共查询到20条相似文献,搜索用时 0 毫秒
3.
The article continues the series of our publications on the problem of nitric oxide (NO) and its cyclic conversion in mammals. This review is held to analysis of nitric oxide role in regulation of cardiovascular system and in alocation of NO-synthases in myocardium. Molecular, biochemical and cytophysiological aspects that linked, with spatial localization of NO-synthases and mechanisms of NO content regulation in myocardium are considered. The results of author's investigations along the cyclic convertion of NO and literature data about compartmentalization of NO-synthases in myocardium are included in this paper. The contradictory and dissimilar facts about regulatory and toxic role of nitric oxide in cardiovascular system are represented. 相似文献
4.
Nitric oxide (NO) is thought to mediate most effects of interleukin-1 (IL-1) on cartilage. In vitro evidence includes the decreased synthesis of extracellular matrix components, the abnormal cell renewal, the decreased production of IL-1 receptor antagonist, the induction of apoptosis and the enhanced sensitivity of chondrocytes to oxidative stress. Studies in NOS2(-/-) mice or administration of NO synthase inhibitors in animal models of joint disorders have confirmed its potent pathophysiological role in cartilage. Using L-NMMA (1 mM), as a NO synthase inhibitor, and CuDips (10 microM), as a SOD mimetic, we provide evidence that the inhibitory potency of IL-1beta on proteoglycan synthesis and its stimulating effect on COX-2 activity depend both on NO and O2-* production. Peroxynitrite formation is further demonstrated by the occurrence of 3-nitrotyrosines in chondrocytes stimulated in vitro with 2.5 ng/ml IL-1 and in femoral condyles of rats injected locally with 1 microg IL-1. Preliminary data suggest that such contribution of reactive oxygen species is not shared in common by IL-17, another NO-producing cytokine. We conclude that superoxide is a key modulator of NO-mediated effects in chondrocyte stimulated with IL-1 and that a combined therapy with NO synthase inhibitors and antioxidants may be promising for a full cartilage protection. 相似文献
6.
The neuroendocrine system of the starfish Marthasterias glacialis was investigated immunocytochemically using antisera specific for rat neuronal, bovine aortic endothelial, and mouse macrophage, nitric oxide (NO) synthases. Immunoreactivity was detected only with the antibodies specific for the neural enzyme, in the ectoneural and hyponeural tissues of the radial nerve cords and in the basiepithelial plexus and endocrine cells of the digestive tract. The pyloric stomach showed more immunoreactive structures than the other digestive organs, with the rectal caeca showing the least activity. Immunoreactive endocrine cells were located in the cardiac and pyloric stomachs and in the pyloric caeca. Co-localization of the enzyme immunoreactivity, and the staining for NADPH-diaphorase, demonstrate the presence of NO synthase in echinoderms. These results provide further evidence that NO is a neuronal messenger of early phylogenetic origin which has been conserved throughout evolution. 相似文献
7.
The ectomycorrhizal fungus Tricholoma populinum is host-specific with Populus species. T. populinum has wind-dispersed progagules and may be capable of long-distance dispersal. In this study, we tested the hypothesis of a panmictic population between Scandinavia and North America. DNA sequences from five nuclear loci were used to assess phylogeographic structure and nucleotide divergence between continents. Tricholoma populinum was composed of Scandinavian and North American lineages with complete absence of shared haplotypes and only one shared nucleotide mutation. Divergence of these lineages was estimated at approx. 1.7-1.0 million yr ago (Ma), which occurred after the estimated divergence of host species Populus tremula and Populus balsamifera/Populus trichocarpa at 5 Ma. Phylogeographic structure was not observed within Scandinavian or North American lineages of T. populinum. Intercontinental divergence appears to have resulted from either allopatric isolation; a recent, rare long-distance dispersal founding event followed by genetic drift; or the response in an obligate mycorrhizal fungus with a narrow host range to contractions and expansion of host distribution during glacial and interglacial episodes within continents. Understanding present genetic variation in populations is important for predicting how obligate symbiotic fungi will adapt to present and future changing climatic conditions. 相似文献
8.
The buffalo is one of the few domestic animals that has a seasonal mating cycle, influenced by the photoperiod. It is known that the photoperiod regulates gonadal function probably via the pineal and/or hypothalamus-pituitary axis. Moreover, the hypothalamus (melatonin) and gonads influence the production of the signaling transmitter nitric oxide (NO), suggesting that the NO may have an important role in the regulation of gonadotropin-releasing hormone secretion. This further suggests the hypothesis that NO in the epididymis has an important role in the maturation of spermatozoa and their motility and posterior fertilization capacity. The aim of the present study is to investigate the seasonal variations in the morphology of the epididymis by means histochemical and immunocytochemical techniques. We used the NADPH-d, nitric oxide synthase (NOS) I and NOS III to clarify the relationship between epididymis function and NO signaling activity. The results of this work show that NO is present in the caput of epididymis during short photoperiods, i.e., periods of maximum gonadal activity (winter) and absent during long photoperiods, i.e., periods of gonadal regression according to the previously described role of NO in spermatozoa capacitation and motility in the caput epididymis. 相似文献
10.
Abiotic and biotic stresses affect plant physiology and growth. The development of metabolomics, along with other -omics technologies, allowed in depth analysis of the reactive processes characterizing plant stress as the result of the alteration of metabolites and gene expressions. Here, we organize and interpret data from 151 studies to provide an overview about metabolomic shift after exposure to either abiotic or biotic stresses including drought, salinity, heat, heavy metal, cold, pathogens and insects. Data showed that amino acids, organic acids, sugars, and sugar alcohols quantities are influenced by stresses. Proline for example, increased in almost every stress condition, while other molecules increased or decreased depending specifically on plant tissue, plant species and type of applied stress. We concluded that although it is difficult to predict precisely what a stress will cause, some general metabolic trends can be described and improve our understanding of plant response to biotic and abiotic stresses. 相似文献
11.
An investigation was carried out into the possible effect of sphingosine (Sph) on nitric oxide (NO) production in living neurons. Differentiated granule cells were used in a dynamic videoimaging analysis of single cells labeled, simultaneously, with FURA-2 and the NO indicator 4,5-diaminofluorescein. The results demonstrate that Sph exerts a potent inhibitory effect on the Ca2+-dependent production of NO, without modifying the [Ca2+]i. The effect appears to be specific as neither ceramide nor Sph-1-phosphate had any effect on the NO and [Ca2+]i levels. The data demonstrate that Ca2+-dependent NO production is a specific Sph target in living granule cells, suggesting that this bioactive sphingoid plays a relevant role in neuronal NO signaling. 相似文献
12.
Research on NO in plants has achieved huge attention in recent years mainly due to its function in plant growth and development under biotic and abiotic stresses. In the present study, we investigated Cd induced NO generation and its relationship to ROS and antioxidant regulation in Brassica juncea. Cd accumulated rapidly in roots and caused oxidative stress as indicated by increased level of lipid peroxidation and H 2O 2 thus, inhibiting the overall plant growth. It significantly decreased the root length, leaf water content and photosynthetic pigments. A rapid induction in intracellular NO was observed at initial exposures and low concentrations of Cd. A 2.74-fold increase in intracellular NO was recorded in roots treated with 25 μM Cd than control. NO effects on Malondialdehyde (MDA) content and on antioxidant system was investigated by using sodium nitroprusside (SNP), a NO donor and a scavenger, [2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethylinidazoline-1-oxyl-3-oxide] (cPTIO). Roots pretreated with 5 mM SNP for 6 h when exposed to 25 μM Cd for 24 h reduced the level of proline, non-protein thiols, SOD, APX and CAT in comparison to only Cd treatments. However, this effect was almost blocked by 100 μM cPTIO pretreatment to roots for 1 h. This ameliorating effect of NO was specific because cPTIO completely reversed the effect in the presence of Cd. Thus, the present study report that NO strongly counteracts Cd induced ROS mediated cytotoxicity in B. juncea by controlling antioxidant metabolism as the related studies are not well reported in this species. 相似文献
13.
We investigated the role of nitric oxide (NO) in ABA-inhibition of stomatal opening in Vicia faba L. in different size dishes. When a large dish (9 cm diameter) was used, ABA induced NO synthesis and the NO scavenger reduced ABA-inhibition of stomatal opening. When a small dish (6 cm diameter) was used, ABA induced stomatal closure and inhibited stomatal opening. The NO scavenger was able to reduce ABA-induced stomatal closure, but unable to reverse ABA-inhibition of stomatal opening. Furthermore, NO was not synthesized in response to ABA, indicating that NO is not required for ABA-inhibition of stomatal opening in the small dish. These results indicated that an NO-dependent and an NO-independent signaling pathway participate in ABA signaling pathway. An NO-dependent pathway is the major player in ABA-induced stomatal closure. However, in ABA-inhibition of stomatal opening, an NO-dependent and an NO-independent pathway act: different signaling molecules participate in ABA-signaling cascade under different environmental condition.Key words: ABA, environmental condition, nitric oxide, stomata, Vicia faba LNitric oxide (NO) is a key signaling molecule in plants. 1,2 It functions in disease resistance and programmed cell death, 3,4 root development, 5,6 and plant responses to various abiotic stresses. 1,2,7,8 In addition, NO is required for stomatal closure in response to ABA in several species including Arabidopsis, Vicia faba, pea, tomato, barley, and wheat. 9–11 ABA-inhibition of stomatal opening is a distinct process from ABA-induced stomatal closure. 12,13 In V. faba, these two processes employ a similar signaling pathway; NO is also a second messenger molecule for ABA-inhibition of stomatal opening in a large dish. 14 In this study, we examined the role of NO in ABA-inhibition of stomatal opening using different dish sizes. In a small dish, NO is not involved in ABA-inhibition of stomatal opening: the NO-independent signaling pathway is the major player in it. 相似文献
14.
We have recently demonstrated that nitric oxide (NO) produced by neuronal NO synthase (nNOS) in the spinal cord is involved in the maintenance of neuropathic pain. To clarify whether NO itself affected nNOS activity in the spinal cord as a retrograde messenger, we examined the involvement of the NO/cGMP signaling pathway in the regulation of nNOS activity by NADPH-diaphorase histochemistry. NO-generating agents NOR3 (t(1/2)=30min) and SNAP (t(1/2)=5h), but not NOR1 (t(1/2)=1.8min), significantly enhanced NADPH-diaphorase staining in the spinal cord. 8-Br-cGMP also enhanced it similar to that by NOR3, and 8-Br-cAMP and forskolin, an activator of adenylate cyclase, enhanced it moderately. NOR1 and NOR3 markedly increased the cGMP level in the spinal cord. The enhancement of NADPH-diaphorase staining by NOR3 was significantly inhibited by CPTIO, an NO scavenger, ODQ, a soluble guanylate cyclase inhibitor, and KT5823, an inhibitor of cGMP-dependent protein kinase. Additionally, the NOR3-enhanced nNOS activity was completely inhibited by NMDA antagonists MK-801 and d-AP5, partially by the GluRepsilon2-selective antagonist CP-101,606, and was attenuated in GluRepsilon1(-/-) and GluRepsilon1(-/-)/epsilon4(-/-) mice. These results suggest that NO may regulate nNOS activity as a retrograde messenger in the spinal cord via activation of NMDA receptor containing GluRepsilon1 and GluRepsilon2 subunits. 相似文献
15.
Previous studies indicate that the nitric oxide (NO) increase at fertilization in sea urchin eggs is Ca 2+-dependent and attributed to the late Ca 2+ rise. However, its role in fertilization still remains unclear. Simultaneous measurements of the activation current, by a single electrode voltage clamp, and NO, using the NO indicator DAF-FM, showed that the NO increase occurred at the time of peak current ( tp) which corresponds to peak [Ca 2+] i, suggesting that NO is not related to any other ionic changes besides [Ca 2+] i. We measured O 2 consumption by a polarographic method to examine whether NO regulated a respiratory burst for protection as reported in other biological systems. Our results suggested NO increased O 2 consumption. The fluorescence of reduced pyridine nucleotides, NAD(P)H was measured in controls and when the NO increase was eliminated by PTIO, a NO scavenger. Surprisingly, PTIO decreased the rate of the fluorescence change and the late phase of increase in NAD(P)H was eliminated. PTIO also suppressed the production of H 2O 2 and caused weak and high fertilization envelope (FE). Our results suggest that NO increase upregulates NAD(P)H and H 2O 2 production and consolidates FE hardening by H 2O 2. 相似文献
16.
Nitric oxide (NO) regulates the biological activity of many enzymes and other functional proteins as well as gene expression. In this study, we tested whether pretreatment with NO regulates NO production in response to cytokines in cultured rat hepatocytes. Hepatocytes were recovered in fresh medium for 24 h following pretreatment with the NO donor S-nitroso-N-acetyl-d,l-penicillamine (SNAP) and stimulated to express the inducible NO synthase (iNOS) with interleukin-1beta and interferon-gamma or transfected with the human iNOS gene. NO pretreatment resulted in a significant increase in NO production without changing iNOS expression for both conditions. This effect, which did not occur in macrophages and smooth muscle cells, was inhibited when NO was scavenged using red blood cells. Pretreatment with oxidized SNAP, 8-Br-cGMP, NO(2)(-), or NO(3)(-) did not increase the cytokine-induced NO production. SNAP pretreatment increased cytosolic iNOS activity measured only in the absence of exogenous tetrahydrobiopterin (BH(4)). SNAP pretreatment suppressed the level of GTP cyclohydrolase I (GTPCHI) feedback regulatory protein (GFRP) and increased GTPCHI activity without changing GTPCHI protein level. SNAP pretreatment also increased total cellular levels of biopterin and active iNOS dimer. These results suggest that SNAP pretreatment increased NO production from iNOS by elevating cellular BH(4) levels and promoting iNOS subunit dimerization through the suppression of GFRP levels and subsequent activation of GTPCHI. 相似文献
17.
Nitric oxide (NO) is a potent vasodilator in terrestrial vertebrates, but whether vascular endothelial-derived NO plays a role in vascular regulation in fish remains controversial. To explore this issue, a study was made of spiny dogfish sharks (Squalus acanthias) in normoxia and acute hypoxia (60 min exposure to seawater equilibrated with 3% oxygen) with various agents known to alter NO metabolism or availability. In normoxia, nitroprusside (a NO donor) reduced blood pressure by 20%, establishing that vascular smooth muscle responds to NO. L-arginine, the substrate for NO synthase, had no hemodynamic effect. Acetylcholine, which stimulates endothelial NO and prostaglandin production in mammals, reduced blood pressure, but also caused marked bradycardia. L-NAME, an inhibitor of all NO synthases, caused a small 10% rise in blood pressure, but cell-free hemoglobin (a potent NO scavenger and hypertensive agent in mammals) had no effect. Acute hypoxia caused a 15% fall in blood pressure, which was blocked by L-NAME and cell-free hemoglobin. Serum nitrite, a marker of NO production, rose with hypoxia, but not with L-NAME. Results suggest that NO is not an endothelial-derived vasodilator in the normoxic elasmobranch. The hypertensive effect of L-NAME may represent inhibition of NO production in the CNS and nerves regulating blood pressure. In acute hypoxia, there is a rapid up-regulation of vascular NO production that appears to be responsible for hypoxic vasodilation. 相似文献
18.
Microchip capillary electrophoresis (CE), coupled with indirect fluorescence detection was investigated for estimating the pK(a) values of non-fluorescent compounds. The CE method is based on the differences in electrophoretic mobility of the analyte as a function of the pH of the running buffer. Nine compounds were tested, including several of pharmaceutical importance, with pK(a) values from 10.3 to 4.6. All buffers contained 5-TAMRA as the fluorescent probe for indirect detection. Calculated pK(a) values agreed well with literature values obtained by traditional methods, differing not more than 0.2 from the literature value. The current work on single lane chips demonstrates the principle of microchip CE with indirect detection as a viable method for estimating pK(a) values. However, increased throughput will be required using a multilane chip to enable the approach to be used practically. 相似文献
19.
Extended flower longevity has been widely defended to occur as a consequence of low pollination activity. To test this hypothesis in Neotropical rainforests, we selected three species of Epidendrum that flower during rainy conditions and commonly exhibit low levels of insect visits. Experimental studies carried out in 15 populations distributed along a wide spatial gradient detected the presence of pollinator limitation in all populations. Pollinia removal without pollen deposition increased longevity, and thus extended longevity could apparently be considered as an ecological advantage for these orchids. Nevertheless, flower longevity was severely shortened by abiotic factors like precipitation and humidity. Comparison with other tropical orchids showed that flower longevity was higher even in species that flower during periods of more pollinator activity than the ones studied here, which is contrary to the hypothesis that pollinators are the only driving force for long‐lived flowers in Epidendrum. Thus, although long floral longevities are apparently favorable for the reproductive success of these species, the high maintenance costs experienced during rainy conditions are also an important factor constraining the selection of long‐lived flowers in Epidendrum. 相似文献
20.
The study of species coexistence and community assembly has been a hot topic in ecology for decades. Disentangling the hierarchical role of abiotic and biotic filters is crucial to understand community assembly processes. The most critical environmental factor in semi-arid environments is known to be water availability, and perennials are usually described as nurses that create milder local conditions and expand the niche range of several species. We aimed to broaden this view by jointly evaluating how biological soil crusts (BSCs), water availability, perennial species (presence/absence of Stipa tenacissima) and plant-plant interactions shape a semi-arid annual plant community. The presence and cover of annual species was monitored during three years of contrasting climate. Water stress acted as the primary filter determining the species pool available for plant community assembly. Stipa and BSCs acted as secondary filters by modulating the effects of water availability. At extremely harsh environmental conditions, Stipa exerted a negative effect on the annual plant community, while at more benign conditions it increased annual community richness. Biological soil crusts exerted a contradictory effect depending on climate and on the presence of Stipa, favoring annuals in the most adverse conditions but showing repulsion at higher water availability conditions. Finally, interactions among co-occurring annuals shaped species richness and diversity of the final annual plant assembly. This study sheds light on the processes determining the assembly of annual communities and highlights the importance of Biological Soil Crusts and of interactions among annual plants on the final outcome of the species assembly. 相似文献
|