首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Daily and circadian variations of melatonin contents in the diencephalic region containing the pineal organ, the lateral eyes, and plasma were studied in a urodele amphibian, the Japanese newt (Cynops pyrrhogaster), to investigate the possible roles of melatonin in the circadian system. Melatonin levels in the pineal region and the lateral eyes exhibited daily variations with higher levels during the dark phase than during the light phase under a light-dark cycle of 12 h light and 12 h darkness (LD12:12). These rhythms persisted even under constant darkness but the phase of the rhythm was different from each other. Melatonin levels in the plasma also exhibited significant day-night changes with higher values at mid-dark than at mid-light under LD 12:12. The day-night changes in plasma melatonin levels were abolished in the pinealectomized (Px), ophthalmectomized (Ex), and Px+Ex newts but not in the sham-operated newts. These results indicate that in the Japanese newts, melatonin production in the pineal organ and the lateral eyes were regulated by both environmental light-dark cycles and endogenous circadian clocks, probably located in the pineal organ and the retina, respectively, and that both the pineal organ and the lateral eyes are required to maintain the daily variations of circulating melatonin levels.  相似文献   

2.
Diverse circadian systems related to phylogeny and ecological adaptive strategies are proposed in teleosts. Recently, retinal photoreception was reported to be important for the circadian pacemaking activities of the Nile tilapia Oreochromis niloticus. We aimed to confirm the photic and circadian responsiveness of its close relative-the Mozambique tilapia O. mossambicus. Melatonin production in cannulated or ophthalmectomized fish and its secretion from cultured pineal glands were examined under several light regimes. Melatonin production in the cannulated tilapias was measured at 3-h intervals; it fluctuated daily, with a nocturnal increase and a diurnal decrease. Exposing the cannulated fish to several light intensities (1500-0.1 lx) and to natural light (0.1 and 0.3 lx) suppressed melatonin levels within 30 min. Static pineal gland culture under light-dark and reverse light-dark cycles revealed that melatonin synthesis increased during the dark periods. Rhythmic melatonin synthesis disappeared on pineal gland culture under constant dark and light conditions. After ophthalmectomy, plasma melatonin levels did not vary with light-dark cycles. These results suggest that (1) Mozambique tilapias possess strong photic responsiveness, (2) their pineal glands are sensitive to light but lack circadian pacemaker activity, and (3) they require lateral eyes for rhythmic melatonin secretion from the pineal gland.  相似文献   

3.
The pineal organ of masu salmon Oncorhynchus masou was maintained in a flow-through, whole-organ culture (superfusion) system and melatonin secretory profiles were determined at 15 °C under light-dark cycles of 12:12 h (LD 12:12) or the same in combination with constant darkness (DD) for 72 h. Under LD 12:12, superfused pineal organs showed a rhythmic melatonin secretion with high and low rates during the dark phase and the light phase, respectively. When the pineal organs maintained under LD 12:12 for 24 h were transferred to DD, melatonin secretion was consistently activated and no endogenous component was evident. When the pineal organs maintained under DD for 48 h were transferred to LD 12:12, melatonin secretion was reduced only during the light phase. These results indicate that melatonin secretion from the superfused pineal organ of masu salmon is regulated not by an intra-pineal circadian oscillator but by the environmental LD cycles, via local photoreceptors.  相似文献   

4.
The pineal organ of masu salmon Oncorhynchus masou was maintained in a flow-through, whole-organ culture (superfusion) system and melatonin secretory profiles were determined at 15 °C under light-dark cycles of 12:12 h (LD 12:12) or the same in combination with constant darkness (DD) for 72 h. Under LD 12:12, superfused pineal organs showed a rhythmic melatonin secretion with high and low rates during the dark phase and the light phase, respectively. When the pineal organs maintained under LD 12:12 for 24 h were transferred to DD, melatonin secretion was consistently activated and no endogenous component was evident. When the pineal organs maintained under DD for 48 h were transferred to LD 12:12, melatonin secretion was reduced only during the light phase. These results indicate that melatonin secretion from the superfused pineal organ of masu salmon is regulated not by an intra-pineal circadian oscillator but by the environmental LD cycles, via local photoreceptors.  相似文献   

5.
The aim of the present study was to examine arylalkylamine N-acetyltransferase (AANAT) activity and melatonin content in the pineal gland and retina as well as the melatonin concentration in plasma of the turkey (Meleagris gallopavo), an avian species in which several physiological processes, including reproduction, are controlled by day length. In order to investigate whether the analyzed parameters display diurnal or circadian rhythmicity, we measured these variables in tissues isolated at regular time intervals from birds kept either under a regular light-dark (LD) cycle or under constant darkness (DD). The pineal gland and retina of the turkey rhythmically produced melatonin. In birds kept under a daily LD cycle, melatonin levels in the pineal gland and retina were high during the dark phase and low during the light phase. Rhythmic oscillations in melatonin, with high night-time concentrations, were also found in the plasma. The pineal and retinal melatonin rhythms mirrored oscillations in the activity of AANAT, the penultimate enzyme in the melatonin biosynthetic pathway. Rhythmic oscillations in AANAT activity in the turkey pineal gland and retina were circadian in nature, as they persisted under conditions of constant darkness (DD). Transferring birds from LD into DD, however, resulted in a potent decline in the amplitude of the AANAT rhythm from the first day of DD. On the sixth day of DD, pineal AANAT activity was still markedly higher during the subjective dark than during the subjective light phase; whereas, AANAT activity in the retina did not exhibit significant oscillations. The results indicate that melatonin rhythmicity in the turkey pineal gland and retina is regulated both by light and the endogenous circadian clock. The findings suggest that environmental light may be of primary importance in the maintenance of the high-amplitude melatonin rhythms in the turkey.  相似文献   

6.
The aim of the present study was to examine arylalkylamine N‐acetyltransferase (AANAT) activity and melatonin content in the pineal gland and retina as well as the melatonin concentration in plasma of the turkey (Meleagris gallopavo), an avian species in which several physiological processes, including reproduction, are controlled by day length. In order to investigate whether the analyzed parameters display diurnal or circadian rhythmicity, we measured these variables in tissues isolated at regular time intervals from birds kept either under a regular light‐dark (LD) cycle or under constant darkness (DD). The pineal gland and retina of the turkey rhythmically produced melatonin. In birds kept under a daily LD cycle, melatonin levels in the pineal gland and retina were high during the dark phase and low during the light phase. Rhythmic oscillations in melatonin, with high night‐time concentrations, were also found in the plasma. The pineal and retinal melatonin rhythms mirrored oscillations in the activity of AANAT, the penultimate enzyme in the melatonin biosynthetic pathway. Rhythmic oscillations in AANAT activity in the turkey pineal gland and retina were circadian in nature, as they persisted under conditions of constant darkness (DD). Transferring birds from LD into DD, however, resulted in a potent decline in the amplitude of the AANAT rhythm from the first day of DD. On the sixth day of DD, pineal AANAT activity was still markedly higher during the subjective dark than during the subjective light phase; whereas, AANAT activity in the retina did not exhibit significant oscillations. The results indicate that melatonin rhythmicity in the turkey pineal gland and retina is regulated both by light and the endogenous circadian clock. The findings suggest that environmental light may be of primary importance in the maintenance of the high‐amplitude melatonin rhythms in the turkey.  相似文献   

7.
The chicken pineal gland possesses the capacity to generate circadian oscillations, is able to synchronize to external light:dark cycles and can generate an hormonal output--melatonin. We examined the light responses of the chicken pineal gland and its effects on melatonin and Per2, Bmal1 and E4bp4 expression in 19-day old embryos and hatchlings during the dark phase, subjective light phase and in constant darkness. Expression of Per2 and E4bp4 were rhythmic under light:dark conditions, but the rhythms of E4bp4 and Bmal1 mRNA did not persist in constant darkness in 19-day old embryos. Per2 mRNA expression persisted in constant darkness, but with a reduced amplitude. Per2 expression was inducible by light only during the subjective day. Melatonin release was inhibited by light only at end of the dark phase and during the subjective light phase in embryos. Our data demonstrate that the embryonic avian pineal pacemaker is light sensitive and can generate rhythmic output, however the effects of light were diminished in chick embryos in compared to hatchlings.  相似文献   

8.
The chicken pineal gland possesses the capacity to generate circadian oscillations, is able to synchronize to external light:dark cycles and can generate an hormonal output--melatonin. We examined the light responses of the chicken pineal gland and its effects on melatonin and Per2, Bmal1 and E4bp4 expression in 19-day old embryos and hatchlings during the dark phase, subjective light phase and in constant darkness. Expression of Per2 and E4bp4 were rhythmic under light:dark conditions, but the rhythms of E4bp4 and Bmal1 mRNA did not persist in constant darkness in 19-day old embryos. Per2 mRNA expression persisted in constant darkness, but with a reduced amplitude. Per2 expression was inducible by light only during the subjective day. Melatonin release was inhibited by light only at end of the dark phase and during the subjective light phase in embryos. Our data demonstrate that the embryonic avian pineal pacemaker is light sensitive and can generate rhythmic output, however the effects of light were diminished in chick embryos in compared to hatchlings.  相似文献   

9.
To test whether the affinity (Kd) and total binding capacity (Bmax) of melatonin receptors exhibit daily and circadian changes in teleost fish whose melatonin secretion is not regulated by intra-pineal clocks, we examined the changes in melatonin binding sites in the brains of underyearling masu salmon Oncorhynchus masou under artificial light-dark (LD), constant light (LL) and constant dark (DD) conditions. In Experiment 1, fish were reared under a long (LD 16:8) or short (LD 8:16) photoperiod for 69 days. Blood and brains were sampled eight times at 3 h intervals. Plasma melatonin levels were high during the dark phase and low during the light phase in both photoperiodic groups. The Bmax exhibited no daily variations. Although the Kd slightly, but significantly, changed under LD 8:16, this may be of little physiological significance. In Experiment 2, fish reared under LD 12:12 for 27 days were exposed to LL or DD from the onset of the dark phase under LD 12:12. Blood and brains were sampled 13 times at 4 h intervals for two complete 24 h cycles. Plasma melatonin levels were constantly high in the DD group and low in the LL group. No significant differences were observed in the Kd and the Bmax between the two groups, and the Kd and the Bmax exhibited no circadian variation either in the LL or DD groups. These results indicate that light conditions have little effect on melatonin binding sites in the masu salmon brain.  相似文献   

10.
The aim of the current investigation was to study the effect of lithium on circadian rhythms of pineal - testicular hormones by quantitations of pineal and serum serotonin, N-acetylserotonin and melatonin, and serum testosterone at four time points (06.00, 12.00, 18.00 and 24.00) of a 24-hr period under normal photoperiod (L:D), reversed photoperiod (D:L), constant light (L:L) and constant dark phase (D:D) in rats. Circadian rhythms were observed in pineal hormones in all the combinations of photoperiodic regimens, except in constant light, and in testosterone levels in all the photoperiodic combinations. Pineal and serum N-acetylserotonin and melatonin levels were higher than serotonin at night (24.00 hr), in natural L:D cycle, in reversed L:D cycle or similar to normal L:D cycle in constant dark phase, without any change in constant light. In contrast, testosterone level was higher in light phase (12.00 hr through 18.00 hr) than in the dark phase (24.00 hr through 06.00 hr) in normal L:D cycle, in reversed L:D cycle, similar to normal L:D cycle in constant dark (D:D), and reversed to that of the normal L:D cycle in constant light (L:L). Lithium treatment (2 mEq/kg body weight daily for 15 days) suppressed the magnitude of circadian rhythms of pineal and serum serotonin, N-acetylserotonin and melatonin, and testosterone levels by decreasing their levels at four time points of a 24-hr period in natural L:D or reversed D:L cycle and in constant dark (D:D). Pineal indoleamine levels were reduced after lithium treatment even in constant light (L:L). Moreover, lithium abolished the melatonin rhythms in rats exposed to normal (L:D) and reversed L:D (D:L) cycles, and sustained the rhythms in constant dark. But testosterone rhythm was abolished after lithium treatment in normal (L:D)/reversed L:D (D:L) cycle or even in constant light/dark. The findings indicate that the circadian rhythm exists in pineal hormones in alternate light - dark cycle (L:D/D:L) and in constant dark (D:D), but was absent in constant light phase (L:L) in rats. Lithium not only suppresses the circadian rhythms of pineal hormones, but abolishes the pineal melatonin rhythm only in alternate light - dark cycles, but sustains it in constant dark. The testosterone rhythm is abolished after lithium treatment in alternate light - dark cycle and constant light/dark. It is suggested that (a) normal circadian rhythms of pineal hormones are regulated by pulse dark phase in normal rats, (b) lithium abolishes pineal hormonal rhythm only in pulse light but sustains it in constant dark phase, and (c) circadian testosterone rhythm occurs in both pulse light or pulse dark phase in normal rats, and lithium abolishes the rhythm in all the combinations of the photoperiod. The differential responses of circadian rhythms of pineal and testicular hormones to pulse light or pulse dark in normal and lithium recipients are discussed.  相似文献   

11.
Daily variations in plasma melatonin levels in the rainbow trout Oncorhynchus mykiss were studied under various light and temperature conditions. Plasma melatonin levels were higher at mid-dark than those at mid-light under light-dark (LD) cycles. An acute exposure to darkness (2 hr) during the light phase significantly elevated the plasma melatonin to the level that is comparable with those at mid-dark, while an acute exposure to a light pulse (2 hr) during the dark phase significantly suppressed melatonin to the level that is comparable with those at mid-light. Plasma melatonin kept constantly high and low levels under constant darkness and constant light, respectively. No circadian rhythm was seen under both conditions. When the fish were subjected to simulative seasonal conditions (simulative (S)-spring: under LD 13.1:10.9 at 13 degrees C; S-summer: under LD 14.3:9.7 at 16.5 degrees C; S-autumn: under LD 11.3:12.7 at 13 degrees C; S-winter: under LD 10.1:13.9 at 9 degrees C), melatonin levels during the dark phase were significantly higher than those during the light phase irrespective of simulative seasons. The peak melatonin level in each simulative season significantly correlated with temperature but not with the length of the dark phase employed. In addition, the peak melatonin level in S-autumn was significantly higher than those in S-spring although water temperature was the same under these conditions. These results indicate that the melatonin rhythm in the trout plasma is not regulated by an endogenous circadian clock but by combination of photoperiod and water temperature.  相似文献   

12.
Plasma melatonin synthesis in juvenile Atlantic salmon Salmo salar decreased with increasing light intensity. Melatonin profiles reflected accurately the photoperiod under which the salmon were maintained. Groups maintained at 12°C showed significantly higher ( P < 0·01) levels of dark phase plasma melatonin compared with the groups maintained at 4°C.  相似文献   

13.
Using in vivo microdialysis, effects of retinally perceived light on pineal melatonin release and its rhythmicity was examined in the pigeon. In the first experiment, light-induced suppression of pineal melatonin release was studied. Although light given to the whole body during the dark strongly suppressed pineal melatonin release to a daytime level, light exclusively delivered to the eyes did not remarkably inhibit melatonin release. In the second experiment, in order to determine whether retinally perceived light has phase-shifting effects on pineal melatonin rhythms, pigeons were given a single light pulse of 2 h at circadian time (CT) 18 and the phases of the second cycle after the light pulse were compared with those of control pigeons without the light pulse. In this experiment, phase advances of pineal melatonin rhythms were observed when the light was given to the whole body but not when only the eyes were illuminated. In a third experiment, after entrainment to light-dark 12:12 (LD 12:12) cycles, birds whose heads were covered with black tapes were transferred into constant light (LL) conditions and only the eyes were exposed to new LD cycles for 7 days (the phase was advanced by 6 h from the previous cycles) using a patching protocol. This procedure, however, could not entrain pineal melatonin rhythms to the retinal LD cycles. These results indicate that the eyes are not essential for photic regulation of pineal melatonin release and its rhythmicity in the pigeon.Abbreviations CT circadian time - LD light-dark - LL constant light - SCN suprachiasmatic nucleus - LLdim constant dim light - NE norepinephrine - SCG superior cervical ganglia - WB whole body - E eye - EX extraretina - C control  相似文献   

14.
Both light and temperature can influence the pineal's synthesis of the indoleamine melatonin. An investigation of the effects of light and temperature cycles on the pineal melatonin rhythm (PMR) showed the following: (1) Both daily light cycles and daily temperature cycles could entrain the PMR; melatonin levels peaked during the dark phase of a light-dark cycle or the cool phase of a temperature cycle. (2) The PMR could be entrained by a temperature cycle as low as 2 degrees C in amplitude in lizards held in constant light or constant darkness. (3) The length of the photoperiod or thermoperiod affected the phase, amplitude, or duration of the PMR. (4) When presented together, the effects of light and temperature cycles on the PMR depended on the phase relationship between the light and temperature cycles, as well as on the strength of the entraining stimuli, such as the amplitude of the temperature cycle. (5) Exposure to a constant cold temperature (10 degrees C) eliminated the PMR, yet a rhythm could still be expressed under a 24-hr temperature cycle (32 degrees C/10 degrees C), and the rhythm peaked during the 10 degrees C phase of the cycle. (6) A 6-hr dark pulse presented during the day did not elicit a premature rise in melatonin levels. These studies show how environmental stimuli can control the pineal rhythm of melatonin synthesis and secretion. Previous studies have supported a model in which the lizard's pineal acts as a circadian pacemaker within a multioscillator circadian system, and have implicated melatonin as a hormone by which the pineal may communicate with the rest of the system. The lizard pineal, therefore, may act as a photo- and thermoendocrine transducer translating light and temperature information into an internal cue in the form of the PMR. The PMR, in turn, may control the phase and period of circadian clocks located elsewhere, insuring that the right internal events occur at the right time of day.  相似文献   

15.
The present study investigated whether the circadian oscillators controlling rhythms in activity behavior and melatonin secretion shared similar functional relationship with the external environment. We simultaneously measured the effects of varying illuminations on rhythms of movement and melatonin levels in Indian weaver birds under synchronized (experiment 1) and freerunning (experiment 2) light conditions. In experiment 1, weaverbirds were exposed to 12h light: 12h darkness (12L:12D; L = 20 lx, D = 0.1 lx) for 2.5 weeks. Then, the illumination of the dark period was sequentially enhanced to 1-, 5-, 10-, 20- and 100 lx at the intervals of about 2 to 4 weeks. In experiment 2, weaver birds similarly exposed for 2.5 weeks to 12L:12D (L = 100 lx; D = 0.1 lx) were released in constant dim light (LL(dim), 0.1 lx) for 6 weeks. Thereafter, LL(dim) illumination was sequentially enhanced to 1-, 3- and 5 lx at the intervals of about 2 weeks. Whereas the activity of singly housed individuals was continuously recorded, the plasma melatonin levels were measured at two time of the day, once in each light condition. The circadian outputs in activity and melatonin were phase coupled with an inverse phase relationship: melatonin levels were low during the active phase (light period) and high during the inactive phase (dark period). This phase relationship continued in both the synchronized and freerunning states as long as circadian activity and melatonin oscillators subjectively interpreted synchronously the daily light environment, based on illumination intensity and/or photophase contrast, as the times of day and night. There were dissociations between the response of the activity rhythms and melatonin rhythms in light conditions when the contrast between day and night was much reduced (20:10 lx) or became equal. We suggest that circadian oscillators governing activity behavior and melatonin secretion in weaverbirds are phase coupled, but they seem to independently respond to environmental cues. This would probably explain the varying degree to which the involvement of pineal/melatonin in regulation of circadian behaviors has been found among different birds.  相似文献   

16.
Melatonin is regarded as an internal zeitgeber, involved in the synchronization to light of the daily and seasonal rhythms of vertebrates. To date, plasma and ocular melatonin in fish have been extensively surveyed almost solely in freshwater species – with the exception of some migrating species of salmonids. In the present paper, melatonin levels of a marine species (sea bass, Dicentrarchus labrax L) were examined. In addition, the daily rhythms of the demand-feeding activity of sea bass, a fish species characterized by a dual phasing capacity (i.e. the ability to switch between diurnal and nocturnal behaviour), were investigated before sampling. Sea bass, distributed in 12 groups of four fish and kept under constant water temperature and salinity, were exposed to a 12 h light:12 h dark cycle (200:0 lx, lights on at 0800 hours). After 4 weeks recording, the animals were killed at 0900, 1200, 1400, 1600, 1900, 2100, 2400, 0200, 0400, 0700 and 0900 hours. Actograms of demand-feeding records revealed a nocturnal feeding behaviour, with some cases of spontaneous inversions in phasing. Melatonin levels in plasma peaked in the middle of the dark phase, dropping after lights on. Melatonin in the eye, on the contrary, exhibited an inverse profile, with high levels during daytime and low levels at night. These results suggest that melatonin in the plasma and the eye may act independently on the flexible circadian system of sea bass. Accepted: 30 January 1997  相似文献   

17.
Influences of photoperiod on plasma melatonin profiles and effects of melatonin administration on long-day-induced smoltification in masu salmon (Oncorhynchus masou) were investigated in order to reveal the roles of melatonin in the regulation of smoltification in salmonids. Under light-dark (LD) cycles, plasma melatonin levels exhibited daily variation, with higher values during the dark phase than during the light phase. The duration of nocturnal elevation under short photoperiod (LD 8:16) was longer than that under long photoperiod (LD 16:8). Melatonin feeding (0.01, 0.1 and 1 mg/kg body weight) elevated plasma levels of melatonin in a dose-dependent manner for at least 7 h but not for 24 h. When masu salmon reared under short photoperiod were exposed to long photoperiod (LD 16:8) and fed melatonin (1 mg/kg body weight) 7 hours before the onset of darkness, a significantly smaller proportion of smolts appeared in the melatonin-fed group after 32 days than in the control group. However, after 59 days of the treatment, there was no difference in the proportion of smolts between the control and melatonin-treated groups. Thus, melatonin feeding mimicked the effects of short photoperiod, which delays but does not completely suppress smoltification. These results indicate that the day length is transduced into changes in the duration of nocturnal elevation in plasma melatonin levels, and that artificial modification of the plasma melatonin pattern possibly delays the physiological processes of smoltification induced by long-day photoperiodic treatment.  相似文献   

18.
The pineal gland and its major output signal melatonin have been demonstrated to play a central role in the seasonal organization of the ruin lizard Podarcis sicula. Seasonal variations in the amplitude of the nocturnal melatonin signal, with high values in spring as compared to low values in summer and autumn, have been found in vivo. The authors examined whether the pineal gland of the ruin lizard contains autonomous circadian oscillators controlling melatonin synthesis and whether previously described seasonal variations of in vivo melatonin production can also be found in isolated cultured pineal glands obtained from ruin lizards in summer and winter. In vitro melatonin release from isolated pineal glands of the ruin lizard persisted for 4 days in constant conditions. Cultured explanted pineal glands obtained from animals in winter and summer showed similar circadian rhythms of melatonin release, characterized by damping of the amplitude of the melatonin rhythm. Although different photoperiodic conditions were imposed on ruin lizards before explantation of pineal glands, the authors did not find any indication for corresponding differences in the duration of elevated melatonin in vitro. Differences were found in the amplitude of in vitro melatonin production in light/dark conditions and, to a lesser degree, in constant conditions. The presence of a circadian melatonin rhythm in vitro in winter, although such a rhythm is absent in vivo in winter, suggests that pineal melatonin production is influenced by an extrapineal oscillator in the intact animal that may either positively or negatively modulate melatonin production in summer and winter, respectively.  相似文献   

19.
In passerine birds, the periodic secretion of melatonin by the pineal organ represents an important component of the pacemaker that controls overt circadian functions. The daily phase of low melatonin secretion generally coincides with the phase of intense activity, but the precise relationship between the melatonin and the behavioral rhythms has not been studied. Therefore, we investigated in European starlings (Sturnus vulgaris) (1) the temporal relationship between the circadian plasma melatonin rhythm and the rhythms in locomotor activity and feeding; (2) the persistence of the melatonin rhythm in constant conditions; and (3) the effects of light intensity on synchronized and free-running melatonin and behavioral rhythms. There was a marked rhythm in plasma melatonin with high levels at night and/or the inactive phase of the behavioral cycles in almost all birds. Like the behavioral rhythms, the melatonin rhythm persisted for at least 50 days in constant dim light. In the synchronized state, higher daytime light intensity resulted in more tightly synchronized rhythms and a delayed melatonin peak. While all three rhythms usually assumed a rather constant phase relationship to each other, in one bird the two behavioral rhythms dissociated from each other. In this case, the melatonin rhythm retained the appropriate phase relationship with the feeding rhythm. Accepted: 10 December 1999  相似文献   

20.
Melatonin has been traditionally considered to be derived principally from the pineal gland. However, several investigations have now demonstrated that melatonin synthesis occurs also in the retina (and in other organs as well) of several vertebrate classes, including mammals. As in the pineal, melatonin synthesis in the retina is elevated at night and reduced during the day. Since melatonin receptors are present in the retina and retinal melatonin does not contribute to the circulating levels, retinal melatonin probably acts locally as a neuromodulator. Melatonin synthesis in the retinas of mammals is under control of a circadian oscillator located within the retina itself, and circadian rhythms in melatonin synthesis and/or release have been described for several species of rodents. These rhythms are present in vivo, persist in vitro, are entrained by light, and are temperature compensated. The recent cloning of the gene responsible for the synthesis of the enzyme arylalkylamine N-acetyltransferase (the only enzyme unique to the melatonin synthetic pathway) will facilitate localizing the cellular site of melatonin synthesis in the retina and investigating the molecular mechanism responsible for the generation of retinal melatonin rhythmicity. Melatonin has been implicated in many retinal functions, and the levels of melatonin and dopamine appear to regulate several aspects of retinal physiology that relate to light and dark adaptation. In conclusion, it seems that retinal melatonin is involved in several functions, but its precise role is yet to be understood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号