser extent, in their distorted variants H(2) and P(1). 4. The directional nature of these influences for H(1) and P(2) conformations is illustrated by plots of the information measure against the distance m from the residue, for m=-10 to +10. 5. The results for statistical co-operativity are discussed in relation to theories of helix-coil and pleated-sheet-coil transitions. The value of the information-theory-derived parameters in obtaining s parameters for the Zimm & Bragg (1959) equations is illustrated. 6. Directional effects are discussed with particular relation to mechanisms of the termination of helices and the involvement of the alpha(II) conformation and also to discontinuities in pleated-sheet conformations.  相似文献   

7.
Song MK  Kim SY  Lee J 《Biophysical chemistry》2005,115(2-3):201-207
The structural characteristics of the 13-residue compstatin molecule are investigated using the conformational space annealing (CSA) method with CHARMM force field and the GBSA continuum solvent model. In order to sample conformations in the energy range of the minimized NMR structures, we have used the stopping criterion to the CSA search when a conformation whose energy is less than -490 kcal/mol is found. With this stopping criterion, a great variety of conformations are generated around experimentally known structures. Twenty independent CSA runs starting from random states find 1000 representative conformations in the energy landscape of the compstatin, which are classified into thirty-one structural families. The majority of the conformations (94.4%) are in the coil state. Other conformers containing a 3(10)-helix, a pi-helix, a beta-hairpin, and an alpha-helix are also found.  相似文献   

8.
J Moult  M N James 《Proteins》1986,1(2):146-163
The feasibility of determining the conformation of segments of a polypeptide chain up to six residues in length in globular proteins by means of a systematic search through the possible conformations has been investigated. Trial conformations are generated by using representative sets of phi, psi, and chi angles that have been derived from an examination of the distributions of these angles in refined protein structures. A set of filters based on simple rules that protein structures obey is used to reduce the number of conformations to a manageable total. The most important filters are the maintenance of chain integrity and the avoidance of too-short van der Waals contacts with the rest of the protein and with other portions of the segment under construction. The procedure is intended to be used with approximate models so that allowance is made throughout for errors in the rest of the structure. All possible main chains are first constructed and then all possible side-chain conformations are built onto each of these. The electrostatic energy, including a solvent screening term, and the exposed hydrophobic area are evaluated for each accepted conformation. The method has been tested on two segments of chain in the trypsin like enzyme from Streptomyces griseus. It is found that there is a wide spread of energies among the accepted conformations, and the lowest energy ones have satisfactorily small root mean square deviations from the X-ray structure.  相似文献   

9.
Franc Avbelj  John Moult 《Proteins》1995,23(2):129-141
Experimental evidence and theoretical models both suggest that protein folding begins by specific short regions of the polypeptide chain intermittently assuming conformations close to their final ones. The independent folding properties and small size of these folding initiation sites make them suitable subjects for computational methods aimed at deriving structure from sequence. We have used a torsion space Monte Carlo procedure together with an all-atom free energy function to investigate the folding of a set of such sites. The free energy function is derived by a potential of mean force analysis of experimental protein structures. The most important contributions to the total free energy are the local main chain electrostatics, main chain hydrogen bonds, and the burial of nonpolar area. Six proposed independent folding units and four control peptides 11–14 residues long have been investigated. Thirty Monte Carlo simulations were performed on each peptide, starting from different random conformations. Five of the six folding units adopted conformations close to the experimental ones in some of the runs. None of the controls did so, as expected. The generated conformations which are close to the experimental ones have among the lowest free energies encountered, although some less native like low free energy conformations were also found. The effectiveness of the method on these peptides, which have a wide variety of experimental conformations, is encouraging in two ways: First, it provides independent evidence that these regions of the sequences are able to adopt native like conformations early in folding, and therefore are most probably key components of the folding pathways. Second, it demonstrates that available simulation methods and free energy functions are able to produce reasonably accurate structures. Extensions of the methods to the folding of larger portions of proteins are suggested. © 1995 Wiley-Liss, Inc.  相似文献   

10.
H Mizuno 《Proteins》1989,5(1):47-65
The active conformation of an ice-nucleation protein, whose major portion consists of a long polypeptide segment of nearly repetitive octapeptides, is predicted by the analyses of conformational energy and the mechanism of crystal growth. The protein ideally has an exact octapeptide repetition and is assumed to have a helical conformation. The present study searched for low-energy helical conformations and each of the obtained low-energy conformations examined as to whether it has a surface structure that can promote crystal formation. Two conformations obtained were good candidates for an ice nucleus. Both were found to have on their surfaces an arrangement of hydrogen-bonding sites, which fits well with those of hydrogen bonds in hexagonal ice crystal. Further, one of the two conformations had a hexagonal conformational symmetry consistent with the hexagonal ice crystal structure. The other conformation had a pentagonal conformational symmetry that could enable the growth of an ice crystal--dendritic polycrystalline snow crystal--which grows on metastable cubic ice.  相似文献   

11.
Continuum solvation models that estimate free energies of solvation as a function of solvent accessible surface area are computationally simple enough to be useful for predicting protein conformation. The behavior of three such solvation models has been examined by applying them to the minimization of the conformational energy of bovine pancreatic trypsin inhibitor. The models differ only with regard to how the constants of proportionality between free energy and surface area were derived. Each model was derived by fitting to experimentally measured equilibrium solution properties. For two models, the solution property was free energy of hydration. For the third, the property was NMR coupling constants. The purpose of this study is to determine the effect of applying these solvation models to the nonequilibrium conformations of a protein arising in the course of global searches for conformational energy minima. Two approaches were used: (1) local energy minimization of an ensemble of conformations similar to the equilibrium conformation and (2) global search trajectories using Monte Carlo plus minimization starting from a single conformation similar to the equilibrium conformation. For the two models derived from free energy measurements, it was found that both the global searches and local minimizations yielded conformations more similar to the X-ray crystallographic structures than did searches or local minimizations carried out in the absence of a solvation component of the conformational energy. The model derived from NMR coupling constants behaved similarly to the other models in the context of a global search trajectory. For one of the models derived from measured free energies of hydration, it was found that minimization of an ensemble of near-equilibrium conformations yielded a new ensemble in which the conformation most similar to the X-ray determined structure PTI4 had the lowest total free energy. Despite the simplicity of the continuum solvation models, the final conformation generated in the trajectories for each of the models exhibited some of the characteristics that have been reported for conformations obtained from molecular dynamics simulations in the presence of a bath of explicit water molecules. They have smaller root mean square (rms) deviations from the experimentally determined conformation, fewer incorrect hydrogen bonds, and slightly larger radii of gyration than do conformations derived from search trajectories carried out in the absence of solvent.  相似文献   

12.
The representation system for protein conformation has a crucial effect on the speed of various protein-related simulations, including ab initio protein structure prediction and protein-protein docking simulation. Usually, the finer a representation system, the longer is the computational time required to employ the representation system in simulations. On the other hand, very coarse lattice systems cannot be directly applied to the simulation problems with real proteins. We report a new, fragment library-based protein conformation representation system, prepared by clustering amino acid conformations from 154 proteins. This system was composed of 64 most representative fragments per each amino acid, and based on the unified residue approach in which two spheres per amino acid were used. It could represent the conformation of the 82 proteins in an independent test set with the mean and standard deviation RMSD of 1.01 and 0.09 A, respectively, based on the position of alpha carbons and the centers of mass of sidechains.  相似文献   

13.
We have simulated two conformations of the fusion domain of influenza hemagglutinin (HA) within explicit water, salt, and heterogeneous lipid bilayers composed of POPC:POPG (4:1). Each conformation has seven different starting points in which the initial peptide structure is the same for each conformation, but the location across the membrane normal and lipid arrangement around the peptide are varied, giving a combined total simulation time of 140 ns. For the HA5 conformation (primary structure from recent NMR spectroscopy at pH = 5), the peptide exhibits a stable and less kinked structure in the lipid bilayer compared to that from the NMR studies. The relative fusogenic behavior of the different conformations has been investigated by calculation of the relative free energy of insertion into the hydrophobic region of lipid bilayer as a function of the depth of immersion. For the HA7 conformations (primary structure from recent NMR spectroscopy at pH = 7.4), while the N-terminal helix preserves its initial structure, the flexible C-terminal chain produces a transient helical motif inside the lipid bilayer. This conformational change is pH-independent, and is closely related to the peptide insertion into the lipid bilayer.  相似文献   

14.
Even if the structure of a receptor has been determined experimentally, it may not be a conformation to which a ligand would bind when induced fit effects are significant. Molecular docking using such a receptor structure may thus fail to recognize a ligand to which the receptor can bind with reasonable affinity. Here, we examine one way to alleviate this problem by using an ensemble of receptor conformations generated from a molecular dynamics simulation for molecular docking. Two molecular dynamics simulations were conducted to generate snapshots for protein kinase A: one with the ligand bound, the other without. The ligand, balanol, was then docked to conformations of the receptors presented by these trajectories. The Lamarckian genetic algorithm in Autodock [Goodsell et al. J Mol Recognit 1996;9(1):1-5; Morris et al. J Comput Chem 1998;19(14):1639-1662] was used in the docking. Three ligand models were used: rigid, flexible, and flexible with torsional potentials. When the snapshots were taken from the molecular dynamics simulation of the protein-ligand complex, the correct docking structure could be recovered easily by the docking algorithm in all cases. This was an easier case for challenging the docking algorithm because, by using the structure of the protein in a protein-ligand complex, one essentially assumed that the protein already had a pocket to which the ligand can fit well. However, when the snapshots were taken from the ligand-free protein simulation, which is more useful for a practical application when the structure of the protein-ligand complex is not known, several clusters of structures were found. Of the 10 docking runs for each snapshot, at least one structure was close to the correctly docked structure when the flexible-ligand models were used. We found that a useful way to identify the correctly docked structure was to locate the structure that appeared most frequently as the lowest energy structure in the docking experiments to different snapshots.  相似文献   

15.
A tertiary structure prediction is described using Monte Carlo simulated annealing for the peptide fragment corresponding to residues 16-36 of bovine pancreatic trypsin inhibitor (BPTI). The simulation starts with randomly chosen initial conformations and is performed without imposing experimental constraints using energy functions given for generic interatomic interactions. Out of 20 simulation trials, seven conformations show a sheet-like structure--two strands connected by a turn--although this sheet-like structure is not as rigid as that observed in native BPTI. It is also shown that these conformations are mostly looped and exhibit a native-like right-handed twist. Unlike the case with the C-peptide of RNase A, no conspicuous alpha-helical structure is found in any of the final conformations obtained in the simulation. However, the lowest-energy conformation does not resemble exactly the native structure. This indicates that the rigid beta-sheet conformation of native BPTI merely corresponds to a local minimum of the energy function if the fragment with residues 16-36 is isolated from the native protein. A statistical analysis of all 20 final conformations suggests that the tendency for the peptide segments to form extended beta-strands is strong for those with residues 18-24, and moderate for those with residues 30-35. The segment of residues 25-29 does not tend to form any definite structure. In native BPTI, the former segments are involved in the beta-sheet and the latter in the turn. A folding scenario is also speculated from this analysis.  相似文献   

16.
The complex of Lactobacillus casei dihydrofolate reductase with trimethoprim and NADP+ exists in solution as a mixture of approximately equal amounts of two slowly interconverting conformational states [Gronenborn, A., Birdsall, B., Hyde, E. I., Roberts, G. C. K., Feeney, J., & Burgen, A. S. V. (1981) Mol. Pharmacol. 20, 145]. These have now been further characterized by multinuclear NMR experiments, and a partial structural model has been proposed. 1H NMR spectra at 500 MHz show that the environments of six of the seven histidine residues differ between the two conformations. The characteristic 1H and 31P chemical shifts of nuclei of the coenzyme in the two conformations of the complex are identical in analogous complexes formed with a number of trimethoprim analogues, indicating that the nature of the two conformations is the same in each case. The pyrophosphate 31P resonances have been assigned to the two conformations, and integration of the 31P spectrum shows that the ratio of conformation I to conformation II varies from 0.4 to 2.3 in the complexes with the various trimethoprim analogues, the ratio for the trimethoprim complex itself being 1.2. Transferred NOE experiments, together with the 1H and 13C chemical shifts, indicate that in conformation II of the complex the nicotinamide ring of the coenzyme has swung away from the enzyme surface into solution; this is made possible by changes in the conformation of the pyrophosphate moiety. In conformation I, by contrast, the nicotinamide ring remains bound to the enzyme. 13C and 15N experiments show that trimethoprim is protonated on N1 in both conformations of the ternary complex. Analysis of the 1H chemical shifts of trimethoprim in terms of ring current effects shows that in conformation I of the ternary complex trimethoprim retains the same conformation as in its binary complex, but 13C, 15N, and 19F [using 2,4-diamino-5-(3,5-dimethoxy-4-fluoro-benzyl)pyrimidine] experiments show that the environment of both the pyrimidine ring and benzyl ring is affected by the proximity of the coenzyme. Less information is available about the conformation of the inhibitor in conformation II of the complex, but its environment is similar to that in the binary enzyme-inhibitor complex. The implications of the existence of these two conformations of the enzyme for understanding cooperativity in binding between NADP+ and trimethoprim are briefly discussed.  相似文献   

17.
The spatial structure of the gramicidin A (GA) transmembrane ion-channel was refined on the base of cross-peak volumes measured in NOESY spectra (mixing time tau m = 100 and 200 ms). The refinement methods included the comparison of experimental cross-peak volumes with those calculated for low-energy GA conformations, dynamic averaging of the low-energy conformation set and restrained energy minimization. Accuracy of the spatial structure determination was estimated by the penalty function Fr defined as a root mean square deviation of interproton distances corresponding to the calculated and experimental cross-peak volumes. As the initial conformation we used the right-handed pi 6,3 LD pi 6,3 LD helix established on the base of NMR data regardless of the cross-peak volumes. The conformation is in a good agreement with NOE cross-peak volumes (Fr 0.2 to 0.5 A depending on NOESY spectrum). For a number of NOEs formed by the side chain protons, distances errors were found as much as 0.5-2.0 A. Restrained energy minimization procedure had little further success. However some of these errors were eliminated by the change in torsional angle chi 2 of D-Leu12 and dynamic averaging of the Val7 side chain conformations. Apparently, majority of deviations of the calculated and experimental cross-peak volumes are due to the intramolecular mobility of GA and cannot be eliminated within the framework of rigid globule model. In summary the spatial structure of GA ion-channel can be thought as a set of low-energy conformations, differing by the side chain torsion angles chi 1 Val7 and chi 2 D-Leu4 and D-Leu10 and the orientation of the C-terminal ethanolamine group. Root mean square differences between the atomic coordinates of conformations are in the range of 0.3-0.8 A.  相似文献   

18.
Recognition of Ras by its downstream target Raf is mediated by a Ras-recognition region in the Ras-binding domain (RBD) of Raf. Residues 78–89 in this region occupy two different conformations in the ensemble of NMR solution structures of the RBD: a fully α-helical one, and one where 87–90 form a type IV β-turn. Molecular dynamics simulations of the RBD in solution were performed to explore the stability of these and other possible conformations of both the wild-type RBD and the R89K mutant, which does not bind Ras. The simulations sample a fully helical conformation for residues 78–89 similar to the NMR helical structures, a conformation where 85–89 form a 310-helical turn, and a conformation where 87–90 form a type I |iB-turn, whose free energies are all within 0.3 kcal/mol of each other. NOE patterns and Hα chemical shifts from the simulations are in reasonable agreement with experiment. The NMR turn structure is calculated to be 3 kcal/mol higher than the three above conformations. In a simulation with the same implicit solvent model used in the NMR structure generation, the turn conformation relaxes into the fully helical conformation, illustrating possible structural artifacts introduced by the implicit solvent model. With the Raf R89K mutant, simulations sample a fully helical and a turn conformation, the turn being 0.9 kcal/mol more stable. Thus, the mutation affects the population of RBD conformations, and this is expected to affect Ras binding. For example, if the fully helical conformation of residues 78–89 is required for binding, its free energy increase in R89K will increase the binding free energy by about 0.6 kcal/mol. Proteins 31:186–200, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

19.
Mutagenesis experiments suggest that Asp79 in cellulase Cel6A (E2) from Thermobifida fusca has a catalytic role, in spite of the fact that this residue is more than 13 A from the scissile bond in models of the enzyme-substrate complex built upon the crystal structure of the protein. This suggests that there is a substantial conformational shift in the protein upon substrate binding. Molecular mechanics simulations were used to investigate possible alternate conformations of the protein bound to a tetrasaccharide substrate, primarily involving shifts of the loop containing Asp79, and to model the role of water in the active site complex for both the native conformation and alternative low-energy conformations. Several alternative conformations of reasonable energy have been identified, including one in which the overall energy of the enzyme-substrate complex in solution is lower than that of the conformation in the crystal structure. This conformation was found to be stable in molecular dynamics simulations with a cellotetraose substrate and water. In simulations of the substrate complexed with the native protein conformation, the sugar ring in the -1 binding site was observed to make a spontaneous transition from the (4)C(1) conformation to a twist-boat conformer, consistent with generally accepted glycosidase mechanisms. Also, from these simulations Tyr73 and Arg78 were found to have important roles in the active site. Based on the results of these various MD simulations, a new catalytic mechanism is proposed. Using this mechanism, predictions about the effects of changes in Arg78 were made which were confirmed by site-directed mutagenesis.  相似文献   

20.
G H Paine  H A Scheraga 《Biopolymers》1986,25(8):1547-1563
The average conformation of Met-enkephalin was determined by using an adaptive, importance-sampling Monte Carlo algorithm (SMAPPS—Statistical Mechanical Algorithm for Predicting Protein Structure). In the calculation, only the backbone dihedral angles (? and ψ) were allowed to vary; i.e., all side-chain (χ) and peptide-bond (ω) dihedral angles were kept fixed at the values corresponding to a low-energy structure of the pentapeptide. The total conformational energy for each randomly generated structure of the polypeptide was obtained by summing over the interaction energies of all pairs of nonbonded atoms of the whole molecule. The interaction energies were computed by the program ECEPP/2 (Empirical Conformational Energy Program for Peptides). Solvent effects were not included in the computation. The calculation was repeated until a total of 10 independent average conformations were established. The regions of conformational space occupied by the average structures were compared with the regions of low conditional free energy obtained by SMAPPS in the first paper of this series. Such a comparison provides an analysis of the capacity of SMAPPS to adjust the Monte Carlo search to regions of highest probability. The results demonstrate that the ability of SMAPPS to focus the Monte Carlo search is excellent. Finally, the 10 independent average conformations and the mean of the 10 average structures were utilized as the initial conformations for a direct energy minimization of the pentapeptide. Of the 11 final energy-minimized structures, three of the conformations were found to be equivalent to the conformation of lowest energy determined previously. In addition, all but two of the remaining energy-minimized structures were found to correspond to one of the two other conformations of high probability obtained in the first paper of this series. These results indicate that a set of independent average conformations can provide a rational, unbiased choice for the initial conformation, to be used in a direct energy minimization of a polypeptide. The final energy-minimized structures consequently constitute a set of low-energy conformations, which include the global energy minimum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号